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THE SHELAH P-POINT 
INDEPENDENCE THEOREM 

BY 

E D W A R D  L. W IM MERS 

ABSTRACT 

In this paper, we present S. Shelah's  example of a model of Let theory in which 
there are no P-points  in [3N\N. This settles the famous open question: "Is 
'ZFC + there are no P-points  in /3N \ N '  consistent?" 

O. History 

A famous open question was: "Is 'ZFC + there are no P-points in /3N \ N '  

consistent?" Saharon Shelah has recently proven that " Z F C + t h e r e  are no 

P-points in/3N \ N "  is consistent. This paper presents Shelah's solution, slightly 

modified by the author. 

W. Rudin [6] has shown that the continuum hypothesis implies the existence 

of 2 ~ P-points. A similar argument can be used to show there are 2 c selective 

ultrafilters, assuming the continuum hypothesis. (All selective ultrafilters are 

P-points.) K. Kunen [3] has shown that there are no selective ultrafilters in the 

model of set theory obtained by adjoining ~2 random reals to a model of set 

theory plus the continuum hypothesis. For a discussion of ultrafilters in general 

and P-points in particular, the reader is referred to [1]. 

The results and methods of proof in this paper are due to S. Shelah. 

The author wishes to thank Saharon Shelah for his time and many helpful 

explanations. The author also wishes to thank Arnold Miller for his discussions 

of this paper and Shai Ben-David for his suggestions concerning this paper. The 

author also wishes to acknowledge the encouragement and advice of Ken 

Kunen, Rod Price, Mary Ellen Rudin, and George Lee. 

Grigorieff [2] has generalized Sacks and Silver forcing to P~, where ~ is an 

ultrafilter on to. He has shown that P~ preserves toz iff ~ is a P-point. 

In the model obtained by forcing with (P~)~, ~ cannot be extended to a 
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P-point. This remains true even if ~ is only a P-filter, instead of a P-point.  One 

way to try to destroy all P-points would be to force with a product of P~ for all 

P-filters. Unfortunately,  this adds new P-points. However,  there is a ccc 

suborder which does not add new P-points. We use Shelah's style of forcing to 

get a model of set theory in which we have the desired ccc suborder of II P~. 

Another  approach that might work is to assume V = L and try to get a ccc 

suborder of 11P~ using combinatorial principles. However,  in addition to 

seeming simpler, the method presented in this paper is more versatile, since by 

forcing instead of relaying on V = L we have greater control over such things as 

12",,I. 
The rest of this section is motivation. None of the rest of the material depends 

on what we do for the rest of section 0. Consequently, we make some assertions 

here without proof. 

Let Q = {g : to x to --+ 2 : dom(gi) E I'} where g, (k) = g(i, k) and I '  is the ideal 

associated with a P-point P. Thus A E I '  iff to \ A E P. Let G be generic over V. 

We will show that there is no P-point  D E V ~ such that P C_ D. Suppose not. 

Let A, ={j  : g , ( j ) =  1 for some gEG}.  Let A~ and A ' = A .  Define 

e :to--~ D so that A ~i)E D where I is the ideal associated with D. Find two 

sequences i,, j. so that min{i,.j,j,.~}>max{i,,j,} and so that e(i,)=e(j,). 
I O I Define E.=(A~AAj~ Aj.). Thus E,  E D .  Pick B E D  so that 

[O,f'(n))OE,~_B. Pick g ' E P  which forces all that. Let CU[O,f"(n))~_ 
dom(g',) where C ~ I'. Define f ( n ) =  max{f"(i.),f"(j,),f'(n)}. It is possible to 

find such an f in V. Let k E [f(n),f(n + 1)). Define g so that it extends g'  and so 

that g(i,, k) -- 0 and g(jn, k) = 1. 

We will now show g if-0 = 1. Let k E [f(n),f(n + 1)) and assume k ~  C. Then 

g H-kEB\E, since f(n)>-f'(n). Since g(i,,k)=O and g ( j . , k ) =  1, g ~ k ~ E . .  
Thus g It- k tEB. Since n _-> 0 was arbitrary, g IF B _C C U [0, f(0)). But g tF B E D 

& C ~ L Thus g I1- 0 = 1. This contradiction shows that the P-point  P in V Q can 

not be extended to a P-point D in V ~ 

What we have just presented is a sketch of the proof of Lemma 6.4. We would 

like to defeat all P-points not just 1. Therefore,  we need a sequence of P-points. 

So we will break the forcing up into 2 parts. The first part P will be designed to 

give us a partial order Q similar to the one above but now with the ability to 

defeat all the potential P-points not just 1. Both P and Q will need to be 

well-behaved. We intend to use Lemma 2.1 to show that every P-point in (VP) ~ 

contains a P-filter in V P. For this we will need Q to be ccc. Therefore,  our 

forcing for P must ensure that Q is ccc. We want to have a property on P to keep 

it well-behaved. P will turn out to be to~-complete and have the to2-cc. 
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We will now give some of the conditions that we will want to put on P and this 

motivates our definition of a-candidate  (4.1). We will keep P "small" by 

requiring that every element be a countable subset of a set of cardinality co2. A 

A-system argument will give us that P has the coz-cc. We will want maximal 

anti-chains that we will keep countable to ensure that Q has the ccc (B- 

maximality). We will also want to do iterated forcing (in P) and we will want to 

keep the partial orders consistent with each other. Thus, we have the notions of 

reducing and B-bounding (see 4.1). 

Using some of the important ideas in this paper, C. Mills [5] has given a 

simpler proof of the main result (6.5) that avoids technicalities of a-candidates.  

I. Introduction 

We begin with the convention that all our filters are over co. 

1.1. DEFINITION. A C_*B iff A \ B  is finite. 

1.2. DEFINITION. A P-point is a non-principal ultrafilter ~ over co such that 

if A,  (n E w) is a sequence of elements of ~, then there exists an A E ~ such 

that A C_*A, for all n E co. 

1.3. DEFINITION. If @ is a filter, then let or = {A :co \A  E ~}. 

1.4. DEFINITION. A filter ~ is N~-saturated iff there is no sequence Aa 

(a < N~) such that 

(1) A~ _C co, 

(2) Aa Z 5 , ,  

(3) At  fq A,  E 5u provided f l~  % 

1.5. DEFINITION. A P-filter is an N,-saturated filter ~ such that: 

(1) Every cofinite set is in ~. 

(2) If Vn Eco (Am E ~ ) ,  then ::IA ~ ' n  Eco[A C*A, ] .  

