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ABSTRACT

This paper presents a study of contact metric manifolds for which the
characteristic vector field of the contact structure satisfies a nullity type
condition, condition (*) below. There are a number of reasons for study-
ing this condition and results concerning it given in the paper: There exist
examples in all dimensions; the condition is invariant under D-homothetic
deformations; in dimensions > 5 the condition determines the curvature
completely; and in dimension 3 a complete classification is given, in par-
ticular these include the 3-dimensional unimodular Lie groups with a left
invariant metric.
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1. Introduction

It is well known that there exist contact metric manifolds, M?"+1(y, £, 7, g), for
which the curvature tensor R and the direction of the characteristic vector field
€ satisfy R(X,Y)¢ = 0, for any vector fields X,Y on M?"*+1. For example, the
tangent sphere bundle of a flat Riemannian manifold admits such a structure [2].
Applying a D-homothetic deformation [11] to a contact metric manifold with

R(X,Y)€ = 0 we obtain a contact metric manifold satisfying
(%) R(X,Y)¢ = k(n(Y)X = n(X)Y) + u(n(Y)hX — n(X)RY)

where k,p are constants and 2h is the Lie derivative of v in the direction &.
An essential characteristic of the class of contact metric structures defined by
(%) is that the form of (*) is invariant under a D-homothetic deformation. The
existence and the invariance of () have been our motivation in studying this
kind of manifold.

Section 2 is devoted to preliminaries on contact metric manifolds. In Section
3 we prove that for k£ < 1, the curvature tensor is completely determined by the
condition (x). As a consequence, we draw the conclusion that these manifolds
have constant scalar curvature. In Section 4 we study the three-dimensional case
(n = 1) more extensively and we prove that these manifolds are either Sasakian or
locally isometric to one of the following Lie groups: SU(2) (or SO(3)), SL(2, R)
(or O(1,2)), E(2), E(1,1) with a left invariant metric. We remark that the
Heisenberg group carries a natural Sasakian structure.

Finally, in Section 5 we prove that the standard contact metric structure of
the tangent sphere bundle 71 M satisfies the condition ()} if and only if the base

manifold is of constant sectional curvature.

2. Preliminaries on contact manifolds

A differentiable (2n + 1)-dimensional manifold M2"*! is called a contact mani-
fold if it carries a global differential 1-form 7 such that n A (dn)™ # 0 everywhere
on M2"*+!, This form 7 is usually called the contact form of M2"+1. It is well
known that a contact manifold admits an almost contact metric structure
(p,€,m,9), i.e. a global vector field £, which will be called the characteristic

vector field, a (1, 1) tensor field ¢ and a Riemannian metric g such that

(2.1) Pr=-Id+n0¢& nE) =1,
(2.2) 9(pX,0Y) = g(X,Y) — n(X)n(Y),
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for any vector fields X,Y on M2"*1. Moreover, (p,£,n,g) can be chosen such
that dn(X,Y) = g(X,¢Y) and we then call the structure a contact metric
structure and the manifold M?"+! carrying such a structure is said to be a

contact metric manifold. As a consequence of the above relations we have

(2.3) n€)=1, @€=0, nop=0, dn(¢,X)=0.

Denoting by L and R, Lie differentiation and the curvature tensor, respectively,
we define the operators [ and h by

1
(2.4) IX = R(X,0)6, hX = ~(Lep)X.
The (1,1) tensors h and [ are self-adjoint and satisfy
(2.5) hE=0, =0, Trh=Trhp =0, hy=—ph.

Since h anti-commutes with ¢, if X is an eigenvector of h corresponding to the
eigenvalue A, then ¢X is also an eigenvector of A corresponding to the eigenvalue
—A.

If V is the Riemannian connection of g, then

(2.6) Vx€ = - pX - phX,
(2.7) elp — 1 =2(h* + ¢?),
(2.8) Vep =0,

(2.9) Veh =p — ol — oh?,

(210)  g(R(&, X)Y, Z) =g((Vx9)Y, Z) + g((Vzph)Y ~ (Vyph)Z, X),
2(Vaxp)Y = = R(& X)Y — oR(§, X)pY + ¢R(£, X )Y
(2.11) — R(£,0X)pY +29(X + hX,Y )¢ — 2n(Y )(X + hX).

Formulas (2.6)—(2.8) occur in [2], (2.9) in 4] and (2.10), (2.11) in [10].

A contact metric manifold, M2"*1(g, £, 7, g), for which £ is a Killing vector
field is called a K-contact manifold. It is well known that a contact metric
manifold is K-contact if and only if h = 0. Moreover, on a K-contact manifold,
R(X,£)6 = X - n(X)t.

A contact structure on M?"*+! gives rise to an almost complex structure on
the product M?"*! x R. If this structure is integrable, then the contact metric
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manifold is said to be Sasakian. Equivalently, a contact metric manifold is
Sasakian if and only if

(2.12) R(X,Y)¢ =n(Y)X - n(X)Y.
Moreover, on a Sasakian manifold
(2.13) (Vxo)Y = g(X,Y)§ —n(Y)X.

Note that a Sasakian manifold is K-contact, but the converse holds only if
dimM?+! =3,
A contact metric manifold is said to be 7-Einstein if

(2.14) Q=ad+m®¢

where Q is the Ricci operator and a, b are smooth functions on M2n+1.
The Riemannian connection V of the metric ¢ is given by

(2.15) 20(VxY,Z)=Xg(Y,Z)+ Yg(Z,X) - Zg(X,Y)
- g(Xa [Y’ Z]) - g(Y’ [X’ Z]) + g(Zv [X’ Y])

The sectional curvature K (¢, X) of a plane section spanned by £ and a vector X
orthogonal to £ is called a {-sectional curvature, while the sectional curvature
K(X,pX) is called a p-sectional curvature. Finally, the (x, u)-nullity distribu-
tion of a contact metric manifold M2"+1(yp, £, 7, g) for the pair (x,u) € R? is a
distribution

N(K" ﬂ) P NP(K/’ ﬂ') = {Z € TPM'R(Xv Y)Z ="‘7(g(Ya Z)X - g(X’ Z)Y)
+ u(g(Y, Z)hX — g(X, Z)hY)}.

