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ABSTRACT 

This paper presents a study of contact metric manifolds for which the 

characteristic vector field of the contact structure satisfies a nullity type 

condition, condition (*) below. There are a number of reasons for study- 

ing this condition and results concerning it given in the paper: There exist 

examples in all dimensions; the condition is invariant under D-homothetic 

deformations; in dimensions > 5 the condition determines the curvature 

completely; and in dimension 3 a complete classification is given, in par- 

ticular these include the 3-dimensional unimodular Lie groups with a left 

invariant metric. 
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1. I n t r o d u c t i o n  

It  is well known that  there exist contact metric manifolds, M2n+l(~,  ~, r/, g), for 

which the curvature tensor R and the direction of the characteristic vector field 

satisfy R(X,  Y)~ = 0, for ally vector fields X, Y on M 2"+1. For example, the 

tangent sphere bundle of a flat Riemannian manifold admits such a structure [2]. 

Applying a D-homothetic deformation [11] to a contact metric manifold with 

R(X,  Y)~ = 0 we obtain a contact metric manifold satisfying 

( ,)  R (X ,  Y)~ = ~(~(Y)X  - ,](X)Y) + # (~ (Y )hX  - ~ (X)hY)  

where ~, p are constants and 2h is the Lie derivative of ~ in the direction ~. 

An essential characteristic of the class of contact metric structures defined by 

(*) is that  the form of (*) is invariant under a D-homothetic deformation. The 

existence and the invariance of (*) have been our nmtivation in studying this 

kind of manifold. 

Section 2 is devoted to preliminaries on contact metric manifolds. In Section 

3 we prove that  for t~ < 1, the curvature tensor is completely determined by the 

condition (*). As a consequence, we draw the conclusion that  these manifolds 

have constant scalar curvature. In Section 4 we study the three-dimensional case 

(n = 1) more extensively and we prove that  these manifolds are either Sasakian or 

locally isometric to one of the following Lie groups: SU(2) (or SO(3)), SL(2, R) 

(or O(1,2)),  E(2), E(1, 1) with a left invariant metric. We remark that  the 

Heisenberg group carries a natural  Sasakian structure. 

Finally, in Section 5 we prove that  the standard contact metric structure of 

the tangent sphere bundle T i M  satisfies the condition (*) if and only if the base 

manifold is of constant sectional curvature. 

2. P r e l i m i n a r i e s  on  c o n t a c t  m a n i f o l d s  

A differentiable (2n + 1)-dimensional manifold M 2n+l is called a c o n t a c t  m a n i -  

fold if it carries a global differential 1-form ~/such that  r/A (dr/) n # 0 everywhere 

on M 2n+1. This form r/is usually called the c o n t a c t  f o r m  of M 2n+1. It  is well 

known that  a contact manifold admits an a l m o s t  c o n t a c t  m e t r i c  s t r u c t u r e  

(q0, ( ,  r/, g), i.e. a global vector field (, which will be called the character i s t i c  

v e c t o r  field, a (1, 1) tensor field r and a Riemannian metric g such tha t  

(2.1) ~v 2 = - I d + y |  r / ( ~ ) = l ,  

(2.2) g(cpX, ~Y)  = g( X,  Y)  - ~( X)~?(Y), 
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for any vector fields X, Y on M 2n+1. Moreover, (~, ~, 71, g) can be chosen such 

that d~7(X, Y)  = g(X, ~Y)  and we then call the structure a c o n t a c t  m e t r i c  

s t r u c t u r e  and the manifold M 2~+1 carrying such a structure is said to be a 

con tac t  me t r i c  mani fo ld .  As a consequence of the above relations we have 

(2.3) ~1(~)=1, ~ = 0 ,  7 1 o ~ = 0 ,  dT](~,X)=0. 

Denoting by L and R, Lie differentiation and the curvature tensor, respectively, 

we define the operators l and h by 

1 
(2.4) IX = R(X,~)~,  hX  = ~ ( L ~ ) X .  

The (1, 1) tensors h and I are self-adjoint and satisfy 

(2.5) h ~ = 0 ,  l ~ = 0 ,  T r h = T r h ~ = 0 ,  h ~ = - ~ h .  

Since h anti-commutes with ~o, if X is an eigenvector of h corresponding to the 

eigenvalue A, then ~X is also an eigenvector of h corresponding to the eigenvalue 
--)~. 

If V is the Riemannian connection of 9, then 

(2.6) Vx~ 

(2.7) ~z~ - z 

(2.8) v ~  

(2.9) v~h 

(2.10) a(R(~,X)V,  Z) 

2(VhX~O)Y 

(2.11) 

= - r - ~hX,  

=2(h 2 + ~2), 

=0~ 

=~p - ~ l  - ~ h  2,  

=g( (V x~o)Y, Z) + g( (V zcph )Y  - (Vyqoh )Z, X), 

= - R(~, X ) Y  - ~R(~, X ) ~ Y  + ~oR(~, ~ X ) Y  

- R({, ~ X ) ~ Y  + 29(X + hX, Y)~ - 2rl(Y)(X + hX).  

Formulas (2.6)-(2.8) occur in [2], (2.9) in [4] and (2.10), (2.11) in [10]. 

A contact metric manifold, M2n+l(~, ~,71, g), for which ~ is a Killing vector 

field is called a K - c o n t a c t  mani fo ld .  It is well known that a contact metric 

manifold is K-contact if and only if h = 0. Moreover, on a K-contact manifold, 

R(X,  ~)~ = X - n(X)~. 

A contact structure on M 2n+l gives rise to an almost complex structure on 

the product M 2n+l • R. If this structure is integrable, then the contact metric 
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manifold is said to be Sasakian .  Equivalently, a contact metric manifold is 

Sasakian if and only if 

(2.12) R(X, Z)~ = y(Y)X - y(X)Y. 

Moreover, on a Sasakian manifold 

(2.13) ( V x ~ ) Y  = g(X, Y)~ - y(Y)X. 

Note that  a Sasakian manifold is K-contact,  but the converse holds only if 

d imM 2n+l = 3. 

A contact metric manifold is said to be y -E ins t e in  if 

(2.14) Q = aid + by | 

where Q is the Ricci operator and a, b are smooth functions on M 2n+1. 

The Riemannian connection W of the metric g is given by 

(2.15) 2g(VxY, Z) =Xg(Y, Z) +~ Yg(Z, X) - Zg(X, Y) 

- g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, IX, Y]). 

