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ABSTRACT 

Razmys lov ' s  theory  of t race identi t ies for the  pr ime P.I. a lgebras Mk,e 

is appl ied to give b o u n d s  for the  cocharac ters  and  the  codimens ions  of 

these  algebras  Mk,e, as well as for the  ma t r i x  a lgebras  Mk(E) over the  

G r a s s m a n n  algebra  E.  These  bounds  are easier to ob ta in  and  are be t t e r  

( t ighter)  t h a n  earlier ob ta ined  bounds .  

In troduct ion  

The codimension series and the cocharacter series of Mk(F),  the k x k matrices 

over the characteristic zero field F,  have been the object of much study. In [8], the 

second author obtained the asymptotic behavior of the codimensions cn (Mk (F)): 

cn(Mk(F))  ~- C k 2n 
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where C is a certain constant which is computed explicitly. It follows that the 

codimensions and the trace codimensions are asymptotically equal. This work 

was partly based on some earlier work of Formanek in [3] and [4]. In [3] Formanek 

points out that the conductor can be used to compare the ordinary cocharacter 

of Mk(F) to the trace cocharacter. In [4] he verifies that a certain polynomial 

constructed by Regev is indeed a non-trivial element of the conductor ideal. This 

particular polynomial generates an S,~-module with a particularly convenient 

structure. This yields not only the above information on codimensions, but 

also that "most" irreducible characters have the same multiplicities in the trace 

cocharacter and in ordinary cocharacter. 

In this paper we generalize part of this theory to the other verbally prime p.i. 

algebras, Mk,e and Mn(E). First, we show that Mk,t has a non-trivial conductor. 

This allows us to compare the trace and ordinary cocharacter and to calculate 

the polynomial and exponential behavior of c~(Mk,e): 

THEOREM 7: There exist constants C1 and C2 such that, for all n, 

( ~ )  (k2"{-t~2-1)/2 ( ~ )  (k2+~2-1)/2 ~)2n. 
C1 (k + g)2n _< cn(Mk,e) <_ C2 (k + 

It is worth remarking that in the case of k = e = 1 the trace codimensions and 

the ordinary codimensions are not asymptotically equal. The trace codimensions 

are asymptotically twice as large. See [9], corollary 3.19. 

Using Theorem 7 we obtain somewhat less sharp bounds on the cocharacter of 

M,~ (E). We obtain the exponential behavior exactly, but the polynomial behavior 
1 2 only to within ~k . 

THEOREM 8: There exist constants C3 and C4 such that, for a11 n, 

( ~ )  (2k2-1)/2 ( 1 )  (k2-1)/2 
C3 (2k2) n <_ c~(Mk(E)) <_ Ca (2k2) n. 

Finally, in Theorems 10 and 11 we compare the ordinary cocharacter of Mk,e 

to the trace cocharacter. This comparison is of less direct benefit than Theorem 

7, since the trace cocharacter is not all that well-understood. It is known that 

the n th  trace cocharacter of Mk,~ equals the S~-character 

A6H(k,~;n+l) 
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where the tensor is the inner tensor product and where the prime denotes inducing 

down from S=+1 to Sn. This sum seems quite interesting from the point of view 

of combinatorics and so Theorems 10 and 11 relate an unsolved p.i. problem to 

an unsolved combinatorics problem. 

1. Notat ion  and background 

Let X be the set {Xl, x2, ...}. We will denote by [ ' {X} the free associative F 

algebra with trace on X. Elements of ~'{X} are (mixed) trace polynomials. 

F{X}  contains a number of subalgebras and subspaces that  will be of interest. 

First, F{X}  will be the free algebra on X with no trace. Likewise, TR{X}  

will be the subalgebra o f / ' { X }  generated by the traces. It is easy to see that 

[ '{X} = F{X}  |  We next identify the multilinear, homogeneous degree 

n polynomials in X l , . . . ,  xn in each of these algebras. The space of multilinear 

f (xl  . . . .  , x~) in F{X}  is generally denoted Vn. We denote the corresponding 

subspaces of _P{X} and TR{X}  by MTn and T~ (for mixed trace and pure 

trace), respectively. Note that each of these three spaces is an Sn-module under 

the permutation action, ~f (x l , . . . ,  xn) = f(Xol , . . . ,  xo~). 
It is worthwhile to recall a few facts about the structure of these S~-modules. 