So, if the characteristic vector field £ belongs to the (k, u}-nullity distribution,
we have

R(X,Y)¢ = k(n(Y)X - n(X)Y) + p(n(Y)hX — n(X)RY).

For more details concerning contact manifolds and related topics we refer the
reader to [2].
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3. Contact manifolds satisfying R(X,Y)} = &s(n(Y)X — 9(X)Y)+
u(n(Y)hX —n(X)hY)

Let M**+1(p €,1,9) be a contact metric manifold. By a D,-homothetic

deformation [11] we mean a change of structure tensors of the form

_ s 1 - _
(3.1) f=an, £=-& ¢=¢, gF=agtala-1indn

contact metric manifold. By direct computations we can see that the curvature
tensor and the tensor h transform in the following manner:
h=lh
a

and
aR(X,Y) =R(X,Y)¢

(@ = DI(Vx9)Y = (Vye)X +n(X)(Y +hY) = n(¥)(X + hX)]
(3.2) +(a=1?[n(Y)X - n(X)Y].
On the other hand, the tangent sphere bundle of a flat Riemannian manifold
admits a contact metric structure satisfying R(X,Y )¢ = 0 [2, p.137]. Moreover, it

is also well known ([10] or {13]) that a contact metric manifold with R(X,Y)¢ = 0
satisfies

(3.3) (Vxe)Y = g(X + hX,Y)¢ —n(Y)(X + hX).

Suppose now that MZ™+l(p £ 5,9) is a contact metric manifold with
R(X,Y){ = 0. Using (3.1) and (3.3), we obtain from (3.2)

@ - coy) + 22

R(X,Y)E = (A(YIRX — 5(X)RY).

This fact raises the question of the classification of contact metric manifolds
satisfying this condition or, more generally, the condition

(3.4) R(X,Y)¢ = (n(Y)X = n(X)Y) + p(n(Y)hX — n(X)RY).

Moreover, it is easy to check that a D,-homothetic deformation of a contact
metric manifold satisfying (3.4) yields a new contact metric manifold with char-
acteristic vector field belonging to the (&, i)-nullity distribution, where

_ k+a?-1 . p+2a-2
R = ——5— and = —
a a
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Thus the type of (3.4), i.e. the (k,u)-nullity condition for £, remains invariant
under a D,-homothetic deformation. This is one more reason to study contact
metric manifolds satisfying (3.4).

We now state our main results. The following Theorem informs us that the
curvature tensor of a contact metric manifold is completely determined by the
condition (3.4).
THEOREM 1: Let M?"*t(yp,£,m,9) be a contact metric manifold with ¢
belonging to the (k, u)-nullity distribution. Then k < 1. If k =1, then h = 0
and M?"*! s a Sasakian manifold. If k < 1, M?"*! admits three mutually

orthogonal and integrable distributions D(0), D()) and D(—\) determined by
the eigenspaces of h, where A = \/1 — k. Moreover,

R(X),Y2)Z_» = (& — p)[g(0Y, Zox)p X — g(9 X, Z-») YA,
R(X_x,Y_2)Zx = (k — w)[g(Y-x, Zx )X — g(pX_x, Z5)Y_1],
R(X,Y_2)Z_x = kg(0 X, Z_2)pY_x + ug(p X, Y_r)pZ_»,

R(Xx,Y-2)Zx = —kg(9Y-», Zx)pXx — pg(pY-x, X2)pZ»,

R(Xx, Y2)Zx = [2(1 4+ XN) = pllg(Ya, Z0) X — g(Xx, Z5)Y)),s
R(X_»,Y_2)Z_x = [2(1 = A) = p[g(Yor, Zox) X -x — 9(X =, Zx)Y-a],
where Xy, Y, Zx € D(A) and X_», Y_, Z_» € D(=X).
A consequence of Theorem 1 is the following Theorem:

THEOREM 2: Let M*%+1(p,£,m,9) be a contact metric manifold with ¢
belonging to the (k,p)-nullity distribution. If k < 1, then for any X orthog-
onal to &

(1) the &-sectional curvature K (X, ) is given by
k+ Ay, if X € D(A),
k—Au, if X € D(=X),
(2) the sectional curvature of a plane section (X,Y) normal to { is given by
(1) 21+ A)—p, for any X,Y € D(A), n>1,
(ii) — (k + p)(g(X,9Y))?, for any unit vectors

X € D(A), Y € D(-X),

(iil) 2(1 = A) — g, forany X,Y € D(-A), n>1,
(3) M has constant scalar curvature, given by S = 2n[2(n — 1) + & — np].

K(X,8) =K+ pg(hX, X) = {

K(X,Y)=

Especially for n = 1 we have the following classification:
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THEOREM 3: Let M3(p,£,7,9) be a complete contact metric manifold with ¢
belonging to the (k, p)-nullity distribution. Then M3 is either:
(i) A Sasakian manifold (xk =1,h =0), or
(ii) Locally isometric to one of the following Lie groups with a left invariant
metric: SU(2) (or SO(3)), SL(2, R) (or O(1,2)), E(2) (the group of rigid
motions of the Euclidean 2-space), E(1,1) (the group of rigid motions of
the Minkowski 2-space).
Moreover, this structure can occur on SU(2) or SO(3) when 1 — X — /2 > 0 and
1+A—pu/2>0,0nSL(2,R) or O(1,2) when 1 - A —p/2 < 0and 14+ A—p/2>0
orl-A—p/2<0and1+A—p/2<0,onE(2) when1—-A—pu/2=0and pu<2,
including a flat structure when p = 0, and on E(1,1) when 1+ A — /2 = 0 and
©> 2.