The sectional curvature K(~, X) of a plane section spanned by ~ and a vector X 

orthogonaI to ~ is called a ~-sect ional  c u r v a t u r e ,  while the sectional curvature 

K(X, r is called a ~-sectional curvature. Finally, the (g, #)-nullity distribu- 

tion of a contact metric manifold M2'~+1(~, ~,y,g)  for the pair (Jr E R 2 is a 

distribution 

N(a ,  # ) :  p --* Np(~, #) = {Z �9 TpM[R(X, Y)Z =a(g(Y, Z)X - g(X, Z)Y) 

+ #(g(Y, Z)hX - g(X, Z)hY)}. 

So, if the characteristic vector field ~ belongs to the (~r distribution, 

we have 

R(X, Y)~ -- g(y(Y)X - y(X)Y) + #(y(Y)hX - y(X)hY). 

For more details concerning contact manifolds and related topics we refer the 

reader to [2]. 
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3. C o n t a c t  man i fo ld s  sa t i s fy ing  R(X,Y)~ = ~ ( r I ( Y ) X -  71(X)Y)+ 

p(~(V)hX - 71(X)hV) 

Let M2n+l(~,~,r / ,g)  be a contact metric manifold. By a D a - h o m o t h e t i c  

d e f o r m a t i o n  [11] we mean a change of structure tensors of the form 

(3.1) ~ = a T ,  ( = 1 ~ ,  ~ = ~ ,  9 = a g + a ( a - 1 ) 7 |  
a 

where a is a positive constant. It is well known that  M2n+l(~,f/ ,  f/,O) is also a 

contact metric manifold. By direct computations we can see that  the curvature 

tensor and the tensor h transform in the following manner: 

h= X-h 
a 

and 

aR(X ,Y) (=R(X ,Y)~  

- (a - 1) [ (Vx~)Y - ( V y ~ ) X  + ~?(X)(Y + hY) - ~(Y)(X + hX)] 

(3.2) + (a - X)217/(Y)X - ~(X)Y]. 

On the other hand, the tangent sphere bundle of a fiat Riemannian manifold 

admits a contact metric structure satisfying R(X, Y)(  = 0 [2, p.137]. Moreover, it 

is also well known ([10] or [13]) that  a contact metric manifold with R(X, Y)~ = 0 

satisfies 

(3.3) ( V x ~ ) V  = g(X + hX, Y)~ - ~?(Y)(X + hX). 

Suppose now that  M2n+l(~,~,7/,g) is a contact metric manifold with 

R(X, Y)~ = O. Using (3.1) and (3.3), we obtain from (3.2) 

a 2 - 1 2(a - 1) 
/ ~ ( X , Y ) ( -  a2 ( ~ ( Y ) X -  ~(X)Y) + - - ( h ( Y ) h X -  ~(X)[tY). a 

This fact raises the question of the classification of contact metric manifolds 

satisfying this condition or, more generally, the condition 

(3.4) R(X, Y)~ = ~(o(Y)X - ~(X)Y) + ~(U(Y)hX - ~(X)hY). 

Moreover, it is easy to check that  a Da-homothetic deformation of a contact 

metric manifold satisfying (3.4) yields a new contact metric manifold with char- 

acteristic vector field belonging to the (k, #)-nullity distribution, where 

n + a 2 - 1  # + 2 a - 2  
-- and # - 

a 2 a 
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Thus the type of (3.4), i.e. the (n, #)-nullity condition for ~, remains invariant 

under a Da-homothetic deformation. This is one more reason to study contact 

metric manifolds satisfying (3.4). 

We now state our main results. The following Theorem informs us that  the 

curvature tensor of a contact metric manifold is completely determined by the 

condition (3.4). 

THEOREM 1: Let M2n+l(~,~,~,g) be a contact metric manifold with 

belonging to the (~, #)-nullity distribution. Then ~r < 1. I f  ~ = 1, then h = 0 

and M 2n+1 is a Sasakian manifold. If  a < 1, M 2n+1 admits three mutually 

orthogonal and integrable distributions D(O), D(A) and D(-A)  determined by 

the eigenspaces of h, where A = x/1 - ~. Moreover, 

n(x~, Y~)Z_~ = ( ~  - ~ ) [ ~ ( ~ Y ~ ,  z_~)~x~ - g(~X~, z_~)~v~], 

R(X_a,  Y_~)Zx = (n - #)[g(~Z_:~, Z~)~X_~ - g(~X_~, Z~)~Y_x], 

R(X~, Y_~)Z_~ = ~r Z_~)~Y_~ + #g(~X~, Y_~)~Z_~, 

R(X~, Y_~)Z:~ = -~g(cgY_~, Z~)r - #g(~Y_~, X:~)(pZ~, 

R(Xa, Y~)Z~ = [2(1 + A ) -  #][9(Y~, Z:0X~ - g(X~, Z~)Y~], 

R(X_~, Y_~)Z_~ = [ ~ ( ~  - ,X) - d [ ~ ( Y - ~ ,  Z_~)X_~ - 9(X-~, Z_~)V_~], 

where X~, Y~, Zx E D(A) and X-h ,  Y-x, Z_~ ~ D(-A) .  

A consequence of Theorem 1 is the following Theorem: 

THEOREM 2: Let M2'~+l(~,~,r/,g) be a contact metric manifold with 

belonging to the (~, #)-nullity distribution. If  a < 1, then for any X orthog- 

onal to 

(1) the ~-sectional curvature K ( X, ~ ) is given by 

K(X ,  ~) = tr + ttg(hX, X)  = 
+ A#, 

( - A#, 

if X e D(A), 

if X �9 D( -A) ,  

( 2 )  

(i) 2 ( 1 + A ) - # ,  

K(X,  Y) = (ii) - (g + #)(g(X, ~y))2,  

(iii) 2(1 - A) - g, 

(3) M has constant scalar curvature, given by S = 2n[2(n - 1) + a - up]. 

Especially for n -- 1 we have the following classification: 

the sectional curvature of a plane section (X, Y)  normal to ~ is given by 

for any X, Y E D ( A ) ,  n >  1, 

for any unit vectors 

X e D(:~), Y C D(-:~),  

for any X, Y E D ( - A ) ,  n > l ,  
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THEOREM 3: Let M3(~, 4, r/, g) be a complete contact metric manifold with 

belonging to the (x, #)-nullity distribution. Then M 3 is either: 

(i) A Sasakian manifold (~ = 1, h = 0), or 

(ii) Locally isometric to one of the following Lie groups with a left invariant 

metric: SU(2) (or SO(3)), SL(2, R) (or O(1, 2)), E(2) (the group of rigid 

motions of  the Euclidean 2-space), E(1, 1) (the group of rigid motions of 

the Minkowski 2-space). 