First, V= is isomorphic to FS,  with action left multiplication. A permutation 

a is identified with the monomial xol. . .xo~. Next, Tn is isomorphic to FSn, 

but with conjugation action. Let 7r be a permutation with cycle decomposition 

7r = (il, i 2 , . . . ,  i a ) ( j l , . . . ,  jb)''" ( k l , . . . ,  k~). Then 7r is identified with the pure 

trace monomial 

tr~ (Xl, �9 �9 �9 x~) = tr(xi 1 xi~"" xl, )tr(xjl �9 �9 �9 xj~ ) . . .  tr(xkl �9 �9 �9 xkc ). 

Then, for any permutation a, t r o ~ o - l ( x l , . . . ,  x=) = t r ~ ( x o l , . . . , x o n ) .  Finally, 

we point out that  Vn and T= are each submodules of MTn in an obvious manner. 

But, a bit less obvious is that there is isomorphism between MTn and Tn+l given 

by f ( z l , . . . ,  x=) ~ tr(x~+lf(xl, . . . ,  x~)). 

Let I be any trace T-ideal. If I is the ideal of trace identities for the algebra A 

we will write I = I(A). Then INVn, IAT~ and INMT~ are S=-submodules of Vn, 

Tn and MT~, respectively. We will be interested in the quotients whose characters 

give the various cocharacters of A. The n th  ordinary cocharacter x~(A) is the 

Sn character of V~/(V~ N I); the n th  mixed trace cocharacter X~t~(A) is the 

S~ character of MT~/(MT~ N I); and the pure trace cocharacter x~t~(A) is the 
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S,, character of Tn/(Tn N I). The corresponding dimensions will be denoted 

cn(.4), c'~t~(A) and cpt~(A). For any A each of xn(A) and X~tr(A) is less than or 

equal to X mt~ and cn(A) and cptr(A) are each less than or equal to cmt~(A). It is 

also known that if the trace on A is non-degenerate then the above isomorphism 

MT,~ ---+ T=+I induces an S~-isomorphism 

MTn/(MT,~ A I) ~ Tn+l/(Tn+l N I). 

Hence, Xm~t~(A) = - pt~ ,A~, xn+lt~) ,  where by the prime symbol we mean induce down 

from S~+1 to S~. 

2. C o n s t r u c t i o n  o f  t h e  c o n d u c t o r  

We recall two of Razmyslov's results from [6]. (See also [1] for the former.) 

Trace Identities for Mk,e: In the identification Tn =- FS~ the trace identities for 

Mk,e, I(Mk,e) ATn, corresponds to a two-sided ideal of FSn. This ideal is the sum 

of all simple two-sided ideals corresponding to partitions outside of H(k, ~; n). 

Razmyslov's Central Polynomial: Mk,e satisfies a trace identity of the form 

p(Xl , . . . ,  Xm, y) = e (x l , . . . ,  xm)tr(y),  

where p ( x l , . . . ,  x,~, y) E F ( X }  is a central polynomial and where c is of the form 

c(x l , . . . ,  xm) = t r ( c ' ( x l , . . . ,  xm)) and c ' ( x l , . . .  , Xrn) �9 F{Z} .  

LEMMA 1: Mk,e satisfies a trace identity of the form t r ( x l ) t r ( x 2 ) . . . t r ( x n )  

= a linear combination of trace monomials with fewer than n traces in each 

(n may be taken to be (k + 1)(e + 1)). 

Proof." If n _> (k + 1)(~ + 1) then there is a partit ion of n outside of H(k, e; n). 