The special case ¢ = 0 of Theorems 1, 2 and 3 has been studied in [1], [6] and
7.
THEOREM 4: The standard contact metric structure on the tangent sphere
bundle T1 M satisfies the condition that £ belongs to the (k,p)-nullity distri-
bution if and only if the base manifold M is of constant sectional curvature.

The proofs of these theorems depend largely on several lemmas and

propositions, which we now prove.

LEMMA 3.1: Let M?"*! (p,€,m,9) be a contact metric manifold with £
belonging to the (k, u)-nullity distribution. Then:

(3.5) (i) |l — @l = 2uhe,
(3.6) (i) h*=(k—-1)¢? k<1 and k=1 iff M?*! s Sasakian,
(3.7) (il) R(§X)Y = s(g(X,Y)E = n(Y)X) + u(g(hX,Y)€ - n(Y)RX),
(3.8) (iv) Q&= (2nk)é, @ Iis the Ricci operator,
(3.9) (v) (Vxe)Y =g(X +hX,Y){ - n(Y)(X + RX),
(Vi) (VxRh)Y = (Vyh)X = (1 - £)[29(X, oY)€ + n(X)pY — n(Y)pX]

+ (1= p)[n(X)ehY — n(Y)phX],
for any vector fields X,Y on M1,

Proof: (i) By definition of the operator ! and h = 0 one easily proves that

IX = k(X —n(X)€) + phX
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for any vector field X. Replacing X by ¢X and at the same time applying ¢ we

get
(*%) loX = kpX + phpX and olX = kpX + pphX.
Subtracting these and using hy = —ph, the required result is immediate.

(i1) Using (2.7), anti-commutativity of ph, the relation (*x), hé = 0 and the
first of (2.1), we deduce that h? = (k — 1)p®. Now since h is symmetric and
w?=-Id+7®¢, &k < 1. Moreover, k = 1 iff h = 0 and, by using (3.4), this is
equivalent to (2.12). This completes the proof of (3.6).

(iii) This is an immediate consequence of (3.4) and g¢(R((,X)Y,Z) =
9(R(Y, Z)¢, X).

(iv) Let {e;}, i =1,...,2n+1 be a local orthonormal basis of M***!. Then the
definition of the Ricci operator @, (3.7), Trh = 0 and h€ = 0 give Q€ = (2nk)¢.

(v) Using (3.7), € = 0, no ¢ =0, (2.11) is reduced to

(Vix @)Y = s(m(Y)X - g(X,Y)¢) = n(Y)(X + hX) + g(X + X, Y)E.

Replacing now, in this equation, X by hX and using ¢? = ~Id+7®¢, (2.8) and
(3.6), we get

(k= DVx9)Y — g(X + hX,Y)E+n(Y)(X + hX)] =0,

which is the required result for x < 1. On the other hand, by (3.6), M?"+1 is
Sasakian for x = 1 and so (2.13) is valid. Hence (3.9) also has meaning for ¥ = 1.

(vi) Using (3.9) and the symmetry of h we get, for any vector fields X, Y, Z,
(Vzph)Y — (Vywh)Z = o((Vzh)Y — (Vyh)Z)
and hence (2.10) is reduced to
R(Y,Z)¢ =n(Z)Y + hY) = n(Y)(Z + hZ) + o((VZR)Y — (Vyh)Z).
Comparing this equation with (3.4), we have

(3.11) e((Vzh)Y = (Vyh)Z) =(x - 1)(n(2)Y —n(Y)Z)
+ (= 1)M(2)hY — n(Y)hZ).
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Using now (2.6) and the symmetry of h and V xh, by straightforward computa-

tion we get
(3.12) 9((Vzh)Y = (Vyh)Z,§) = 2(k - 1)g(Y, pZ).
Acting now by ¢ on (3.11) and using (3.12), we get the required result. ]

The following Lemma generalizes Lemma 3.2 of {12], which is valid for the

Sasakian case.
LEMMA 3.2: Let M?™*tl(p,£,m,9) be a contact metric manifold with ¢
belonging to the (k,p)-nullity distribution.  Then for any vector fields
X,Y,Z

R(X,Y)pZ - ch(X,Y)Z =

{1 = k) [n(X)g(eY, Z) - n(Y)g(¢X, Z)]

+(1-p [n( )9(phY, Z) — n(Y )g(phX, Z)]}¢

—g(Y +hY, Z)(9X + ohX) + g(X + hX, Z)(pY + phY)

—g(pY + phY, Z)(X + hX) + g(oX + h X, Z)(Y + hY)

=n(Z){(1 - k) [n(X)pY — n(Y)pX]
(3.13) + (1= w)n(X)phY — n(Y)phX]}.
Proof: Let P be a fixed point of M2*+! and X, Y, Z local vector fields such
that (VX)p = (VY)p = (VZ)p = 0. The Ricci identity for ¢

R(X,Y)pZ ~ oR(X,Y)Z = (VxVyp)Z = (VyVx9)Z — (Vix y¥)Z,

at the point P, takes the form
(3.14) R(X,Y)pZ — oR(X,Y)Z = Vx(Vy@)Z — Vy(Vxp)Z.
On the other hand, combining (3.9) and (2.6) we have, at P,

Vx(Vye)Z — Vy(Vxp)Z =g((Vxh)Y — (Vyh)X, Z)¢
-n(Z)((Vxh)Y - (Vyh)X)
— g(Y + hY. Z)(oX + phX)
+ g(¢X + phX, Z)(Y + hY)
+ 9(X + hX, Z)(pY + phY)
— (Y + @hY, Z)(X + hX).
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Now equation (3.13) is a straightforward combination of the last equation, (3.14)
and (3.10).