Moreover, this structure can occur on SU(2) or SO(3) when 1 - A - # /2  > 0 and 

l + A - # / 2  > O, on SL(2, R) or O(1,2) when 1 - A - p / 2  < 0 and l + A - # / 2  > 0 

or l - A -  p/2 < O and l + A -  p/2 < O, on E(2) when l - A -  p/2 = O and p < 2, 

including a fiat structure when # = 0, and on E(1, 1) when 1 + A - # /2  = 0 and 

p > 2 .  

The special case # = 0 of Theorems 1, 2 and 3 has been studied in [1], [6] and 

[7]. 

THEOREM 4: The standard contact metric structure on the tangent sphere 

bundle T I M satisfies the condition that ~ belongs to the (~, #)-nullity distri- 

bution if  and only i f  the base manifold M is of constant sectional curvature. 

The proofs of these theorems depend largely on several lemmas and 

propositions, which we now prove. 

LEMMA 3.1: Let M2n+l,(~,~,rhg) be a contact metric manifold with 

belonging to the (~, #)-nullity distribution. Then: 

(3.5) (i) I 0 -  = 2uh , 

(3.6) (ii) h 2 = ( ~ - 1 ) ~  2, t~_<l and ~ = 1  iff M 2n+lisSasakian,  

(3.7) (iii) R(~, X ) Y  = x(g(X,  Y ) (  - ~ ( Y ) X )  + #(g(hX,  Y)~ - ~ ( Y ) h X ) ,  

(3.8) (iv) Q~ = (2n~)~, Q is the Ricci operator, 

(3.9) (v) (Vx )V = + h X ,  - + h X ) ,  

(vi) ( V x h ) Y  - ( V v h ) X  = (1 - ~)[2g(X, ~Y)~ + ~?(X)9~Y - r/(Y)~X] 

+ (1 - #) [~ (X)~hY  - ~(Y)~hX],  

for any vector fields X,  Y on M 2n+a. 

Proof: (i) By definition of the operator l and hi  = 0 one easily proves that 
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for any vector field X. Replacing X by ~X and at the same time applying ~ we 

get 

(**) l~X = a~X + #h~X  and ~IX = g~X + #~hX. 

Subtracting these and using h~ = - ~ h ,  the required result is immediate. 

(ii) Using (2.7), anti-commutativity of ph, the relation (**), h~ = 0 and the 

first of (2.1), we deduce that h 2 = (~ - 1)~ 2. Now since h is symmetric and 

~2 = - I d  + T] | ~, ~ _< 1. Moreover, tr = 1 iff h = 0 and, by using (3.4), this is 

equivalent to (2.12). This completes the proof of (3.6). 

(iii) This is an immediate consequence of (3.4) and g(R(~ ,X)Y ,Z )  = 

g(R(Y ,Z)~ ,X) .  

(iv) Let {e~ }, i = 1 , . . . ,  2n+ 1 be a local orthonormal basis of M 2n+1. Then the 

definition of the Ricci operator Q, (3.7), Trh = 0 and h~ = 0 give Q~ = (2n~r 

(v) Using (3.7), ~ = 0, y o ~ = 0, (2.11) is reduced to 

( V h x ~ ) Y  = tr - g(X, Y)~) - ~I(Y)(X + hX)  + g(X + hX, Y)~. 

Replacing now, in this equation, X by hX and using ~2 = - I d  + ~ | ~, (2.8) and 

(3.6), we get 

(~ - 1) [ (Vx~)Y - g(X + hX, Y)~ + ~(Y) (X  + hX)] = O, 

which is the required result for ~ < 1. On the other hand, by (3.6), M 2n+1 is 

Sasakian for tr = 1 and so (2.13) is valid. Hence (3.9) also has meaning for ~ = 1. 

(vi) Using (3.9) and the symmetry of h we get, for any vector fields X, Y, Z, 

(Vz(ph)Y - (Vycph)Z = ~ ( ( V z h ) Y  - (Vyh)Z)  

and hence (2.10) is reduced to 

R(Y, Z)~ = ~(Z) (Y  + hY)  - ~ (Y) (Z  + hZ) + ~ ( ( V z h ) Z  - ( V v h ) Z ) .  

Comparing this equation with (3.4), we have 

(3.11) ~( (V zh  )Y  - ( V v h  )Z) = ( ~  - 1 ) ( ~ ( Z ) Y  - ~(Y)Z)  

+ (~ - 1)(,7(Z)hV - ,7(Y)hZ). 
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Using now (2.6) and the symmetry of h and Vxh ,  by straightforward computa- 

tion we get 

(3.12) g ( (Vzh)Y - (Vyh)Z,  ~) = 2(~ - 1)g(Z, ~Z).  

Acting now by ~ on (3.11) and using (3.12), we get the required result. | 

The following Lemma generalizes Lemma 3.2 of [12], which is valid for the 

Sasakian case. 

LEMMA 3.2: Let M2n+l(~,~ ,~ ,g)  be a contact metric manifold with 

belonging to the (tc, p)-nullity distribution. Then for any vector fields 

X,  Y, Z 

R(X, V)~Z - ~R(X,  Z )Z  = 

{(1 - a)[71(X)g(cpZ, Z) - 71(Y)g(~X, Z)] 

+ (1 - #)[~(X)g(~ohY, Z) - 71(Y)g(~hX, Z)]}~ 

- g(Y + hY, Z)(~X + ~hX) + g(X + hX, Z)(~Y + ~hY) 

- 9(~Y + ~hY, Z)(Z + hX) + 9(~X + ~hX, Z)(Y + hY) 

- ~ ( z ) { ( 1  - ~ ) [ ~ ( x ) ~ Y  - ~ ( Y ) ~ X ]  

(3.13) + (1 - #)[71(X)r - rl(Y)~hX]}. 

Proof: Let P be a fixed point of M 2n+z and X, Y, Z local vector fields such 

that ( VX) p  = (VY)p  -~ (VZ)p -- 0. The Ricci identity for ~: 

R( X, Y ) ~ Z  - ~R( X, Y ) Z  = (V x V y ~ ) Z  - ( V y V  x v ) Z  - (Vlx,yI~)Z, 

at the point P, takes the form 

(3.14) R ( X , Y ) ~ Z  - ~ n ( x , z ) z  = V x ( V y ~ ) Z  - V y ( V x ~ ) Z .  