So, there is an element of FSn, say Nasa, which corresponds to a trace identity 

of Mk,e. Since the trace identities form a two-sided ideal in FSn, we may assume 

that  aid, the coefficient of the identity permutation, is 1. Translating back to 

pure trace polynomials yields an identity of the desired type. 

COROLLARY 2: Modulo I(Mk,e) every element of T'{X} can be written as a 

linear combination of terms with at most (k + 1)(s + 1) - 1 traces. 

We will now consider the cases of k -- s and k ~ s separately. If k r s then 

we may set y = I,  the identity matrix, in Razmyslov's central polynomial to get 
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p ( x l , . . . ,  xm, I)  = (k - g)c(xl, ..., xm). Hence, modulo I(Mk,e), c(xl,  ..., Xm) is in 

Vm. Let r = m[(k + 1)(g + 1) - 1] and let 

d(Xl,. . . ,Xr) = C ( X l , . . . , X m ) C ( X r n + l , . . . , X 2 m ) ' ' ' e ( X r - - m + l , . . . , X r ) .  

THEOREM 3(a): Let f ( x l , . . . , x n )  be any element of i~{X}. Then, modulo 

I(Mk,e), d (x l , .  . ., x~) f (Xl ,  . . . , xn) E F { X } ,  i.e., it can be written with no traces. 

Proof: By Corollary 2, f ( x l , . . . ,  xn) can be written as a sum of an identity of 

Mk,e and terms with (k + 1)(g + 1) - 1 or fewer traces. Consider such a term, 

say v = t r ( u l ) . . ,  tr(ut) with t _< (k + 1)(g + 1) - 1. Then 

vd : (C(Xl, . . . ,  x m ) t r ( u l ) ) . . .  (c(x(t-1)m+l,...,  X tm) t r (u t ) ) ' "  C(X~--m+I,..., X~). 

It now follows from the definition of c that  this is in I(Mk,~) + F { X } .  

This is what we need for the k r e case. If k = e, then it is not the case that 

c ( x l , . . . , x , ~ )  e F{X} (modI (Mk ,~ ) ) .  However, given 2m variables, x l , . . . , x m  

and Yl , . . . ,  Ym, then 

C(Xl , . . . ,  xm)c(yl . . . .  , y,~) = C(Xl, . . . ,  xm) t r (c ' ( y l , . . . ,  Ym)). 

And Mk,e satisfies the identity 

c(xl . . . .  , Xm)tr (c ' (y l , . . . ,  ym)) = p ( x l , . . . ,  Xm, c ' ( y l , . . . ,  Ym)), 

the right hand side of which involves no traces. As above, we let r = m[(k+ 1 ) 2  1] 

and 

d(X l , . . . ,  x~) = C(Xl,..., Xm)C(Xm+l,..., X2m)''" C(Xr--m-{-1,.-., Xr). 

THEOREM 3(b): Let f ( x l , . . . , x , ~ )  be any element of I~{X}. Then, modulo 

I(Mk,k), 

d ( x l , . . . ,  x ~ ) f ( x l , . . . ,  xn) �9 F { X }  + c (x~-m+l , . . . ,  x~ )F{X} .  

Proof: The proof is similar to the proof of Theorem 3(a). The crucial difference 

is this: Let v = t r ( u l ) . . ,  tr(ut) be a product of traces with t _< r. In the product 

dv we pair the tr(u) with the c(x). If t < r, then we pair the remaining c(x)'s 

with each other. And, if r - t is odd, we let c (x~_m+l , . . . ,  x~) be the leftover 

term. That  is, we write 

dv = (C(Xl, . . . ,  Xm) t r (n l ) ) . . .  (c(x( t -1)m+l, . . . ,  Xtm)tr(ut))x 

( c ( x t m + l , . . . ,  Xt(m+l))C(Xt(m+l)+l,..., X t ( m + 2 ) ) )  """  �9 

Each product of two polynomials is in F { X }  and the last term might only contain 

one polynomial. 
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3. App l i ca t ions  to  cod imens ions  and  cocha rac t e r s  

Isr. J. Math .  