LeMMA 3.3: Let M2"+1(p, &, 7, 9) be a contact metric manifold with £ € (k, u1)-
nullity distribution. Then, for any vector fields X, Y, Z, W, we have

9(PR(pX, oY) Z, W) =g(R(X,Y)Z, W)
+n(Y){(1 = K)[n(Z)g(W, X) — n(W)g(Z, X))
+ (1= w)(Z)g(hW, X) — n(W)g(hZ, X)]}
= (X){(1 = R)[(n(Z)g(W,Y) — n(W)g(Z,Y)]
+ (1= @)n(Z)g(hWY) — n(W)g(hZ,Y)]}
+9(X,pZ + phZ)g(W + hW, YY)
— g(X, oW + ohW)g(Z + hZ,pY)
- g(X, W + hW)g(Y, Z + hZ)
(3.15) +g(X,Z + hZ)g(Y, W + hW).

Proof: The proof of this lemma is a direct calculation using the relations (2.2),
(3.13), (34),nop=0,pf=0and h{=0. 1

LEMMA 3.4: Let M**1(p, £, 1, 9) be a contact metric manifold with £ € (k, p)-
nullity distribution. Then, for any vector fields X, Y, Z, we have

OR(0X, oY )oZ + R(X,Y)Z =n(X){xlg(Y, Z)E — n(Z)Y]
+ (2= p)n(Z)hY — g(hZ,Y)E]}
Y){k[g(X, Z)¢ - n(Z)X]
+ @2 - wm(Z)hX —g(hZ, X)E]}
+2{g(Y, Z)hX + g(hZ,Y)X
(3.16) - 9(Z, X)hY — g(hZ, X)Y}.

Proof: In (3.13) replace X, Y by ¢X, Y respectively and take the inner
product with ¢W. Then, using ph + hg = 0, & = 0, k¢ = 0, (2.1), (2.2) and
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1oy = 0, we have

9(R(X,9Y)pZ, oW) =g(oR(p X, pY)Z, oW)
— g(oY — ohY, Z)g(— X + hX, pW)
+ g(pX — phX, Z)g(—Y + hY, pW)
—g9(Z,-Y +n(Y)¢ + hY)
x [g(X, W) = n(X)n(W) — g(hX, W)
+9(Z, - X + n(X) + hX)
x [g(Y, W) = n(Y)n(W) - g(hY, W)].

Substitute (3.15) in this equation for g(@R(pX,¢Y)Z, W), and use the fact
that ¢ is anti-symmetric, h is symmetric, hp + ph = 0 and that the resulting
equation is valid for every W, to give (3.16) by straightforward calculation. This
completes the proof of the Lemma. |

It is well known that on a Sasakian manifold the Ricci operator @ commutes

with . In our situation we have the following proposition:

PROPOSITION 3.5: Let M?"*tY(p, £ 7, g) be a contact metric manifold with
R(X,Y)¢ = k(n(Y)X = n(X)Y) + u(n(Y)hX — n(X)RY)
for any vector fields X, Y. Then

(3.17) Qv — ¢Q = 2[2(n — 1) + ulhe.

Proof: Let {e;, pe;, &}, =1,...,n be alocal orthonormal ¢-basis (see [2], p.22).
Setting ¥ = Z = e; in (3.16), adding with respect to 7 and using 7n{e;) = 0, we
have

n

Y [oR(pX, pe:)pe; + R(X, e;)ei]

=1

n

= n(X)lnk— (2— 1)) glhes, €]

=1

+2{nhX + i[g(hei,ei)X — h(g(X,e)e;) — g(hX,e;)e;]}

i=1
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On the other hand, setting Y = Z = pe; in (3.16), adding with respect to i and
using o ¢ =0, {2.1) and (2.2), we get

n

) loR(pX, e)e; + R(X, pe;)pes] =

n(X)Ink — (2 - u) Y g(hoes, pe:)]¢
i=1
+ 2{nhX + Z[g(hgoei, vei)X — h(g9(X, pei)pes) — g(hX, pe;)pe;]}.

i=1

Adding now the last two equations and using the definition for @, hé = 0 and
Trh = 0, we have

P(QvX — R(pX, §)§) + QX — R(X, )¢ = 2nkn(X)€ + 4(n - 1)RX.
Using now (3.4), 7o ¢ = 0 and h{ = 0, we get
QX + QX = 2rnn(X)E + 2[2(n — 1) + plhX.

Finally, acting by ¢ and using (2.1) and Q€ = (2nk)¢ as well as £ = 0 and
@¢h + hyp = 0, we obtain (3.17) and the proof is completed. |

LEMMA 3.6: Let M?"*+1(,€,n, g) be a contact metric manifold with £ € (k, p)-
nullity distribution. If k < 1, then M?'t! admits three mutually
orthogonal and integrable distributions D(0), D(A) and D(~)), defined by the
eigenspaces of h, where A = /1 — k.

Proof: The proof of this lemma is similar to that of Proposition 5.1 of Tanno’s
paper [13] and hence we omit it.

We now state and prove the following proposition:

PROPOSITION 3.7: Let M?"t1(p, £,7,¢g) be a contact metric manifold with
R(X,Y)¢ = s(m(Y)X - n(X)Y) + u(n(Y)RX —n(X)RY), r<1

for any vector fields X, Y.
(i) If X,Y € D(X) (resp. D(—])), then VxY € D(X) (resp. D(—A)).
(if) If X € D(A), Y € D(—)), then VxY (resp. VyX) has no component in
D(X) (resp. D(=X)).
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Proof: In (3.10), replace Y by ¢Y and take the inner product with Z to get
g(Vxh)pY — (Voyh)X,Z) =0

or, equivalently,

(3.18) 9(VxheY —hVxpY =V yhX + hV vy X,Z) =0

for any X, Y, Z orthogonal to £.