On the other hand, combining (3.9) and (2.6) we have, at P, 

V x ( V y ~ ) Z  - ~ y ( V  x ~ ) Z  =g( (V xh  )Y - (Vyh)X,  Z)~ 

- ,7(Z)((Vxh)Z - (Vyh)X) 

- g(Z + hZ, Z) ( r  + r  

+ g(~X + r  Z ) (Y  + bY)  

+ g(X + hX, Z) (~Y + ~hZ) 

- g(~Y + ~hY, Z)(X + hX). 



198 D.E. BLAIR ET AL. Isr. J. Math. 

Now equation (3.13) is a straightforward combination of the last equation, (3.14) 

and (3.10). 

LEMMA 3.3: Let M2n+l(~, ~, ~l, g) be a contact metric manifold with ~ E (n, p)- 

nullity distribution. Then, for any vector fields X,  Y, Z, W, we have 

(3.15) 

9(~R(~X,  ~Y)Z,  ~W)  =g( R( X, Y)Z,  W) 

+ */(Y){(1 - n)[rl(Z)g(W, X)  - 7I(W)g(Z, X)] 

+ (1 - p)[q(Z)g(hW, X)  - q(W)g(hZ, X)]} 

- r / ( X ) { ( 1  - tr Y) - q(W)g(Z, Y ) ]  

+ (1 - p)[~I(Z)g(hW, Y) - ~l(W)g(hZ, Y)]} 

+ g(X, ~Z + phZ)g(W + hi&; pY)  

- g(X, r + ~hW)g(Z  + hZ, ~Y)  

- g ( x ,  w + hW)g(Y, Z + hZ) 

+ g(X, Z + hZ)g(Y, W + hW). 

Proof: The proof of this lemma is a direct calculation using the relations (2.2), 

(3.13), (3.4), r/o ~ = 0, ~ = 0 and h~ = 0. | 

LEMMA 3.4: Let M2n+l(~, ~, 7/, g) be a contact metric manifold with ~ E (n, #)- 

nullity distribution. Then, for any vector fields X,  Y, Z, we have 

(3.16) 

r162 ~Y) r  + R(X, Y)Z  --'o(X){,~[g(Y, Z)r - ,7(Z)Y] 

+ (2 - ~ ) ]~ (Z)hZ  - ~(hZ, Z)~]} 

- ~ ( z ) { ~ [ g ( x ,  z ) r  - ~ ( z ) x ]  

+ (2 - ~)[~(Z)hX - g(hZ, X)~]} 

+ 2{g(~, Z)hX + 9(hZ, Y ) X  

- g(Z, X ) h Y  - g(hZ, X)Z} .  

Proof: In (3.13) replace X, Y by ~X, ~Y respectively and take the inner 

product with ~,W. Then, using ~h + h~ = 0, ~ = 0, h~ = 0, (2.1), (2.2) and 
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g( R(~X,  ~ Y)vZ ,  ~W)  =g(vR(vX,  ~F)Z, ~W) 

- g ( ~ Y  - ~hY,  Z ) g ( - X  + hX,  ~ W )  

+ 9(~X - ~hX, Z ) g ( - Y  + hY, ~W) 

- g ( Z , - V  + ~(Y)~  + hZ) 

• [g(x, w )  - ~ ( x ) ~ ( w )  - ~(hX, w)] 

+ g ( z , - x  + ~(x)~ + hX) 

• [9(z, w )  - ,~(v)~(w)  - ~(hV, W)]. 

Subst i tu te  (3.15) in this equat ion for g((pR(~X, ~Y)Z, ~ W ) ,  and use the fact 

tha t  ~ is an t i - symmetr ic ,  h is symmetr ic ,  h~  + ~h = 0 and tha t  the result ing 

equat ion is valid for every W, to give (3.16) by s t ra ightforward calculation. This  

completes  the proof  of the Lemma.  | 

It  is well known tha t  on a Sasakian manifold the Ricci opera to r  Q commutes  

with ~. In our s i tuat ion we have the following proposit ion:  

PROPOSITION 3.5: Let  M2n+l (~ ,  ~, 7, 9) be a contact metric manifold with 

R(X, Y)~ = gO?(Y)X - ~(X)Y)  + p(~(Y)hX - ~(X)hY) 

for any vector fields X,  Y. Then 

(3.17) Q ~  - ~Q = 212(n - 1) + #]h~.  

Proos Let {ei, ~ei,  ~}, i = 1 . . . .  , n  be a local o r thonormal  Q-basis (see [2], p.22). 

Sett ing Y = Z = ei in (3.16), adding with respect  to i and using ~(ei) = 0, we 

have 

Z[~R(~X, ~ ) ~  + R(X, ~)~1 
i--1 

n 

= ,(x)[n,~ - (2 - , )  ~ 9(h~,, e,)]~ 
i=1 

n 

+ 2{nhX + ~[9(he~,  ~ ) x  - h(g(x,  e~)r - ~(hX, r162 
i=1 
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On the other hand, setting Y = Z = ~ei in (3.16), adding with respect to i and 

using ~ o ~ = 0, (2.1) and (2.2), we get 

?2 

e, lei + R(X, = 

i = l  

- (2  - u )  9(h e,, 

i=1 

+ 2{nhX + Z[g(h~ei ,  ~ei)X - h(g(X, ~ei)~ei) - g(hX, ~ei)~ei]}. 
i = l  

Adding now the last two equations and using the definition for Q, h( = 0 and 

Trh = O, we have 

qa(QqaX - R(qaX, ~)~) + QX - R(X, ~)~ = 2nay(X)~ + 4(n - 1)hX. 

Using now (3.4), 7/o ~ = 0 and h~ = 0, we get 

~pQ~X + QX = 2tcnr/(X)~ + 212(n - 1) + #]hX. 

Finally, acting by ~ and using (2.1) and Q~ = (2ng)~ as well as ~ = 0 and 

~h + h~ = 0, we obtain (3.17) and the proof is completed. I 

LEMMA 3.6: Let M2n+l(~, ~, ~, g) be a contact metric manifold with ~ E (~, #)- 

nullity distribution. I f  ~ < 1, then M 2n+l admits three mutually 

orthogonal and integrable distributions D(O), D(A) and D(-A) ,  defined by the 

eigenspaces of h, where A -- ~ -  a. 

Proof: The proof of this lemma is similar to that of Proposition 5.1 of Tanno's 

paper [13] and hence we omit it. 

We now state and prove the following proposition: 

PROPOSITION 3.7: Let M2n+l(~, ~, 7, g) be a contact metric manifold with 

R(X, Y)~ = a(~(Y)X - ~(X)Y) + ~(~(Y)hX - ~?(X)hY), ~ < 1 

for any vector fields X,  Y. 