Definition: Let A be the map from MTn to MTn+~ given by 

f (Xl , . . . ,Xn)  ' f(xl,. . . ,xn)d(Xn+l,.. . ,Xn+r). 

Here are some basic facts about A: 

LEMMA 4: 

(a) A is an FSn-module homomorphism. 

(b) I f  I is an ideal of/~'{X}, then A(MTn N I) C_ (MT~+~ n I). 

(c) I f  f E MT.  and f r I(Mk,t), then A f r  I(Mk,,). 

(d) If  k # g and f E MT~, then A f  E V~+~ + I(Mk:),  and if k = g then 

A f e  Vn+~ + Vn+~-,~c(z,~+~-m+l,..., x~+,) + I(Mk,e). 

Proofs: (a) and (b) are obvious. (c) follows from the fact that Mk,e is verbally 

prime. (d) follows from Theorem 3. 

We wish to use Lemma 4 to get information about c,~(Mk,e) and xn(Mk,,), 

the ordinary codimension and cocharacter. Lemma 4 will let us compare the 

ordinary cocharacter with the trace cocharacter. And the trace cocharacter is 

more or less known. 

ptr THEOREM 5: Xn (Mk,,) = E;~eH(k,e;n) XA | XX, where X~ is the irreducible 

S,:character on A. 

Proof It follows from Razmyslov's description of the trace identities for Mk,e, 

that xPt~(Mk:) is the character of 

),EH(k,~;n) 

where Ia is the two-sided ideal of FS,~ and the Sn-action is by conjugation. But, 

the character of Ia under conjugation is X~ | Xa. 

Although the Sn-eharacter ~ H ( k , e ; n )  Xa | ;~a is not yet fully understood, we 

do know the asymptotics of its degree. Let Xa have degree da. Then the degree 

of ~eH(k,~;n) :~a @ X~ equals ~-'~H(k,e;n) d~. This sum is investigated in [2]. 

Here is the main result (Theorem 7.21 taking z = 1). 

THEOREM: ~;~eH(k,e;n) d2 ~- C(~)(k2+e2-U/2( k + g)2~, where C is a constant 

which can be calculated explicitly. 
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c{ t~ (Mk,e) and ,~t . . . . .  C n tlglk,s are asymptotic to COROLLARY 6: 

( �88 (k2+~-11/2 
c (k + e) 2~ (k + e) ~,  

respectively. 

Proof: = Exeg(k,e; .)  d~ and c.'~t~'tl~,k,e/'" ' = c~,(Mk,e).  
We are now in a position to capture the polynomial and exponential behav- 

ior of the codimensions. Consider Lemma 4. By 4(b), A induces a map from 

MT, , / (MT.  n I(Mk,t)) to MT.+~/(MT.+~ N I(Mk,e)). By 4(c) this map will be 

one-to-one. And, by 4(d), the image will be in V.+~/(V.+~ N I(Mk,e)) if k r g, 

and in (Vn+~ + V~+~-mc(x.+~-m+l,... ,xn+~))/(V~+~ N I(Mk,t)) if k = g. 

THEOREM 7: There exist constants C1 and C2 such that, for all n, 

(~ )  (k2+~2-1)/2 ~)2 n ( 1 )  (k2"t-~2-1)/2 
C1 - -  ( k  + <_ c,.(Mk,e) <_ C2 (k + g)2.. 

Proof." The upper bound follows from c.(Mk,e) < .~t~ _ % ( M k , ~ )  pt~ , . .  , 
: C n + l ~ I g l k , s  : 

~eH(k,t;n+l) d2" For the lower bound, first consider the case k ~ ~, The above 

discussion implies that  c.(M},e) > c._~(M},e)mtr -~ tr _ c~n-,-+l(Mk,e) = 

EAEH(k.s d2" And, if k = f, then 

cn(Mk,k) + C.-m(Mk,k) >_ C._Aluk,k ) = d~. 
, ~ 6 H ( k , k ; n - r + l )  

But, since 1 E Mk,k, the codimension sequence is increasing and c~(Mk,k) + 

cn-m(M~,k) <_ 2c~(Mk,k) and so c~(Mk,k) >_ �89 ~eH(k,~m-~+l)  d~. We leave it 

to the reader to show that  each of these bounds is of the required form, 

We may use Theorem 7 to get upper and lower bounds for the codimensions 

of Mk(E). Although this won't capture the polynomial behavior precisely, it is 

better  than the bounds calculated up to now. 