1.6. DEFINITION. IF" represents forcing for the partial order  P. 

1.7. DEFINmON. 0IF P "a formula" is an abbreviation for Vp E P[p IF P "a 

formula"]. 

II. Forcing facts 

In this section, we present some general facts about forcing that will be used 

later. When we write p~ _--- p2 for conditions we mean pl extends p2. Thus pl => p2 
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and pt in the generic set implies p2 is in the generic set. Thus, pt forces more 

things than p2. 

The next lemma tells us that if we force with a ccc partial order Q and every 

"new"  function from to to to is bounded by an "old"  one, then every P-point in 

V ~ contains a P-filter which is in V. 

2.1. LEMMA. Hypothesis: 

(i) Q is a ccc partial order. 

(ii) 0 IF Q "~" is a P-point". 

(iii) Every [unction (from to to to) in V ~ is bounded by a [unction in V. 

(iv) Define 2~" = {A _C to �9 0 IF ~ A E ~'}. 

Conclusion: 

~ is a P-filter in V. 

PROOF. Clearly, 2~ ~ is a filter containing every cofinite set. Suppose ~ "  is not 

Ni-saturated. Hence, we have a sequence (A~ : a  <1,11) in V contradicting 

~l-saturation. Thus, to \A~IE ~ ' .  Hence, it is not the case that 0IF~ \Aa E r .  

Thus, p~ lF~  for some po E Q .  Thus, p~JFQA~ E~', since T is an 

ultrafilter. Thus, p~, po are incompatible for ~ # fl, contradicting ccc. Therefore,  

we have shown that 2~" is ~r 

Now assume we have a sequence A ,  (n E to) in V with all A,  E 9".  There are 

names A, J" in the forcing language for Q such that 01FQA E~" & A C_ 

A, U [0,f(n)) .  We can find a countable set {p~ : i ~ to} of conditions maximal 

with respect to: 

(1) If i # j ,  then p,, pj are incompatible. 

(2) p~ IFQVn Eto[f(n)<=g~(n)] for some g~ E V. 

Every Q-generic set contains exactly one of the p,'s. Define h (n)  = 

max{go(n ), . . ., g, (n )}. Define A = O . ~  [A, U[0, h(n))]. Thus, A E V and 

A _C* A, for all n E to. We also have the following: 

p, IFAoO[O,h(O))E~'& . " & A ,  ,U[0,  h ( i - 1 ) ) E r &  N A . U [ 0 ,  h(n))E~-, 
n e w  
n>'i  

p, IF f") A,  U[0, h ( n ) ) E T ,  
r l E t ~  

p~U-A ET. 

Since each generic set contains a p~, we have that 0 IF A E T. Thus, A E ~ "  and 

A _C*A. for all n ~ to. 

Thus, ~ "  is a P-filter. [] 
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2.2. CONVENTION. Whenever we say "increasing" we do not mean "strictly 

increasing". For example, we consider the constant sequence to be increasing. 

2.3. REMARKS. An Nrcomplete  partial order is one where every increasing 

sequence p, (n E to) of conditions has an upper bound. 

If we have sequence E,  (n E to) of elements of ,9~ where ~ is a P-filter, then 

there exists an E _D*E. (n E w) such that E ~ #~. E ,  \ E  is finite, but it might be 

a large finite set. The next lemma says we can extract an infinite subsequence 

such that I E,  \ E I is bounded on the subsequence by a preassigned function that 

increases to infinity. 

2.4. COLLECTING LEMMA. Hypothesis: 

(1) P is an Nrcomplete partial order, 

(2) So is an infinite subset of to, 

(3) h E P and h IF " r  is a P-filter", 

(4) E, (n E to) is an increasing sequence of subsets of to such that h It- E ,  ~ #,  

for all n E to, 

(5) c, is an increasing sequence of finite subsets of to and U , ~ c ,  = to. 

Conclusion: 

For each no E So there exists an h ' ~ P, an infinite S~ C_ So, and an E '  C_ to such 

that 

(1) h'>=h, 

(2) s, So n [o, no], 
(3) E'D_E~, 

(4) h ' IFE '  E 5~, 

(5) Vn ES, [E 'D_E. \ c . ] .  

PROOF. Since z is a P-filter and P is l~l-complete, we get an h~ E P such that 

hi ---> h and hi IF E ~ E ,,~, for some E ~ E V N 2 ~ such that E~ * E.  for all n ~ to. 

Define [ : to ~ to so that: 

(i) E~ 

(ii) [ is strictly increasing. 

(iii) Image~)_C So. 

Define a sequence t . (n Eto)  by letting to=no and ti+~=J:(t~) for i_->O. Let 

(Re : a < N1) be a sequence of infinite, almost disjoint subsets of {t~ : i ~ to}. Let 

e~ = E ~ U U (c,,§ 
/iERa 

Thus hi II- e~ fl e~ E #,  provided a #/3. 
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By ~r of z, there exists an h2 E P such that h2 => hi and h2 []- G~o (~ ,~. 
for some ao E cal. Let E 2= eo~ and $2 = R~o. If t~ E $2, then 

E2D_E~ 

The lemma follows by letting h' = h2, E '  = E 2 U E,~,, and $I = $2 O (So A [0, no]). 
[] 

III. Notation 

In this section g will be a partial function from a x ca into 2 with a countable 

domain. A, B are countable collections of such g's. For each g and ordinal i, we 

have a partial function f~: ca -->{0,1} defined by f~(n) = g(i, n) for all n E ca. For 

each ordinal/3, A r (/3 x ca) = {g r/3 x ca : g E A }, and similarly for B. We denote 

by TOP(g) the least ordinal i such that g [(i x ca)= g. We denote by CEIL(A)  

the least ordinal i such that V g E A ( T O P ( g ) < - _ i ) .  We let F I (g )=  

{fl :::In((/3, n ) E  DOM(g))}. (FI stands for first.) We let F I ( A ) =  U ~ a  FI(g). 

We define CEIL(B) and FI(B), just like we defined CEIL(A)  and FI(A). We 

say that g, = *g2 iff there is a finite set c such that 

g, r (DOM(g,) /c)  = g21 (DOM(g2) \ c). 

Finally, let ~ (/3 < 7) be a sequence of filters. Then we let 

partial 
O<~:~<~>={g:G 'yxca  ~ {0, 1}, [DOM(g)[ --< ~o, and 

Vi < ~,[DOM(f~) ~ 5G,]}. 

Thus, Q<~:~<,> is the set of partial functions g each of whose "sections" f~ are 
"small". 