(i) Let X,Y,Z € D()) (resp., D(—A)). Then equation (3.18) is reduced to
9g(VxZ,oY) = 0, since A # 0 and g(¢Y,Z) = 0 by Lemma 3.6. On the
other hand, use Vx& = —pX — @hX and take the inner product with Z to
get ¢(VxZ,€) = 0. Applying now Lemma 3.6 we conclude that VxZ € D())
(resp., D(—A)) for any X, Z € D(A) (resp., D(—X)).

(ii) Let X,Z € D(A) and Y € D(—A). Then from (i), g(VxY, Z) = —g(Y,VxZ)
= 0 giving the second statement. |

Remark 3.1: It is obvious from Proposition 3.7 that R(X,Y)Z € D(A) (resp.
D(-X)) for X,Y,Z € D()) (resp. D(=X)).

LEMMA 3.8: Let M2 +1(y,£,m, g) be a contact metric manifold with £ € (k, j)-
nullity distribution. Then for any vector fields X, Y we have
(3.19)

(Vxh)Y = {(1-£)g(X, oY) +9(X, hoY )} +n(Y)[R(pX + phX)] — un(X)phY.

Proof: Let k < 1. Suppose X,Y € D(A) (resp. D(—2)). Then from Proposition
3.7 we have VxY € D()) (resp. D(—2)) and one easily proves that

(3.20) (Vxh)Y = 0.

Suppose now that X € D(A) and Y € D(—)). Let {e;,pe:,€}, i = 1,...,n
be an orthonormal ¢-basis with e; € D(A) and so we; € D(—A). Then using
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Proposition 3.7, hf = 0, € = 0, (2.1) and (2.6), we calculate
hVxY =h {Z 9(VxY, pei)pe; + g(VxY, 6)5}
i=1
Z (VxY, pe;) hpe;

= Ap Z 9(eVxY, e)e;
i=1

= \p?VxY

= A~-VxY +¢(VxY,£)¢)

= A(=-VxY ~g(Y,Vx£))

= M=-VxY +g(Y,pX + phX)§)

= VxhY — AA +1)g(X, Y ),

and so

(3.21) (Vxh)Y = M) + 1)g(X, ¢Y)E.

Similarly we find

(3.22) (Vyh) X = MA = 1)g(Y, pX)E.

Suppose now that X, Y are arbitrary vector fields and write
X =X+ X_»+n(X)¢

and
Y=Y\+Y_5 +n(Y),

where X (resp. X_,) is the component of X in D(X) (resp. D(—A)). Then
using (3.20), (3.21), (3.22) and V¢h = phy, which follows from (3.10), we get by
a direct computation

(VxR)Y =X2[g(Xx, 9Y-5) + g(X-x, @Y )J + Ag(Xn, 9Y_1) — g(X-x, 9Y3)]€
+ (Y )(R(pX + phX)) — un(X)phY.

On the other hand, we easily find that

g(hX, oY) = Alg(Xx, pY_1x) — g(X-x, ¢Y)))
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and

g(hX, hoY) = X*[g(Xx, oY_)) + g(X_»x, o¥2)].

These relations together with the previous one give the required equation (3.19).

Note that for k = 1 (and so h = 0), (3.19) is valid identically and the proof is
completed. ]

LEMMA 3.9: Let M*™*l(p €&,n,9) be a contact metric manifold with 13

belonging to the (k,p)-nullity distribution. Then for any vector fields X, Y,
Z we have

R(X,Y)hZ — hR(X,Y)Z ={x[n(X)g(hY, Z) — n(Y)g(hX, Z)]

+ p(k = DIn(Y)g(X, Z) — n(X)g(Y, Z)]}¢

+ k{g(Y,0Z)phX — g(X, pZ)phY
+9(Z, phY )X — g(Z, phX)pY
+n(Z)[n(X)hY — n(Y)hX]}

= #{n(V)[(1 — £)n(Z)X + pn(X)hZ]
= (X[ — &)n(Z2)Y + pn(Y)hZ]

(3.23) +29(X, oY )phZ}.

Proof: The Riccl identity for h is
(3.24) R(X,Y)hZ — hR(X,Y)Z = (VxVyh)Z — (VyVxh)Z — (Vix,yih)Z.

Using Lemma 3.8, the relations (3.6), hg + ph = 0 and the fact that Vo is
antisymmetric, we get by direct calculation

(VxVyh)Z ={(1 - k)g(VxY, pZ)
- (1= r)g((Vxp)Y, Z)
+9(VxY, hoZ) + g((Vxhyp)Y, Z)}¢
+{(1 = k)g(Y,9Z) + g(Y, hZ)}V x¢
+9(Z, Vx&)[heY + (k — 1)pY]
+0(ZH(Vxhe)Y + heVxY + (k - D[(Vxo)Y + ¢VxY]}
—w{[n(VxY)+g(Y,VxE)]phZ —n(Y)(Vxph)Z}.
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So, using also (3.19), (2.6) and (3.9), equation (3.24) yields

R(X,Y)hZ — hR(X,Y)Z
={(k = 1)g((Vx9)Y = (Vy9)X, Z) + g((Vxhp)Y - (Vyhe)X, Z)}¢
+{(1 - r)g(Y,02Z) + (Y, hpZ)}Vx¢
— {1 - K)g(X,9Z) + 9(X, hZ)}VyE
+9(Z, Vx€)[heY + (k — 1)pY]
- 9(Z, Vy&)[hoX + (k — 1)pX]
+(Z){Vxhp)Y — (Vyhe)X + (k- 1)[(Vx @)Y — (Vyp)X]}
(3.25) - p{n(Y)(Vxph)Z —n(X)(Vyph)Z + 29(X, oY )phZ}.