(i) I f  X, Y E D(A) (resp. D(-A)) ,  then V x Y  E D(A) (resp. D(-A)) .  

(ii) If  X E D(A), Y E D(-A) ,  then V x Y  (resp. V v X )  has no component in 

D(A) (resp. D(-A)).  
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Proo~ In (3.10), replace Y by ~Y and take the inner product with Z to get 

g( (Vxh)~Y  - (V~yh)X, Z) = 0 

or, equivalently, 

(3.1s) g ( V x h ~ Y  - h V x ~ Y  - V v y h X  + hVvyX ,  Z) = 0 

for any X, Y, Z orthogonal to ~. 

(i) Let X , Y , Z  �9 D(A) (resp., D(-A)).  Then equation (3.18) is reduced to 

g ( V x Z , ~ Y )  = O, since A # 0 and g(~vY, Z) = 0 by Lemma 3.6. On the 

other hand, use Vx~ = - ~ X  - ~hX and take the inner product with Z to 

get g(VxZ,~)  = O. Applying now Lemma 3.6 we conclude that V x Z  �9 D(A) 

(resp., D(-A)) for any X, Z �9 D(A) (resp., D(-A)). 

(ii) Let X, Z �9 D(A) and Y �9 D(-A). Then from (i), g(VxY,  Z) = -g(Y,  V x Z )  

= 0 giving the second statement. I 

Remark 3.1: It is obvious from Proposition 3.7 that R(X, Y ) Z  �9 D(X) (resp. 

D(-A)) for X, ]I, Z �9 D(A) (resp. D(-A)). 

LEMMA 3.8: Let M2n+l(~, ~, r/, g) be a contact metric manifold with ~ �9 (to, #)- 

nullity distribution. Then for any vector tields X,  Y we have 

(3.19) 

(Vx h)Y = {(1 - a)g(X, ~vY) + g(X, h~Y) }~ + 71(Y)[h(~X + ~hX)] - gTI(X)~hY. 

Proof: Let a < 1. Suppose X, Y �9 D($) (resp. D(-~)) .  Then from Proposition 

3.7 we have V x Y  �9 D()~) (resp. D( -$ ) )  and one easily proves that 

(3.20) ( V x h ) Y  = O. 

Suppose now that X E D(A) and Y E D(-A). Let {ei,~ei,~}, i = 1 , . . . , n  

be an orthonormal ~-basis with e~ E D(~) and so ~ve~ E D(-,~). Then using 
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Proposition 3.7, h~ = 0, ~ = 0, (2.1) and (2.6), we calculate 

hVxY=h{~-~g(VxY,~ei)~ei+g(~TxY,~)~}i=l 

= s g(VxY, ~ei)h~e~ 
i=1 

= A~ ~ g(~VxY, ei)ei 
i = l  

= A q a 2 V x Y  

= A( -VxY + g(VxY, ~)~) 

= A( -VxY - g(Y, Vx~){) 

= A( -VxY + g(Y, ~X + ~hX)~) 

= V x h Y  - A(A + 1)g(X, ~Y)~, 

and so 

(3.21) 

Similarly we find 

(3.22) 

(Vxh)Y  = A(A + 1)g(X, ~Y)~. 

(Vyh)X = A(A - 1)g(Y, qaX)~. 

Suppose now that X, Y are arbitrary vector fields and write 

x = + + 

and 

Isr. J. Math. 

Y = Y~ + Y-x + ~(Y)~, 

X_~) is the component of X in D(A) (resp. D(-A)). Then where X~ (resp. 

using (3.20), (3.21), (3.22) and V~h = #hqo, which follows from (3.10), we get by 

a direct computation 

(V xh)Y =A2[g(X~, ~Y-~) + g(X_~, ~Y~)]~ + A[g(X~, ~Y_~) - g(X_~,, ~Y~)]~ 

+ y(Y)(h(~X + ~hX)) - #~?(X)~hY. 

On the other hand, we easily find that 

g(hX, ~Y) = A[g(X~, ~Y_~) - g(X_:~, ~Y~)] 
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and 

9(hX,  h%0Y) = A219(X~, %0Y_~) + 9 ( X - x ,  %0Yx)]- 

These relations together with the previous one give the required equation (3.19). 

Note that for ~ = 1 (and so h = 0), (3.19) is valid identically and the proof is 

completed. | 

LEMMA 3.9: Let M2n+l(%0,~,~,g) be a 

belonging to the (~, p)-nullity distribution. 

Z we have 

contact metric manifold with 

Then for any vector fields X ,  Y ,  

(3.23) 

R(X, Y)hZ - hR(X, Y )Z  ={~[~(X)g(hY, Z) - ~?(Y)g(hX, Z)] 

+ # ( t ~  - 1)[rI(Y)9(X, Z) - rI(X)9(Y , Z)]}[ 

+ ~{~(Y, %0Z)%0hX - 9(x,  %0Z)%0hV 

+ g(Z, %0hY)%0X - g(Z, %0hX)%0Y 

+ y(Z)[y(X)hY - 71(Y)hZ]} 

- #{q(Y)[(1 - ~;)q(Z)X + #~(X)hZ] 

- y(X)[(1 - n)~?(Z)Y + #~?(Y)hZ] 

+ 2g(X, %0Y)%0hZ}. 

Proof  The Ricci identity for h is 

(3.24) R ( X ,  Y ) h Z  - hR(X ,  Y ) Z  = ( V x V y h ) Z  - ( V y V x h ) Z  - (V[x,y]h)Z. 

Using Lemma 3.8, the relations (3.6), h%0 + %0h = 0 and the fact that Vx%0 is 

antisymmetric, we get by direct calculation 

( V x V r h ) Z  ={(1 - ~)g(VxV, %0z) 

- (1 - ~)g((Vx%0)Y, z) 

+ 9(VxY,  h%0Z) + g((Vxh%0)Y, Z)}~ 

+ ((1 - ~)9(Y, %0Z) + g(r,  h%0Z)}Vx~ 

+ g(Z, Vxr  + (~ - 1)%oi/] 

+ ~(Z){(Vxh%0)V + h%0VxY + (~ - 1)[(Vx%0)Y + %0VxY]} 

- U{[~(VxY) + 9(Y, Vx~)]%0hZ - n(V)(Vx~h)Z}. 
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So, using also (3.19), (2.6) and (3.9), equation (3.24) yields 

R(X, Y )hZ  - hR(Z,  Y ) Z  

Isr. J. Math. 