IV. Candidates 

In the next section we will define partial orders P~ (a _-< ca2) and force with 

these. Before defining Po, we need to define a superset of P~, the set of 

a-candidates. In this section, we introduce candidates and prove some rather 

technical facts about them. We will need these technical results later when we 

force, but in this section we do no forcing and our results do not depend on 

forcing in any way. 

4.1. DEFINITION OF a-CANDIDATE, h is a a-candidate iff DOM(h)  is a 

countable subset of a +1,  0 E D O M ( h ) ,  h ( i ) = ( A h ,  F~) for all i @DOM(h),  

and the following conditions are satisfied for all i E DOM(h):  
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(0) A ~ is a non-empty, countable collection of functions into {0, 1} each having 

a domain which is a countable subset of i • co. F," is a non-empty, countable 

collection of subsets of A ~. 
(1) If g E A ~', g' = *g, and DOM(g ' )  _C FI(A h) x co, then g' E A h. 

(2) FI (A~)= {j : j  < i and j + 1 E DOM(h)}. 

(3) DOM(h)  is closed under sup's. 

(4) If / 3 E a + l ,  g E A r ,  then g I ( / 3 •  

(5) [B-maximality] if B E F~, then every member of A ~ can be extended to a 

member of A ~ which extends some member of B. 

(6) [A-union] if g~, g2 E A ~ and gl U g2 is a function, then gl U g2 ~ A ~. 

(7) [Reducing] Let j<i, i, jEDOM(h). Then we have F~C_F~, F~= 
{B t(j xco):B EFt} ,  and A~={gt(j • g ~A~}. 

(8) [B-bounding] Fix g E A ~. Let B E F~, j _-< i, j, i ~ DOM(h) .  Then BJ' E F~ 

where we define 

B~ = {g~ ~ A~ : gl U g is not a function or 

3g2 E A ~(g2 t (j x co) = g~ and g2 D g and g2 is above some member of B)}. 

4.2. REMARKS. Since the definition of a-candidate is so long, some remarks 

about it are appropriate. (1) says that A ~ is closed under finite changes. (2) says 

that if (], n) E DOM(g)  for some g E A ~', then j + 1 E DOM(h) .  (4) says that A 

is closed under restricting the domain. Notice that (4) implies Q E A ~. If every 

i E D O M ( h )  happens to be a limit ordinal, (2) tells us that A h _- {0}. The B ' s  are 

supposed to represent maximal "antichains". (5) assures us that the B ' s  will be 

maximal, but the B 's  need not in general be antichains. If/3 > a and h is an 

a-candidate,  then h is also a/3-candidate. By (4) and (7), if j < i, then A ~ _C A ~. 

Let j =< i. Fix g E A ~ and B E F~. B-bounding, together with (5), implies that 

every element of A ~ can be extended to another element of A~ that is either 

incompatible with g or else is the restriction to j • co of an element of A ~ that is 

an extension of both g and some element of B. 

In fact, as we will see in the proof of Proposition 4.5, an a-candidate already 

satisfies this condition with requiring B-bounding. However,  we will need 

B-bounding when we glue candidates together in the "gluing lemma" (4.13). 

4.3. DEFINITION. A"  = U~oouth)A~;  F h = U~Eoout~)F~. 

4.4. REMARK. By (3), if g @A h, then T O P ( g ) E D O M ( h ) .  Thus, 

C E I L ( A h ) E  DOM(h) .  Also, if B @F~, then B [(1, • co )EF~ for 7 </3- 
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I f y ~ D O M ( h ) a n d 3 , ~ C E I L ( A h ) , t h e n  " - - A h  F h. A ,  - and F h = In particular, 
A h t' t' Ft'. h _ = F c H t . ( A  h ) "y c,~,~,,"~ A and = If E D O M ( h )  and C F ( y ) > N , ,  then A r -  

A~ for some /3 ~ 3, fq DOM(h).  

Notice that (At ' ,F  h) essentially determines the candidate. The only thing 

(A ", Ft' ) does not determine is DOM(h).  For example, F~ consists exactly of all 

(countable) sets of the form B (/3 x to) where B is any element of fit,. Thus, if 

/3 < 7, F~ consists exactly of all (countable) sets of the form B (/3 x to) where B 

is any element of Ft'. Also, A ~ = A" I (/3 x to). 

Our main goal in this section is to show how we can glue candidates together. 

Our next two propositions tell us that when we glue candidates we do not need 

to worry about B-bounding. The first of the two is weaker than the second, but is 

needed in its proof. 

4.5. PROPOSIq-ION. Hypothesis: 

(1) h is an a-candidate (except for B-bounding),  
(2) j, i ~ DOM(h) and j <= i, 

(3) g E A ~  a n d B E F h , .  
Conclusion: There exists an a-candidate (except for B-bounding) such that: 

(1) DOM(h , )=  DOM(h),  
h = A  h, , n, (2) for all io ~ DOM(h),  we have that A ~ . . . . . .  F~,, C_ F~,,. 

(3) zT,. 

PROOF. Define h, so that DOM(h , )=  D O M ( h ) a n d  for all ioE D O M ( h ) w e  

have A h, = A ,",, and 

Fh, = F ,hU{B~I(k  x to): k _-< io}. 

Everything is clear except, perhaps, that B-maximality holds. Clearly, B- 

maximality holds for any B E F~o. First we check B-maximality for io <= j. Thus 

Bo E F~ o, \F~ o is of the form B~r (k • to) for some k _-< io. Let gl ~ A ,%,. If g U gl is 

not a function, then g, I(k x to)EBo. So without loss of generality, assume 

g U gl is a function. Since g U g, E A ~, there is a g2 ~ A ~ such that g2 _D g U g, 

and g, is above some member of B. Since g2 [ (k x to) E Bo, g2 I" (io • to) @ A h, is 

above some member of Bo. But g2 r (io • to)_D gl. This shows B-maximality for 

io<=j. 
We now check B-maximality for io>j. Thus, BoG F~,,\F~, is of the form 

h I B ~ t (k x to) for some k =< j. Let gl E A ~o. Thus gl I (J x to) E A ~'. By the case for 

io = j, we get a g2 ~ A~, such that g2 _D gl [ (j x to) and g2 is above some member 

of Bo. Therefore, g2 U gl ~ A h o' and g2 U g~ is above some member of Bo. [] 
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4.6. PROPOSI'flON. For every a-candidate (except for B-bounding) h there 

exists an a -candidate h~ such that DOM(h)  = DOM(h t) and for all i E DOM(h)  

we have that A h = A ~' and F~ C_ F~'. 