Using now (3.9), h{ = 0 and Lemma 3.8, we get

(Vxph)Y ={g(X,hY) + (x — 1)g(X, =Y +n(Y)E)}¢
+n(Y){hX + (k — 1)(=X +n(X)§)} + un(X)RY.

Therefore, equation (3.25), by using (3.9) again, is reduced to (3.23) and the
proof is completed. 1

Proof of Theorem 1: The first part of the Theorem follows from (3.6) and
Lemma 3.6. Let {e;, pe;, €}, 7 =1,...,n be an orthonormal basis of TpM at any
point P € M with e; € D(A). Then we have

R(X»,Ya)Z-x = zn:{g(R(Xx, Ya)Z_x,e:)ei + g(R(Xx, Ya)Z-x, pei)pe: }
(3.26) z-:}(R(XA, Ya)Z-», &)
But since ¢ € (k, #)-nullity distribution, using (3.4) we easily have
9(R(X»,Ya)Z-»,€) = —g(R(Xx, Ya)§, Z-5) = 0.
By Proposition 3.7 and Remark 3.1 we get
9(R(X\, Y2)Z-x, &) = —g(R(Xx, Yx)ei, Z-») = 0.

On the other hand, if X € D()\) and Y, Z € D(—\), then applying (3.23) we get

RR(X,Y)Z + AR(X,Y)Z = —2\{xg(X, pZ)0Y + pg(X, oY )02}
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and, taking the inner product with W € D()), we have

for any X, W € D(A) and Y, Z € D(—A). Using (3.27) and the first Bianchi
identity we calculate

Zg X/\aYA Z_ Xy P€4 )Soel

"

= - ZQ(R(Y,\, Z_\) X, pe;)pe; — ZQ(R(Z—,\,XA)Y,\, we;)pe;
i=1

=1

=Y {—rg(Vr,9%e)g(pZ-x, Xx)pe: — pg(Ya, 0Z-x)g(0%e:, X»)pe;}
i=1

=Y {—rg(Z-2, OY2)g(0 X, 0es)pes — ng(Z-x, 0 X2)g(0Ys, pei)pe:}
i=1

= kg(0Z2, X2)p D g(Vaei)ei + ug(Ya, 0Z-3)0 Y (X, ei)e;

i=1 i=1

+59(Z-2,0Y2)9 Y g(Xx, €i)es + ng(Z-x, 0 X)) Y g(Yaeie:
1=1 =1

= k{g(oYx, Z-2)0 X — g(pXx, Z_x)Ya}
+ 1{g(0 X, Z_2 )oY — g(@Yn, Z-2)pXa}
= (k — ) {g(pYn, Z_x)oX\ — g(0Xy, Z_) )Y}

Therefore, (3.26) gives
R(X5,Y2)Z-x = (K — p)[g(0Y, Zo))p X — g(9Xx, Z_»)pYh].

The proof of the remaining cases are similar and will be omitted. 1

Proof of Theorem 2:
(1) If we set Y = £ in relation (3.4), we get R(X, &) = kX + phX for X
orthogonal to £ from which, taking the inner product with X, we have

K(X,&) = k + pg(hX, X), which is the required result. The special cases
are obvious.

(2) This follows immediately from Theorem 1.
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(3) Let {ei, e, &}, @ = 1,...,n, be an orthonormal ¢-basis with e; € D(]A).
Then from (1) or (3.8), g(Q¢, £) = 2nk, and from (2)

9(Qei i) = (k4 Au) + (n = 1)(2(1 + X) — p) — (k + p),
9(Qeei, pei) = (K — Au) + (n = 1)(2(1 = A) — p) — (k + p).

Therefore,

§=TQ =) {9(Qei i) +9(Quei, pei} +9(QE,€) = 2n(2(n—1) + K —np)

=1
and the proof is completed. |

Remark 3.2: Using Theorem 1 one can easily prove that: In any contact metric
manifold M?"+1(p, £, 7, g) with £ belonging to the (k, u)-nullity distribution, the
Ricci operator @ is given by

QX =[2n—-1)—nplX + [2(n — 1) + plhX + [2(1 — n) + n(2k + p)|n(X)E

for any vector field X on M?"*!, Especially for u = 2(1 — n), Q is of the form
(2.14) and so M2+ is 5-Einstein. ]

4, Classification of the three-dimensional case

Let M3(p,€,7m,9) be a three-dimensional contact metric manifold with charac-

teristic vector field ¢ satisfying
(41)  RX,Y)E = s(n(Y)X — n(X)Y) + p(n(Y)hX - n(X)Y).

As we proved in Lemma 3.1, k < 1. Suppose that X is a unit eigenvector of h,
say hX = AX, X orthogonal to ¢, where A = /1 — &.

LEMMA 4.1: For k < 1, we have

(i) VxX = VyoxpX =0, (i) VxpX = (A +1)¢,

(ili) Vox X = (A - 1)¢, (iv) [X, o X] = 2¢,

(v) Vx€ = —(1+N)pX, (vi) VeX = —gupX,

(vid) [, X] = (1+ A - 31) 0X, (vii) [pX, €] = (1= A= 3u) X.

Proof- Since X is a unit eigenvector of h belonging to D(A) and ¢X is a
unit eigenvector of h belonging to D(—\), the relations in (i) are immediate

consequences of Proposition 3.7(i) and the fact that dimD(A\) = dimD(-A) = 1.
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(ii) Because ¢X is unit we have Vx X orthogonal to ¢.X. Moreover, since
»X € D(—X), by Proposition 3.7(ii) we conclude that Vx¢X is parallel to £.
But, using (2.6), € = 0 and (2.2), we have

9(VxpX,€) = —g(pX,Vx) = g(0X,pX + phX) = g(X, X + hX) = (A +1).