= {(~ - 1)g ( (Vx~)Y  - (Vy~)X,  Z) + g ( ( V x h ~ ) Y  - (Vyh~)X ,  Z)}~ 

+ {(1 - ir ~pZ) + g(Y, h(pZ)}Vx~ 

- {(1 - ~)g(x, ~z)  + g(x,  h~z )}vv~  

+ g(Z, Vx~)[h~Y + (~ - 1)~Y] 

- g(Z, Vy~)[h~X + (to - 1)~X] 

+ ~ ( Z ) { V x h ~ ) Y  - ( V y h ~ ) X  + (~ - 1)[(Vx~)Y - (Vy~)Z]}  

(3.25) - # { y ( Y ) ( V x ~ h ) Z  - y ( X ) ( V y ~ h ) Z  + 2g(X, ~Y)~hZ} .  

Using now (3.9), h~ = 0 and Lemma 3.8, we get 

(Vxcph)Y ={g(X, hY) + (~ - 1 ) g ( X , - Y  + ~(Y)~)}~ 

+ ~?(Y){hX + (~ - 1 ) ( - X  + ~?(X)~)} + #~(X)hY. 

Therefore, equation (3.25), by using (3.9) again, is reduced to (3.23) and the 

proof is completed. | 

Proof of Theorem 1: The first part of the Theorem follows from (3.6) and 

Lemma 3.6. Let {e~, ~e/, ~}, i = 1 , . . . ,  n be an orthonormal basis of TpM at any 

point P E M with ei E D()~). Then we have 

n 

n(x~,, Y~,)Z_~, = ~ { g ( n ( x ~ ,  Y~)Z_~, e~)e~ + 9(R(X;,, Y;,)Z_~,, ~e/)~e~} 
i = I  

(3.26) + g(R(Xx, Yx)Z-~, ~)~. 

But since ~ E (to, lt)-nullity distribution, using (3.4) we easily have 

g(R(X~, Ya)Z_x, ~) = -g(R(X~,  Yx)~, Z_~) = O. 

By Proposition 3.7 and Remark 3.1 we get 

g(R(X~, Y~)Z_),, ei) = -g(R(X~,  Y~)ei, Z_~) = O. 

On the other hand, if X E D(s and II, Z ~ D(-A) ,  then applying (3.23) we get 

hR(X, Y ) Z  + ~R(X, Y ) Z  = -2~{ag(X,  ~ Z ) ~ Y  + #g(X, ~Y)~Z}  
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and, taking the inner product with W ~ D(A), we have 

(3.27) g(R(X ,  Y )Z ,  W)  = - ~ g ( X ,  ~Z)g(~Y,  W)  - #9(X,  ~Y )g (~Z ,  W )  

for any X, W E D(A) and Y, Z E D(-A).  Using (3.27) and the first Bianchi 

identity we calculate 

n 

/ = 1  
n n 

= - Z g(R(Y~, Z_~)X~, ~ei)~ei - Z 9(R(Z_~,  X:~)Y:~, ~e~)~ei 
i : 1  i : l  

n 

= E{- t~9(Y:~,  ~2eil9(~Z_.x , X~)cpei - #9(Y.x, ~Z-.x)9(~2ei, X.~)~e/} 
i = 1  

n 

- E { - x g ( Z - ~ ,  r ~e/)~e~ - Itg(Z_~ , r ~ei)~ei} 
i = 1  

n n 

i = 1  i = 1  

+,~g(z_~,~g~)~__,~(x~,~)~/+m(z_~,~x~)~ ~ (~ ,~ )~  
i = 1  i = 1  

= a{9(~Y;~, Z_~,)~X~, - 9(~X~,, Z_~,)~Y~,} 

+ u{g(~X~, z_x)~Yx - g(~,Yx, z_x)~x~} 

= (~ - p){g(~Y:~, Z_~)~X:~ - g(~X:~, Z_~)~Y:~}. 

Therefore, (3.26) gives 

n(x~, Y~)Z_~ = (~ - ,)[g(r z_~)~x~ - g(~x~, z_~)~y~]. 

The proof of the remaining cases are similar and will be omitted. I 

Proof of Theorem 2: 

(1) If we set Y = ~ in relation (3.4), we get R(X,~)~  = ~X  + # h X  for X 

orthogonal to ~ from which, taking the inner product with X, we have 

K ( X ,  ~) = ~ + ltg(hX, X) ,  which is the required result. The special cases 

are obvious. 

(2) This follows immediately from Theorem 1. 
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(3) Let  {ei, ~oei,{}, i = 1 , . . . ,  n, be an or thonormal  ~o-basis with e~ E D(A). 

Then  from (1) or (3.8), g(Q{, {) = 2n~, and from (2) 

g(Qei, ei) = (~ + ,~p) + (n - 1)(2(1 + A) - p) - (a + #), 

g(Q~oei, ~oei) = (g - A#) + (n - 1)(2(1 - A) - p) - (~ +/~). 

Therefore,  

n 

S = TrQ = ~-'~.{g(Qei, ei)+g(Q~oei, ~oei} + g(Q{, {) = 2n(2(n - 1) + g -  n#)  
i = 1  

and the proof  is completed.  | 

Remark  3.2: Using Theorem 1 one can easily prove that:  In any contact  metric 

manifold M 2n+1 (qo, ~, rl, g) with { belonging to the (~, #)-nulli ty distr ibution,  the 

Ricci opera tor  Q is given by 

Q X  = [2(n - 1) - nplX + [2(n - 1) + #]hX + [2(1 - n) + n(2~ + #) ]v(X){  

for any vector  field X on M 2~+1. Especially for # = 2(1 - n),  Q is of the form 

(2.14) and so M ~+~ is ~?-Einstein. | 

4. C l a s s i f i c a t i o n  o f  t h e  t h r e e - d i m e n s i o n a l  c a s e  

Let M3(~o, {, r/, g) be a three-dimensional  contact  metric manifold with charac- 

teristic vector field { satisfying 

(4.1) R(X,  Y)~ = ~ (q (Y )X  - r l(X)Y) + #(rl(Y)hX - rl(X)hY).  

As we proved in Lemma 3.1, ~ 5 1. Suppose tha t  X is a unit eigenvector of h, 

say hX  = AX, X orthogonal  to ~, where A = x/q--  ~. 

L E M M A  4.1: For ~ < 1, we have 

(i) V x X  = V ~ x ~ o X  = O, 

(iii) V ~ x Z  = (A - 1){, 

(v) Vxr  = - (1  + 

(vii) [~, X] = (1 + A - �89 ~oX, 

(ii) VxqoX -- (A + 1)~, 

(iv) IX, qoX] -- 2~, 

(vi) V e X  -- - l ~ o X ,  

(viii) [~oX, {] = (1 - A - �89 X.  