PROOF. Follows from repeated applications of the previous proposition. [] 

4.7. DEFINITION (of a partial order on a-candidates). Let hi, h2 be a -  

candidates, h~ _-< h2 iff DOM(ht) C_ DOM(h2) and for all i E DOM(hl) we have 
that A ~, C_ A h2 and F h, C_ F~:. 

4.8. DEFINITION. (p,,, C.) (n ~ to) denoted by (p,, c,) is a covering sequence 

for an a-candidate h iff 

1. c , (n E to) is an increasing sequence of finite sets such that U , ~ c ,  = 

FI(A ") • to. 

2. p. (n E to) is an increasing sequence of elements of A h. 

3. DOM(p,)_D c,. 

4. For all B E F h, there exists an nB E to such that for all n >= na, we have that 

if OOM(p')  = OOM(p,),  p '  E A h, and p ' [  [DOM(p') \ c. ] = p. I [OOM(p,) \ c, ], 

then p'  is above some member of B. 

4.9. REMARKS. From now on, if DOM(p ' )=  DOM(p) and 

p ' [[DOM(p ' ) \ c]  = p t [DOM(p) \c] ,  

we will say p'  is "p changed on a subset of c"  

We now show how covering sequences can be constructed. 

4.10. PROPOSITION. Hypothesis: 

(1) j E DOM(h),  where h is an a-candidate, 

(2) B , , . . . ,  B, ~ Fh 
(3) c C_ FI(A ~) x to and c is finite, 

(4) p E A~. 

Conclusion: 

There exists a p ' E  A h such that 

(1) p' D_ p and DOM(p')_D c, 

(2) Vi <= n [if p" is p' changed on a subset of c, then p" is above some member of 

B,]. 

PROOF. By induction, we may assume that n = 1. Let {sl," �9 ", sk} = 2 c and let 

po = p. For i _->0, define pi+l recursively so that DOM(pi+I)_D c, p~+~_Dp~ and 

p~§ and (p,+~[[DOM(p~+~)\c])Usi+, is above some member of B~. B- 
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maximality and closure of A h under finite changes guarantee that p~+~ exists. The 
proposition follows from p'  = pk. [] 

4.11. PROPOSITION. For any g E A h where h is an a-candidate, there exists a 

covering sequence (p,, c.) such that g C Po. 

PROOF. Let B, , .  �9 B, , .  �9 �9 be all the elements of F". Let c. be an increasing 

sequence of finite sets such that I.J.~o c, = F I (Ah) •  o~. Let p_, = g. 

Define pi (i _-> 0) recursively by requiring that p~ D p~-I and DOM(pi) _D c~ and 

p~ E A h. We further require that if p~ is changed on a subset of c~, then it is above 
some member of Bj (j =< i). [] 

4.12. DZVINIT[ON. Let (p,, coi be a covering sequence for the a-candidate h. 
Let g: /3  • Par'%{0, l}. We say that g is over (p,, c,) on S[or /3  itt 

(1) S is an infinite subset of o~, 

(2) Vn E S[g D_p, I ( ( D O M ( p , ) \ c , ) N  (/3 • o9))]. 

Our next lemma tells us how to glue candidates together. It is quite general, 

and we will rarely need its full strength. Sometimes, for example, we will not be 

interested in a sequence h', (n ~ to) but in just one h 1. We can apply the lemma 

with the sequence h~, (n E to) equal to the constant sequence h ~. Other times, we 

will not be interested in g or the covering sequence. In this case, we take 3'3 = 0. 

Unfortunately, due to its generality and the fact that it tells us how to glue 

candidates together, its statement and proof are somewhat technical. Essentially 

the lemma tells us that when we glue candidates together a typical element of 

A "~ (the glued together candidate) will be of the form g~ U g2 t.J g3 (provided the 

union is a function) where g~ is in some Ah '  for an increasing sequence of 

a.-candidates h ~,, g3 is "almost equal" to the designated function g which is over 

the given covering sequence, and g2 is in A "2. We require that h2 [ (3'~, + 1) =< h ~.. 

4.13. GLUING LEMMA. Hypothesis: 

(1) 3"~, (n E w)  is a sequence of ordinals increasing to 3"~. 

(2) h~, is a 3"~,-candidate (for all n E o9). 

(3) h~. (n E w)  is an increasing sequence of 3,~-candidates. 

(4) 32 = 3'~ and 3"- >= 3 '3. 

(5) h 2 is an y2-candidate. 

(6) h 2 [ ( y ~ + l )  < h I  [ o r a l l n ~ w .  

(7) (p,, c,) is a covering sequence for h 2. 

(8) g is over (p , ,c , )  on S [or 3,3. 

(9) g [(y~,X o ) ) ~ A  h~" for all n E w. 

(10) FI(g) C FI[A "~) tO 1.3,~,0 FI(A h'). 



38 E . L .  W I M M E R S  Is r .  J .  M a t h .  

Conclusion: 

There exists a y2-candidate h ~ such that 

(1) h~>-_h 2 and h~>h~, for all n Eto. 

(2) DOM(h~) = DOM(h 2) U U , ~  DOM(h~,) closed under sup's. 

(3) For all i E DOM(h~), 

A ~ = {g~ U g2 U g3 : gl U g~ tO g3 is a function and where 

g ~ A h " I ( i ~ •  for some n ~to ,  i~< i; 

g~ G A "~ I (i~ • to) for some i~ < _ i; 

g3 = g~[(i3 x to) for some i3<= i where 

g3 = . g  and FI(g 3) _C FI(g) U (y~ M FI(A "~))}. 

PROOF. Let DOM(h~) be defined as in (2) of the conclusion. Define A ~  as in 

(3) of the conclusion. Define Fh~ ~ = {B [ (i x to) : B E F h2 or B E F h" for some 

n E to}. Assume (*) h~ is a y2-candidate (except for B-bounding). Notice that 

any one or all of g~, g2, g3 could be the empty function. 

The result follows from (*) by Proposition 4.6. We now prove (*). The main 

difficulty is B-maximality, which we will check first. Let BoE F hf, go E A ~  ~ 

where i E DOM(h~). go has the form gl U g2 U g3 where gl, g2, g3 are given in the 

conclusion of the lemma. 