Therefore VxpX = (A + 1)¢.
(iii) The proof is similar to that of (ii).
(iv) This is an immediate consequence of (ii) and (iii).
(v) This follows from (2.6).
(vi) By direct computation, using (i)—(iv) we have

(4.2) R(X,pX)X = kpX — 2V X.
On the other hand, on any three-dimensional Riemannian manifold

R(X,Y)Z =g(Y, 2)QX — g(X, Z)QY + ¢(QY, Z)X
(43) ~9(@X, 2)Y (Y, 2)X — g(X, Z)Y)
for any vector fields X, Y, Z. Moreover, using Remark 3.2 (for » = 1), we have
(4.4) QX =pu(A-1)X
and, using (4.4) and Proposition 3.5 (for n = 1), equation (4.3) gives
(4.5) R(X,pX)X = (k+ p)pX.

Comparing (4.2) and (4.5) we get Ve X = —(u/2)pX.

(vii) This follows from (v) and (vi).

(viii) Using (2.6), (2.8) and (vi) above, we easily get (viii), completing the
proof. |

Finally, to prove Theorem 3 we need the following result from Lie group theory
(see e.g. [14, p.10]).

PROPOSITION 4.2: Let M be an n-dimensional connected and simply connected
manifold and let X,,...,X, be complete vector fields which are linearly
independent at each point of M and satisfy

[Xiv X]] = ZCZXIM
k=1
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where the cfj ’s are constant. Then, for each point P € M, the manifold M has
a unique Lie group structure such that P is the identity and the vector fields X;
are left invariant.

Proof of Theorem 3: We distinguish the cases k =1 and kK < 1. When & =1,
then by using Lemma 3.1 we conclude that M?3 is a Sasakian manifold. Suppose
now K < 1. Let X be a unit eigenvector of h orthogonal to £ with corresponding
eigenvalue A = v/1 — k > 0. Then, as is proved in Lemma 4.1, there exist three
mutually orthonormal vector fields &, X, ¢ X such that

(48) [X,oX)=26 [pXel=(1-2-5)X, [6X]=(1+2-2)ex,

where (A, ) € R% Let £ = €5, X = e and X = e3. It is known that ¢ is
defined globally on M3. Going to the universal covering space M3 if necessary,
we have global vector fields, which we also denote by e;, e and es, satisfying the
conditions of Proposition 4.2 above. Hence M3 has a unique Lie group structure.
So, relations (4.6) may be written as

(4.7)  [e2,e3] =2e1, [es,e1] = (1 —A— g) es, [er,ea] = (1 Ao g) .

On the other hand, in [9, p. 307] J. Milnor gave a complete classification of

three-dimensional manifolds admitting the Lie algebra structure
[es, e3] = ci1e1, [es,e1] = czeq, [e1,e2] = czes.

Comparing this and (4.7) we have

(4.8) ¢ =2, czzl—/\—g, cs=1+x1-E.

So, the signs of ¢; and ¢3 vary. Since ¢; = 2 > 0, the possible combinations of
the signs of ¢;, ¢y and c3, the associated solution sets and the corresponding Lie
groups are indicated in Table 1, where:
Dy = {(\n) € R?| ¢c3 >0, c3 > 0}. The special case p =0,0< A < 1
has been studied in [7].
Dir = {(\p) € R?| ¢2 <0, cg > 0}. The special case 4 = 0, A > 1 has
been studied in [7].
Dir = {(\p) € R2| co =0, pu < 2}. The special case p = 0, k = 0,
M3 is flat [3].
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Djv={()\,/,l.)€R2| c3 =0, /J>2}.
Dy = {(M\p) € R?| c3 <0, c3 <0}.

Table 1
c1 co cs3 Associated region Associated Lie group
+ + Dy SU(2) or SO(3)
+ - 0
+ - + Drr SL(2, R) or O(1,2)
+ - - Dy SL(2, R) or 0O(1,2)
+ + 0 -
+ 0 + Dt E(2)
+ - 0 Dy E(1,1)
+ 0 - 0 -

Conversely, we will exhibit the contact metric structure on the above Lie groups
such that (4.1) is satisfied. The method which we will use is that of D. Blair
and H. Chen [7] and, for the sake of completeness, we will repeat some neces-
sary relations from [7]. We consider the general Lie algebra structure on these
manifolds:

(4.9) le2, e3] = cre1, [es,e1] = caea, [e1,ea] = cses.
Let {w;} be the dual 1-forms to the vector fields {e;}. Using (4.9) we get

dwi{eq, e3) = —dwy(e3,e3) = %1 #0 and dwi(e;,e;) =0
for (i,5) # (2,3),(3,2). It is easy to check that w; is a contact form and e; is
the characteristic vector field. Defining a Riemannian metric g by g(e;, e;) = 6,5,
then, because we must have dw;(e;, e;) = g(e;, pe;), ¢ has the same matrix as
dw; with respect to the basis e;. Moreover, for g to be an associated metric, we
must have ¢? = —Id+w; ®e;. So for (p, e1wy, g) to be a contact metric structure
we must have ¢; = 2. The unique Riemannian connection V corresponding to g
is given by (2.15). So we easily get, using ¢; = 2 and (4.9),

Ve,e1=0, Ve =0, Vg e;=0,

1 1
Ve, €2 = 5(02 +c3—2)e3, Ve,eq = —(co—c3—2)es,

[ 3

1 1
Ve, €3 = -—5(62 + c3 — 2)62, Ve:,el = 5(2 +co — C3)e2.
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But we also know that

chel = —ypeéz — <Ph€2-

Comparing now those two relations for V.,e; and using pe; = 0, pez = —ey we
conclude that

c3 — C2 C3 — C2

2

hey = es and hence hez=-—

€3.