Proof: Since X is a unit eigenvector of h belonging to D(A) and ~oX is a 

unit  eigenvector of h belonging to D ( - A ) ,  the relations in (i) are immedia te  

consequences of Proposi t ion 3.7(i) and the fact tha t  dimD(A) = d i m D ( - A )  = 1. 
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(ii) Because ~ X  is unit we have V x ~ X  orthogonal to ~X.  Moreover, since 

~ X  E D(-A) ,  by Proposition 3.7(ii) we conclude that V x ~ X  is parallel to ~. 

But, using (2.6), ~ = 0 and (2.2), we have 

g ( V x r  ~) = - g ( r  V x , , )  = g(r ~ x  + r  = g(X, X + hX)  = (~ + 1). 

Therefore Vx~pX = (A + 1)~. 

(iii) The proof is similar to that of (ii). 

(iv) This is an immediate consequence of (ii) and (iii). 

(v) This follows from (2.6). 

(vi) By direct computation, using (i)-(iv) we have 

(4.2) R(X, r  = , ~ X  - 2VEX. 

On the other hand, on any three-dimensional Riemannian manifold 

R(X, Y ) Z  =g(Y, Z ) Q X  - g(X, Z ) Q Y  + g(QY, Z ) X  

(4.3) - g( QX, Z ) Y  - 2 (g(y, Z ) X  - g( X, Z)Y)  

for any vector fields X, Y, Z. Moreover, using Remark 3.2 (for n = 1), we have 

(4.4) QX = p(A - 1)X 

and, using (4.4) and Proposition 3.5 (for n = 1), equation (4.3) gives 

(4.5) n ( x ,  r  = (,r + ~,)vx. 

Comparing (4.2) and (4.5) we get V~X = -(#/2)(pX.  

(vii) This follows from (v) and (vi). 

(viii) Using (2.6), (2.8) and (vi) above, we easily get (viii), completing the 

proof. | 

Finally, to prove Theorem 3 we need the following result from Lie group theory 

(see e.g. [14, p.10]). 

PROPOSITION 4.2: Let M be an n-dimensional connected and simply connected 

manifold and let X 1 , . . .  , X  n be complete vector fields which are linearly 

independent at each point of M and satisfy 

n 

[x ,xjj = Z c jX , 
k=l  
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k 'S are constant. Then, for each point P C M, the manifold M has where the cij 

a unique Lie group structure such that P is the identity and the vector fields Xi 

are left invariant. 

Proof of Theorem 3: We distinguish the cases a = 1 and g < 1. When a = 1, 

then by using Lemma 3.1 we conclude that M 3 is a Sasakian manifold. Suppose 

now g < 1. Let X be a unit eigenvector of h orthogonal to ~ with corresponding 

eigenvalue A = ~/1 - g > 0. Then, as is proved in Lemma 4.1, there exist three 

mutually orthonormal vector fields ~, X, ~ X  such that 

(4.6) [ X , ~ X ] = 2 ~ ,  [ ~ X , ~ ] = ( 1 - A - ~ ) X ,  [ ~ , X ] = ( I + A - ~ ) ~ X ,  

where (A,#) E R 2. Let ~ = el, X = e2 and ~X  = e3. It is known that ~ is 

defined globally on M 3. Going to the universal covering space / ~ 3  if necessary, 

we have global vector fields, which we also denote by el, e2 and e3, satisfying the 

conditions of Proposition 4.2 above. Hence/~3 has a unique Lie group structure. 

So, relations (4.6) may be written as 

( ") ( ") (4.7) [e2, e 3 ] = 2 e l ,  [e3, e l ] =  1 - A - ~  e2, [O ,e2 ]=  I + A - ~  e3. 

On the other hand, in [9, p. 307] J. Milnor gave a complete classification of 

three-dimensional manifolds admitting the Lie algebra structure 

e3] = Cl l, [e3,  e l i  = [ e l , e 2 ]  = c 3 e 3 .  

Comparing this and (4.7) we have 

= 2 ,  c 2 = l - A - u ~ ,  c 3 = l + A  #.  (4.8) c l  
2 2 

So, the signs of c2 and c 3 vary. Since Cl = 2 > 0, the possible combinations of 

the signs of Cl, c2 and c3, the associated solution sets and the corresponding Lie 

groups are indicated in Table 1, where: 

D I =  {(A,#) E R 2 [ c2 > 0 ,  ca > 0 } .  The special c a s e # = 0 , 0 <  A <  1 

has been studied in [7]. 

DII = { ( A , # ) E R  2 [ c2 < 0 ,  c 3 > 0 } .  The special c a s e # = 0 ,  A >  l h a s  

been studied in [7]. 

DI11 = {(A,#) E R 2 ] c2 = 0, tt < 2}. The special case # = 0, ~ = 0, 

M 3 is fiat [3]. 
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DIV = {(A, #) e R 2 I c3 -~ 0 ,  ]A > 2}. 

D v = { ( A , # ) E R  2 [ c 2 < 0 ,  c 3 < 0 } .  

Table 1 

C1 C2 C3 

+ + + 

+ + - 

+ - + 

+ + 0 

+ 0 + 

+ - 0 

+ 0 - 

Associated region Associated Lie group 

Dl SU(2) or SO(3) 

0 

011 SL(2, R) or O(1, 2) 

Dv SL(2, R) or O(1, 2) 

0 

DIII "E(2) 

DIV E(1, 1) 

0 

Conversely, we will exhibit the contact metric structure on the above Lie groups 

such that  (4.1) is satisfied. The method which we will use is that of D. Blair 

and H. Chen [7] and, for the sake of completeness, we will repeat some neces- 

sary relations from [7]. We consider the general Lie algebra structure on these 

manifolds: 

(4.9) [e2,e3] = Clel, [e3, e l ] =  e2e2, [el,e2] = c3e3. 

Let {w~} be the dual 1-forms to the vector fields {e~}. Using (4.9) we get 
51 

dwl(e2,e3) = -dwl(e3,  e2) = ~- r 0 and dwl(ei,ej)  = 0 

for (i , j)  ~ (2,3), (3,2). It is easy to check that Wl is a contact form and el is 

the characteristic vector field. Defining a Riemannian metric g by g(ei, ej) = ~ij, 

then, because we must have dwl(ei, ej) = g(ei, ~ej), ~ has the same matrix as 

dwl with respect to the basis e~. Moreover, for g to be an associated metric, we 

must have ~2 = - I d + w l |  So for (~, elWl, g) to be a contact metric structure 

we must have cl = 2. The unique Riemannian connection V corresponding to g 

is given by (2.15). So we easily get, using cl = 2 and (4.9), 

Velel  = 0, Ve2e2 = 0, Ve3e3 = 0, 
1 1 

V e l e 2  : ~ ( C 2  "4- C 3 - -  2)e3, Ve2el ---- ~ ( 5 2  - -  53 - -  2)e3, 

1 1 (2 + c2 -- c3)e2. Vele3 = - ~ ( c 2  + c 3 -  2)e2, V~3el = 
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But we also know that  

~7e2el : -r - ~phe2. 