Case 1. Bo E F h~" for some h ~,o, n E to. 
h ~ h ~ Pick io, no so that gl E A m and BoE F~ .,. Thus,go[ (io • to ) E A ~o-0. There exists a 

g~ E A ho"~ such that go z D go [ (io • to) and g~ is above some member of Bo. Let 

gJ~ = g~, r (i • to). Thus gJ~ U go E A h'~ and gl U go is above some member of Bo. 

Case 2. Bo ~ - F  h~ for any n E to. 

Thus Bo E F h2. Without loss of generality, we can assume the i3 associated 
with g3 is less than or equal to y3. 

Let ia = MAX(i3,TOP(g0). 
Let i5 = CEIL(A h21 (in x to)). 

Subcase 2.1. i4 = TOP(g  0. 
h I I I 

Pick no so that g o [ ( i s x t o ) E A , ~  "o. There exists g~EAh,  "0 such that g~_~ 

go[(i5 x to) and g~ is above some member of (Bo),~. There exists g~ ~ A "~ such 
that g~_~ g2 and g~ is above some member of Bo and g~ t ( i4x  to)C_gl. Then 

(go U g] U g~) t (i • to) E A f and (go U g~t tJ g~) [(i x to) is above some member 
of B,~. 
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Subcase 2.2. i4 = &. 

Pick no so that: 

(1) gSr(DOM(g3)\c~,) fq FI(A h2) x to = g r (DOM(g)\c,~,) n FI(A h2) X tO. 

(2) g D p,,,,[(DOM(p,,,,)\c,,,) n (7 ~ x tO). 

(3) If g'= p,.,,, changed on a subset of c~,, then p '  is above some member of 

(Bo)~. 

Let g~ be such that DOM(g I) = DOM(g~) U [c~, O (& x tO)] and g~ D g3 and 

go U g~ is still a function. Thus, g~ is above some member of (Bo)~g. There exists 

g~EA h:~ such that g~ is above some member of Bo and g~D_ g2 and g3_~I 
g~[(&xtO). Thus, (g , ,Ug~Ug~) f ( i xoa )EA  h~ and (g, ,ug'~ug~)r(ixtO) is 
above some member of B0. Thus, h~ satisfies B-maximality. 

We now check that 1 (in def of a-candidate),  i.e., closure under finite changes, 

holds. Clearly, g~, g~, g~ are all "closed under finite deletions" in the sense that if 

we delete one point from the domain of g, (i = 1,2, 3), we still have a valid g,. 
Finite additions follow from one addition by induction and a "change"  is a 

deletion followed by an addition. So suppose we wish to add fl, no to dom(g), 

where g = g, U g2 U g~. Thus, /3 + 1 E DOM(h2) or /3  + 1 E DOM(h~') for some 

n. In the first case,/3, no can be added to the domain of g~. In the second case,/3, 

no can be added to the domain of g~. 

Note that hypothesis l0 guarantees that requirement 2 in the definition of 

a-candidate holds. [] 

V. Shelah forcing 

We now define the partial orders we will force with. 

5.1. DEFINITION. For (x < to2: 

Let P~ = {h : h is an a-candidate and 
P. 

Vi < a Vg E A"[h r(i + 1)I1: to \DOM(f'g) E r,]} 

where r~ is a name in the forcing language for P, and 0 It -p, "~-~ is a P-filter". Let 

P~ = U ~ < ,  P. .  (f~ was defined in III.) 

Notice that a </3 ~ Pa C_P,. Our next proposition shows that iterated 

forcing works for the P,.'s. Also notice that a </3 and h ~ P ,  

h [ (a  + 1 )~P~.  P~ depends on the sequence ~'~ (i < a) .  

The gluing lemma deals with a-candidates.  The glued together a-candidate h ~, 

in the conclusion of the gluing lemma is bigger than the other candidates in the 

hypothesis of the gluing lemma. If all candidates in the hypothesis of the gluing 

lemma are in P~ and 
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h~ I (i + 1) ~ w \DOM(f}) E z~ for all i < a 

where g is the function over the covering sequence, then h~ E P~. This follows 

from the fact that r~ is a filter. We will use the fact, without mentioning it, that 

the h~ is actually in P. and not merely an a-candidate. 

5.2. PROPOSITION. Hypothesis: 

(1) a</3=<w2,  

(2) h l E P , , ,  h a E P ~ ,  

(3) h,>=h2r(a + l). 

Conclusion: 

There exists an h3 E Pt3 such that h3 >= hi, h2. 

PROOF. Follows from the gluing lemma, where we take 3,2=/3, 3,~,= a, 

y3 = 0, g = O, and the sequence h l n t o  be the constant sequence hi. [] 

This proposition guarantees us that every generic set on P~ "restricted" to P~ 

is P~-generic. Every generic set on P~ is extendable to one for P~. Furthermore if 

6- is a P~-name and G~ C_ G~ are Po, P~ generic respectively then 6- names the 

same set in M[G~] and M[G~]. For more details, see chapters 7 and 8 of [4]. 

Our next proposition explains why we chose to define P~ the way we did. 

5.3. PROPOSITION. For all h E P~, h IFP"A h C O (,j:i<~>. 

PROOF. Follows from 5.1. [] 

Our next proposition shows us that P~ is ~l-complete. 

5.4. PROPOSITION. I[ h. (n E to) is an increasing sequence of members o[ P~, 

then there exists an h E P~ such that h >= h, ]:or all n E o~ and A h = U , ~  A ~. 

PROOF. Follows from the gluing lemma, taking 32 = a, h 2 E Po, 3", = a, and 
3, 3 =0 .  [] 

It is always possible to assume GCH in the ground model and we do so here. 

For more details on A-system arguments, see [4], especially theorem 1.6 of 

chapter 2. 

5.5. LEMMA. For all a <= 0o2, P~ has the w2-cc. 

PROOF. Since we assume the GCH in the ground model, IP~ I = ~ for a < to2. 

The lemma follows by a A-system argument from 

(*) Assume h~ E P, ,  h2 E Pz, a </3, and that there exists a y _-< a such that 
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h2 [ (y + 1) = hz r (a + 1) and h, I" (Y + 1), h2 [ (Y + 1) are compatible in P,.  q-hen 

h~, h2 are compatible in P~. 

PROOF OF (*). Let h 3 E P ,  be such that h3=>h2[ (y+ l ) ,  h l r ( y + l ) .  By 

Proposition 5.2, there exists an h4 ~ P~ such that h4 => h3, hi. By Proposition 5.2, 

there exists an h5 E Po such that h5 >= h2. h4. Thus, h5 => hi, h2. This completes the 

proof of (*). [] 

The next lemma tells us that for every covering sequence for h, we can extend 

h to include a g which is over the given covering sequence. 