Thus {e;} are eigenvectors of h with corresponding eigenvalues {0, A\, =A} where
A = {c3 — ¢2)/2. Moreover, by direct calculation we have

2
R(ez,e1)e1 = {1 - @Tcﬂ} ez + (2 — ca — ¢c3)hey,

PR
R{es,e1)e; = {1 - (C:;Tcz)} es + (2 — ¢a ~ c3)hes,
and

R(eq,e3)e; = 0.

Putting

we conclude, from these relations, that e; belongs to the (k, u)-nullity distribu-
tion, for any c2, ¢3. If we choose ca = ¢3 then we have the Sasakian case (k = 1,
h = 0), while for ¢z # c3 we have the desired structure (k < 1, u € R), and the
proof is completed. Note that for the special Sasakian case ¢; =2, c2 =¢3 =0,
the group is the Heisenberg group [9, 14 ch. 7. B

5. The tangent sphere bundle

The natural contact metric structure on the tangent sphere bundle m: /M — M
of a manifold M is described in Chapter VII of [2] and in [5]. In particular, the
characteristic vector field £ is horizontal and, as a hypersurface of the tangent
bundle TM, the Weingarten map annihilates horizontal vectors. Thus on T1 M,
R(X,Y)¢ can be computed by the formulas for the curvature of TM which were
computed by Kowalski [8] and which we now describe.

Let G, D and R denote the Riemannian metric, the Levi-Civita connection and
the curvature tensor on the base manifold M, and 7: TM — M the projection
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map. D induces a horizontal subbundle in TM and the connection map K :
TTM — TM is given by

KX¥ =0, K(X))= Xz,

where t € TM and XH and XV denote the horizontal and vertical lifts of vector
fieldson M. §(X,Y) = G(7.X,7.Y)+G(K X, KY) is then a Riemannian metric
on TM and its curvature R is given by

R(XV,YV)ZV =0,
H
(R(XY,YV)ZH), = (R(X, Y)Z + %R(t,X)R(t,Y)Z - iR(t,Y)R(t,X)Z) ,
B vH vV V 1 1 H
(R(X ,Y )Z )t = - <§R(Y, Z)X + ZR(t,Y)R(t,Z)X) 3

1 v

(R(XH,YY)ZH), = (gn(x, 2)Y + iR(R(t,Y)z,X)t) + (DX R V)DE,

o~

|4

o

(R(xH,vyHzV), = (R(X, Y)Z + %R(R(t, Z2)Y,X)t— -R(R(t, 2)X, Y)t)

+ % (DxR)(t, 2)Y — (DyR)(t, Z)X)!

(R(xH,yH)zH), =%((DZR)(X, Y)t), + (R(X, Y)Z + iR(t, R(Z,Y)t)X
1 1 i
+7 Rt R(X, 2)0Y + SRt RX,Y))Z
t
With respect to local coordinates {z*} on M and fibre coordinates {v*}, the

characteristic vector field is given by

("
E=2v (8:1:") .

On T\ M for a vertical vector U and a horizontal vector X orthogonal to &,

hU and hX are given by
(5.1) RU; = Uy — (R(KU,t)t)Y and hX, = —X; + (R(m. X, t)t)H

(cf. eq. (4.1) of [5]).

Proof of Theorem 4: First suppose that the base manifold is a Riemannian
manifold of constant curvature c¢. Then from Kowalski’s formulas it is easy to
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see that R(X,Y)¢ = 0 for X, Y orthogonal to &; for a vertical vector U, that
R(U, £)¢ = c2U and, for a horizontal vector X orthogonal to ¢, that R(X,£)¢ =
(4c—3c?)X. Moreover, from equations (5.1), hU = (1 —c)U and hX = (c—1)X.
Thus the curvature tensor on T} M satisfies

R(X,Y)¢ = c(2 = c)(n(Y)X = n(X)Y) — 2e(n(Y)hX — n(X)hY)

forall X,Y on Ty M.
Conversely, if the contact metric structure on T3 M satisfies the condition that
¢ belongs to the (k, u)-nullity distribution, then

(5.2) R(X,€)¢ = kX + phX

for any X orthogonal to £&. Now, for a unit vector ¢t on M define a symmetric
operator L; : [t]* — [t]* by L;X = R(X,t)t. Using (5.1) in (5.2) we see that

R(U,&)¢ = (k+ pn)U — p(LKU)Y

and, in particular, that R(U,&)¢ is vertical. On the other hand, computing
R(U, £)¢ by the Kowalski curvature formulas on TM we see that

R(U,&)¢ = —(R(R(t, KU)t, t)t)V = (LIKU)Y.
Thus the operator L, satisfies the equation
L+ pLy ~ (k4 p)I = 0.

Similarly, for a horizontal X orthogonal to &,

R(X,6)€ = (k— w)X + p(Lem X)H
and, from the Kowalski formulas,

R(X,6)¢ = (4Lym X — 3027, X)H,
giving

3L+ (u—4)Li+ (k— p)I = 0.

Thus the eigenvalues a of L, satisfy the two quadratic equations

-4 k-
a’+ pa—(k+p) =0, a2+uTa+T“=0_
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If L, had two eigenvalues, these quadratics imply that p = -2 and « = 1, which

implies that h = 0, i.e. the structure is K-contact. Moreover, a = 1 is now

the only root and hence M is of constant curvature +1. As a side remark we

recall a result of Tashiro [2, p. 136], that the contact metric structure on Ty M

is K-contact if and only if the base manifold is of constant curvature +1. On

the other hand, if L; has only one eigenvalue, then M has constant curvature

immediately.
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