Comparing now those two relations for Ve2el and using we1 = 0, ~#e3 ---- --e2 we 

conclude that  

he2 C3--C2 C3--C2 - - - e 2  and hence he3-  - - e 3 .  
2 2 

Thus (ei} are eigenvectors of h with corresponding eigenvalues (0, ~ , -A}  where 

= (c3 - c2)/2. Moreover, by direct calculation we have 

and 

Put t ing 

R(e2, cl)el : {1 

R(e3,el)el : {1 

(c3-c ) 2 } 
e2+(2-c2-c3)he2 ,  

(c3-c212 } 
e 3 + ( 2 -  c2 - c3)he3, 

R(e2, e3)el = 0. 

= 1  ( c a - c 2 )  2 < 1  and # = 2 - c 2 - c a  
4 - 

we conclude, from these relations, that  el belongs to the (a, ~)-nullity distribu- 

tion, for any c2, c3. If we choose c2 = c3 then we have the Sasakian case (a = 1, 

h = 0), while for c2 r c3 we have the desired structure (a < 1, ~ E R), and the 

proof is completed. Note that  for the special Sasakian case cl = 2, c2 = c3 = 0, 

the group is the Heisenberg group [9, 14 ch. 7]. | 

5. The tangent sphere bundle 

The natural contact metric structure on the tangent sphere bundle r :  TIM ~ M 

of a manifold M is described in Chapter VII of [2] and in [5]. In particular, the 

characteristic vector field ~ is horizontal and, as a hypersurface of the tangent 

bundle TM, the Weingarten map annihilates horizontal vectors. Thus on T1M, 

R(X, Y)~ can be computed by the formulas for the curvature of TM which were 

computed by Kowalski [8] and which we now describe. 

Let G, D and R denote the Riemannian metric, the Levi-Civita connection and 

the curvature tensor on the base manifold M, and #: TM --* M the projection 
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map. D induces a horizontal subbundle in T M  and the connection map K : 

T T  M ~ T M is given by 

KX H = O, K(X V) = X.~(t), 

where t E TM and X H and X V denote the horizontal and vertical lifts of vector 

fields on M. ~(X, Y) = G(~r.X, ~r.Y) +G(KX,  K Y )  is then a Riemannian metric 

on T M  and its curvature/~ is given by 

[~(X v, Y v  )Zv =0, 

( 1 )o 
(R(X v, Y v ) Z ~ ) t  = R(X,  Y )Z  + R(t,  X)R( t ,  Y )Z  - R(t,  Y)R( t ,  X ) Z  , 

t 

( ~ ( x  ~ , Y ~ ) z v h  = - R(Y, z ) x  + =R(t, Ym(t, z ) x  , 

+ 2 ((DxR)(t ,  Z )Y  - (DvR)(t ,  Z)X)  H , 

+ ~ R ( t , R ( X , Z ) t ) Y  + 1  ) H  ~R(t ,  R(X ,  Y) t )Z  . 
t 

With respect to local coordinates {x i} on M and fibre coordinates {C}, the 

characteristic vector field is given by 

= 2 r  ~ . 

On TIM for a vertical vector U and a horizontal vector X orthogonM to ~, 

hU and hX are given by 

(5.1) hUt = lit - (R(KU, t)t) v and hXt = - X t  + (R(r .X , t ) t )  H 

(cf. eq. (4.1) of [5]). 

Proof of Theorem 4: First suppose that the base manifold is a Riemannian 

manifold of constant curvature c. Then from Kowalski's formulas it is easy to 
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see that  R(X, Y)~ = 0 for X, Y orthogonal to ~; for a vertical vector U, that  

R(U, ~)~ = c2U and, for a horizontal vector X orthogonal to ~, that  R(X, ~)~ = 

( 4 c -  3c2)X. Moreover, from equations (5.1), hU = (1 - c)U and hX = ( c -  1)X. 

Thus the curvature tensor on T1M satisfies 

R( X, Y)~ = c(2 - c)(~(V)Z - ~( X)  V) - 2c(~(Y)hX - ~( X )hV) 

for all X,  Y on T1M. 

Conversely, if the contact metric structure on T1M satisfies the condition that  

belongs to the (n, #)-nullity distribution, then 

(5.2) R(X, ~)~ = aX + #hX  

for any X orthogonal to ~. Now, for a unit vector t on M define a symmetric 

operator Lt:  [t] -L ~ [t] • by L t Z  = R(X ,  t)t. Using (5.1) in (5.2) we see that  

R(U, ~)~ = (,r + #)t] - #(LtKU) y 

and, in particular, that  R(U, ~)~ is vertical. On the other hand, computing 

R(U, ~)~ by the Kowalski curvature formulas on T M  we see that  

R(U, ~)~ = - ( R ( R ( t ,  KU)t,  t)t) V = (L2KU) v. 

Thus the operator Lt satisfies the equation 

L 2 + #L~ - (x + # ) I  = O. 

Similarly, for a horizontal X orthogonal to ~, 

R(X,  ~)~ = (~ - p )X  + , ( L t ~ , X )  H 

and, from the Kowalski formulas, 

R(X,  ~)~ = (4Lt~r,X - 3L2r, X )  H, 

giving 

3Lt 2 + (# - 4)Lt + (a - # ) I  = 0. 

Thus the eigenvalues a of Lt satisfy the two quadratic equations 

a 2 + # a -  ( ~ +  #) = 0, p - 4  a - #  - 0 .  a 2 + - - - ~ a  + 3 
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If Lt had two eigenvalues, these quadrat ics  imply tha t  # = - 2  and ~, = 1, which 

implies tha t  h -- 0, i.e. the s t ructure  is K-contac t .  Moreover, a = 1 is now 

the only root  and hence M is of constant  curvature  § As a side remark we 

recall a result of Tashiro [2, p. 136], tha t  the contact  metric s t ructure  on T I M  

is K-con tac t  if and only if the base manifold is of constant  curvature  § On 

the other  hand, if Lt has only one eigenvalue, then M has constant  curvature  

immediately. 
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