5.6. LEMMA. For every covering sequence (p,, c,) for h E P~, and [or every 

no E ~o there exists an infinite S C_ ~o and an h' ~ P~ and a g E A h' such that: 

(1) no E S, 

(2) g _~ P,o, 
(3) h'>=h, 

(4) g is over (p,, c, i on S for/3. 

PROOF. Follows from the next proposition by taking a = 0, So = oJ, h3 = h', 

and g3 = g. We will not need the next proposition again. [] 

5.7. PROPOSITION. Hypothesis: 

(1) hi E P~, h2 E P~, and a < [3, 

(2) h,_-> h~[(a + 1), 

(3) (p., c~) is a covering sequence for h2, 

(4) g~ ~ A h, and g~ is over (p., c.) on S,, for a. 

Conclusion: 

For each no E So there exists an infinite Sl C_ So and an h3 ~ P~ and a g3 ~ A h~ 

such that 

(1) Sl (] [0, no] = So f~ [0, no], 

(2) g3t(a •  

(3) g~r(/3 \o~)• ~p,~,r(/3 \~)x,o, 
(4) g3 is over (p , ,c , )  on S, for/3, 

(5) h3 = h,, h2. 

PROOF. We prove the proposition by induction on /3 _-<~o2. If CF(/3)==~o,, 

there is no problem. 

Case 1. /3 is a successor. 

By the induction hypothesis, we can assume, without loss of generality, that 

/3 = a + 1. If/3 ~ DOM(h2), then take g3 = gJ, $1 = So, and h3 = h~. So assume 
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/3 @ DOM(h2). Let c .  ~= {i ~ to : ( a , i ) E  c,}. Thus, U.~c~ = to. We can apply 

the collecting lemma to get an infinite S~ _C So, an E C to, and an h ~t E P,, such 

that S, n [0, no] = S,, n [0, no], hit ~ h,, h',l~ -P,,E @ 5~.o, E D DOM(f~.,), and 

VnESI[E~_DOM(f '~ . ) \ c~ . ] .  Define g3 so that g ~ [ ( a x t o ) = g ,  and [~,= 

U,co, (f~.)[E. The result follows from the gluing lemma by taking 71 ,=a ,  

7-' = 72 =/3, g = g~, h~. (n E to) to be the constant sequence h ~, and h z to be h:. 

Case 2. CF(/3)=to.  

Let a,  (n E w).~/3 and ao = a. By the induction hypothesis, we can assume 

the lemma holds if /3 is replaced by a . .  Let f(0)---no, gO= g~, h,, = h~, and 

S O= So. By induction on n, we define h" EP~., S" _Cto, g" E A  h", [ ( n ) E t o  to 

satisfy: 

(1) f ( n ) > f ( n -  1) and / ( n ) E  S._,, 

(2) S, _C S,_,, S. infinite, and S. M [0, / (n)]  = S . ,  n [0, /(n)] ,  

(3) g" t (4 ,  , x t o ) = g " - ' ,  

(4) g~ [(4.\4~ ,)x %_~pl~o~r(,~o\4.-,)x to, 
(5) g" is over (p~,c,) on S~ for a , ,  

(6) h ~_->h" ' and h "_->h2I(4 .+1) .  

This can be done by the inductive hypothesis. Define g3 = U,E. ,g" .  Let 

S~ = I ' q~  Clearly, (1), (2), (3) in the conclusion of the lemma hold. Since 

SiDimage(f ) ,  S. is infinite. Since g3I(4,  x t o ) i s  over ( p , , c , i  on S" for a , ,  

S, C_ S", and a.  ~/3, we get that (4) in the conclusion of the lemma holds. The 

lemma follows from the gluing lemma, where we take ",/'. to be a , ,  ",/I = 7 2 = ~ / 3  = 

/3, h~. (n E to) to be h ~, and h: to be h2. The h~ in the conclusion of the gluing 

lemma we take to be our desired h3. [] 

5.8. PROPOSITION. For any h E Po and any countable C C/3 + 1, it is possible 

to find an h ' E Pv such that h l >- h and D O M ( h ' ) D  C. 

PROOF. Since P~ is l, ll-complete, it is sufficient if we consider the case where 

C has only one element. So assume C = {4}. If 4 E DOM(h) ,  let h ' =  h. So 

assume a tEDOM(h) .  If a is a limit, let 4 , = s u p ( a n D O M ( h ) ) .  Define 

h' ( i )  = h( i )  for i #  4, and A h' = A~,, F~' = Fh,. q-his takes care of the limit case, 

so we can assume that 4 = 4~ + 1. Define h~_ so that DOM(h2)= {0, 4} and 
partial 

A "" - {f : f : {a,} • - ~{0,1}andDOM(f)isf ini te}.  

Let F h o ' = { B ~ : f E A ~ - } U { { G } } .  Hence h2EP~  Since DOM(h2[4 )={0} ,  

h214 =< h [ a. By 5.2, there exists an h, E P~ such that h3 => h_~, h 1" (4 + I). By 5.2, 

there exists an h '  E P~ such that h ' >= h, h3. Sinceh'>--h2, DOM(h ' )~_{a} .  [] 

5.9. REMARK. Because P,~ is tol-complete and to.,-cc, thcre are only to: 



Vol. 43, 1982 P-POINT INDEPENDENCE 43 

P-filters and any one in VP-2 is in V P- for some a < to2. Thus for any P-filter 20 

in VP-,, we can arrange that 20 is named by ~'~ for some i < to2 and that r, = z~+, 

for all n E to. We will assume this from now on. 

From now on, when we write P, we mean P,~. 

5.10. DEFINITION. In V P, define Q = I,.J{A" : h E G} where G is the generic 

set for P. The partial order on Q is: g~ _--< g2 iff g~ _c g2. 

5.11. REMARK. Our  goal is to prove that there are no P-points  in (VP) ~ We 

will do this by showing no P-filter in V P can be extended to a P-point  in (VP) ~ 

and then use Lemma 2.1. In order to apply 2.1, we need to know that Q has the 

ccc. The whole purpose of the B ' s  in Shelah forcing is to guarantee that Q will 

have the ccc. Our  next lemma verifies this. 

5.12. LEMMA. In V P, Q has the ccc. 

PROOF. Suppose not. There is an h ~ P such that 

h ~P"6 is a maximal uncountable antichain in Q".  