THEOREM 8: There exist constants C3 and C4 such that, for all n, 

( 1 )  (2k2-1)/2 ( 1 )  (k2-1)/2 
C3 (2k2) ~ _< c.(Mk(E)) <_ C4 (2k2) n. 

Proof: In addition to Theorem 6, the proof uses three ingredients. The first two 

were proven by the second author in [7] and with Krackowski in [5], respectively. 

The third is due to Kemer. See [10] for a proof. 
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(a) For any p.i. algebras A and B, Xn(A | B) ~_ x~(A) | xn(B), and so 

cn(A | B) <_ c~(A)c~(B). 
(b) cn(E) = 2 n-1. 

(C) Mk,k is p.i. equivalent to Mk(E) | E. 
Now we first use the simple equation Mk(F)| = Mk(E). Hence, cn(Mk(E)) 

< ~n(E)c,~(Mk(f)), so 

cn(Mk(E)) < 2n-lcn(Mk(F)) < 2n-XC k 2n. 

This implies the upper bound. 

To get the lower bound, we use (c). en(Mk,k) <_ cn(E)cn(Mk(E)), so 

(�88 
cn(Mk(E)) >_ cn(E)-lc~(Mk,k) >_ 2-(~-1)C (2k) 2~. 

Again, this implies the desired bound. 

Since the map A in Lemma 4 is an Sn-map, we may also compare the ordinary 

cocharacter of Mk,t to the trace cocharacters. It is always the case that the 

ordinary cocharacter and the pure trace cocharacter are less than or equal to the 

mixed trace cocharacter. And, since Mk,t has a unit, the mixed trace cocharacter 

can be gotten from the pure trace cocharacter by inducing down. But, now that 

we have a conductor we also get lower bounds for the cocharacters. 

THEOREM 9: Assume k ~ t. Then 

(a) x~(Mk,e) _< E:~eH(k,e;,~+l)(X~ | X~)', 

(b) ~-'~-~eH(k,~;n) X~ | X~ --< X~+r(Mk,e) ~S~, 

(c) ~eH(k,t;n+l)(X~ @ X~)' <-- Xn+r(Mk,~) ~S,. 

Proof'. (a) Follows from the remark in Section 1 that the ordinary cocharacter 

is always less than or equal to the mixed trace cocharacter. 

(b) and (c): By Lemma 4(a,b,d), the map A induces S,-maps from 

MT, JMT,~ N I(Mk,e) and T~/Tn N I(Mk,~) to Vn+~/Vn+~ N I(Mk,e) and by 4(c) 

the induced maps are one-to-one. The theorem follows. 

In the case of k = e the situation is similar, with an extra factor of 2. 

THEOREM 10: 

(a) X,~(Mk,lr <_ EAEH(k,k;n+I)(XA | X~)I, 
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(C) ENeH(k,k;n.t_l)(X' ~ O X,~) ! ___~ 2~(,,+~(Mk,k) ~s. .  

Proof: The proof is essentially the same as for Theorem 7, with this adjustment: 

The injection induced fl'om A allows us to prove that  

? ~ t r  X. (Mk,k) < .~,,+,-(Mk,k) iS,, +X,,+,--m(Mk,k) tS,  �9 

But, since 1 ~ Mk,k,~n(Mk,&) < X,+l(Mk,k) ~S~ for all n, and so 

,,m./M X.+ . . . . .  (Mk,k) 1S,,<_ ~,,+~(Mk,k) L%. Hence ~(. ~ k,kJ _< 2~.+,.(Mk,k) lS~. 

And likewise for the pure traces. 
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