If g E A h, then h I~ -P g E Q. Thus, there exists an h '  E P and a g '  E A h, such that 

h'>=h, g 'Dg,  and h '~-P"g ' is above some member  of 6.". By repeating this 

construction once for each g U A"  and applying 5.4 we get: 

(*) There exists an hi => h, h~ E P such that for all g E A "  there exists a 

g~ E A ~, such that g~ _~ g and hi It -P "gl is above some member  of 6-". 

By repeating (*) to times applying 5.4, we get an h2 > h, h2 E P such that for all 

g E A h2 there exists a g ' ~  A h2 such that g ' ~  g and h21~-P"g ' is above some 

member  of 6.". Let /3 = {g E A "2: h211-e"g is above some member  of 6""}. 

Define h3 so that DOM(h3) = DOM(h2) and for all i E DOM(h3), let A ~, = A ~2 

and F~, = F ~  LI {B t i • to}. Thus, h3 is an N2-candidate (except for/3-bounding).  

By 4.6, there exists an h4 ~ P such that h4 = h, and B E F h'. Since /3 E F h, we 

have that h4 I~ -e ' ' every  member  of 6" can be extended to be above a member  of 

B " .  Also, we have that h4 I~ -e ' ' every  member  of B is above some member  of 6"; 

13 is countable; 6- is uncountable".  Putting these together, we get that 

hall -e ' '0  = 1". Contradiction. Thus, Q has the ccc. [] 

VI. Conclusion of the proof 

The next lemma will be useful in proving that every "new"  element of to ~ is 

bounded by an old one. Our  next lemma says if we start with a name for a 
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function with domain o~, for an infinite subset of the domain we can find a finite 

set of possible values for each member  of the infinite subset of the domain. 

6.1. LEMMA. Foreachh E P s u c h t h a t h  I t -P"gEQand  f~lF~ V "  there 

exists an infinite S E 2 ~ fq V and a sequence 7". (n E S)  in V and an h ' E P and a 
g' E A h' such that: 

(1) g' ~_ g and h' >= h, 

(2) IT, l<=n, 
(3) h'l~-P"g'lF~ E S ( ( ( n ) E  T,)" .  

PROOF. By extending h if necessary, we can assume without loss of general- 

ity, that g E A h. 

(*) For each go E A h and n E ~o, we can find an hi > h and a gl ~ A h, and a 

t ~ V such that gl D go and h~ IF P' 'gl IF ~ ? (n)  = t" .  

By applying (*), repeatedly, we can find an h2 E P such that hz => h and for all 

g2 ~ A "2 and all n E oJ there exists a t E V and a g~' E A h2 such that g~ D g2 and 

h2 I~ -P "g~ I~ Q ?(n)  = t".  

Let c, be an increasing sequence of finite sets such that I c, I < logffn) and 

U . ~ o , c .  = FI(Ah2) x to. Let BI, B 2 , ' "  be a list of all the elements of FhL Let 

po = g. We now define p, (n _-> 1) inductively to satisfy: 

(a) p. ~ p,_, and p, E A h~. 

(b) DOM(p,)_D c,. 

(c) If p '  is p, changed on a subset of c,, then it is above some member  of B, 

( i N n ) .  

(d) IT, I =< n and if p '  is p. changed on a subset of c., then 

h2 I~ [p' ~ ? ( n ) E  7",1. 

Assume p,_~ is defined. We show how p, and T. can be defined. First extend p, 1 

to pO so that (a), (b), (c) hold, by 4.10. Let  {sl, �9 �9 s~} = 2% Define p~, (1 =< i =< k), 

t' inductively to satisfy: 

(i) p ' , D p 7  ~ and p ' ,EA"2 ,  

(ii) h:lt-P[p',[[DOM(p',)\c,] U s, IF~ §  t,]. 

Let p, = p k. Let  T. = { t , , . . . ,  tk}. IT. I -  -< k = 2 Ic-I _-< 2 '~ = n. Thus (a), (b), (c), (d) 

hold. By 5.6 there exists an h '  _-> hz and a g' E A h, and an infinite S _C o) such that 

g' is over (p,, c,) on S for o)2, g'_D po = g, and 0 ~ S. Therefore,  (d) holds for 

n ES .  Since g'D_p, [ [ D O M ( p . ) \ c , ]  for all n ES ,  we have that (3) in the 

conclusion holds. [] 
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The next lemma will tell us tlhat every "new"  f E to ~ is bounded by an "o ld"  

one. 

6.2. LEMMA. I f  h IFP[g ~ Q and f~ It -Q ~: to-*  to ], then there exists an fl E V, 

h~ ~ P, and gl E A h, such that hi >= h, gl D g, and 

P O 

h~ IF (gl IF Vn E to [?(n)  _<- fl(n )]). 

PROOF. Without loss of generality, we can assume that ? names an increasing 

function. By 6.1, we can assume there is an hi ~ h, a g~ _D g, an infinite S _C to, and 

a sequence T, (n E to) in V such that IT, I=  < n and 

P O 

h, II-[g, IFVn E S ( ~ ( n ) ~  T,)]. 

Let fo(n)=least  element of S greater than or equal to n. Define f l ( n ) =  

max( Tfo~.)). Thus, 

hi I~ [g, ~ Vn e S(~(n ) <= f ,(n ))]. 

For all n E to there exists a least m E S such that m _--> n. Thus fo(n) = fo(m) for 

this m ~ S. Hence,  f~(n) -- f~(m) for this m ~ S. Therefore,  since ~- is increasing, 

hi I[[g~ ~Vn  e to('?(n) ~ fl(n))]. [] 

6.3. LEMMA. 

such that fl : to ---> to and Vn E to [f(n ) <= fl(n)]. 

For each f E ( VP) Q such that f : to -* to there exists an f l ~ V 

PROOF. Follows from6.2.  [] 

6.4. LEMMA. No P-filter ~ in V P can be extended to a P-point 9o in (vP) Q. 

PROOF. Since @ is a P-filter in V P it is named by r~o+. (n ~ to) for some 

aoEN2. In (VP) ~ we let f, = U { f ~ : g  is in the generic set for Q} and we let 

Ai = {l E to : f~( l )= 1}. In (VP) ~ let e : t o - * 2  be such that a.~-) E 9o for all 

n E t o ,  where A ~  and A l = t o \ A .  

In (VP) ~ let ~ - : to -*2  <'~ be given by z ( n ) = e  f (n+3)2" .  In V P, we get a 

g2 E Q and an infinite S E 2 ~ t3 V and a sequence T, (n E S) in V such that 

IT.l<=n (n ~ S) and 

g 2 ~ V n  E S[~ ' (n)E T,] & Vn ~ t o [ A  \A "") c- . . . .  �9 _ [0, fl(n))]. 

We also, of course, require that g2 IF Q ' ' 9  C ~o". 
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We now prove that there exist sequences L,j, (n E S) in V P (hence in V) such 

that &, j .  > n, i, ~ j , ,  and g2 ft -~ e (L)  = e (j.).  For  n E S, let T. = {eL, �9 �9 ", e. }. Let  

Ko = {j : 0 _<- j < (n + 3)2"}. Pick K~ C_ K0 so that for  all i,j E K1, el(i) = el( j)  and 

I K, I --> ~" [Kol. Cont inue  this p rocedure  n times getting Ko_D K1 _D... _D K.  and 

[K. I _-> 2 - " .  I K,,I. We can pick i., j. > n with i. # ]. and i . , ] .  E K.  since [ K.  [ _-> 

(n + 3). 

By taking a subsequenee,  we can assume that we have sequences  i, (n ~ to), j ,  

(n E to) in V such that i,+, > i.,j, and j,+~ > i,,j, and i ,~j ,  and in V P, we have 

that g. IF ~ Vn E to [e (i ,)  = e (j.)]. 

Let  /~, be a name (in the forcing language for Q) for [A~o~" f3 A~o+j. ] U 

[(to \ A~,,,.) f3 (to / A~o.j.)]. Thus,  we have in V P that g2 It -~ Vn E to [/~, E ~o]. In 

V ~, we can find a g~ E Q, fi a name in the forcing language for Q of a subset of to, 

and an increasing f - 'E  V f q to ~ such that g3~_g2 and g 3 1 1 - ~  & 

Vn E to [5" \ JE, C_ [0, f"(n ))1. 
Since we have been working mostly in V P, we can take an h3 ~ P to force 

everything we have discussed. To review, h3 forces the fol lowing for some 

g3 E A h,: 
(2) g3 IF ~ e (i .)  = e (j .)  for  all n E to, 

(3) g3 It "~ Vn E to [/~, E ~o], 

(4) g3 IF ~ ~ ~ ~o & d" \/~. C_ [0, fZ(n )) where  f2 E V n to ~. 

Without  loss of generali ty,  we can assume that DOM(h3)  ~_ 

{a., ao + 1,. �9 ao + to}. 

Let  h, = h3 [ ao + to + 1 and g, = g3 [ (ao + to) x to. Let  (p,,  c. i be a covering 

sequence for h4 with g, C_ po. By 5.6, we can find an h5 ~ Poo~. and a g5 E A h~ and 

an infinite S~ E V A 2 "  such that g~ is over  (p,,c.) on S~ for a o + t o  and gsD_po, 
= ~tll 4-r l  and h~ > h4. We let yo~ = DOM(fs~ ) for all n E to. Hence ,  we have that  

P 
o o 

h~t(a,l+ 1) IF Y2~Eor . 

By the definition of P-fil ter and to~-completeness, find h6EP,~ with h6~ 
h s [ ( a o + l )  and an increasing f 3 E V t 3 t o  ~ and a Y o E V f q 2 "  such that 

h6li-P-o Yo E or and YoU[O,f~"~(n))D Y~2 ~ for  all n ~ to .  Pick 

g,:(ao+to)• ~ 1} such that g~g~, g~[(ao• and 
a t o + n  Vn E ~ [DOM(fg~ ) = Y~, U [0, f~(n))]. Since g,_~ g~, we have that g6 is over  

(p,,c,) on S, for a o +  to. Pick an increasing f ~  VM to~ such that 

ff (n ) >= max{f~(i. ), f-~(./. ), f'-(n ), f'(n )}. 

Let  k ~  Yo and f~'~(n+l)>k>=f'(n). In this case, notice that  (ao+i,,k) 
E D O M ( g , )  and (a,,+j.,k)~DOM(g6). Define g~ so that D O M ( g 0 =  
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DOM(g,,)U{(tx,,+i.,k):n~to, k ~  Y,,, and f ' ( n + l ) > k  >=ff(n)}O 
{(a,,+j,,,k):n Eto, k ~  Y,,, and ff(n + 1 ) > k  =>f'(n)}, and so that: 

(5) 
(6) g~(a,,+ i.. k) = 0 for n ~ w, k ~  Y., and ff(n + 1)> k ~f f (n) ,  
(7) g~(a,,+j.,k)= 1 for n Eto, k ~  Y,,, and ff(n + 1)> k _->if(n). 

We now apply the gluing lemma with ")d, = a,, and hl, (n G to) the constant 

sequence h,. y- '= ",/'= a . +  to, h 2= h,, and g = g7. This gives us an h T E  P,,,,,,o 

such that g7 E A "~ and h~ => h,, h4. By 5.2, we can find an h~ E P such that h8 ->_ hT, 

h3. We let g~ = g~ U g3. Thus, g~ @ A h, 

We will now show that h~ IF P''0 = 1" which will finish the proof of the lemma. 

Assume that k @ [ff(no),f4(n,,+ 1))for some n . =  > 1, and that k ~  Yo. Since 

h~ IF [g~ I~ 07 \E'. C_ [0 ,pl (n))  for all n E to], 

we have that 

h ~ - [ g ~  k ~  6.\E~,]. 

Since g~(a,,+ i,~,, k) = 0 and g~(ao+j~,, k) = 1, we have 

h~ l~ [ g~ l~- k Y: E~,]. 

Thus, h~ II -P [g~ IF ~ k ~ 6"]. Since no => 1 was arbitrary, we have that 

hs ~ [g~ I~ 6- _C Y,, U [O, ff(1))]. 

Since h~ IF P w \ Y,, E z,~,, we have 

h~ IF [g~ I~ 6. E @,, & 6. C Y,, U [0, if(l))  & Y,, U [0,/4(1)) E or 

Thus, h~lFP[g~N-~ = 1]. 

Thus, ~ cannot be extended to a P-point ~ ,  in (VP) ~ [] 

We now present the main result of the paper. This theorem was first proven by 

S. Shelah. 

6.5. THEOREM [The Shelah P-point Independence Theorem]. If ZFC is 
consistent, then 

"ZFC + there are no P-points" is consistent. 
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PROOF. Suppose  not. (V")  ~ has a P - p o i n t  ~o. By 2.1, the re  exists  a P- f i l t e r  

@, @ VP such that  ~ ,  C_ 90. But  this con t rad ic t s  6.4. [ ]  
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