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SADDLE POINTS AND INSTABILITY OF 
NONLINEAR HYPERBOLIC EQUATIONS* 

BY 

L. E. P A Y N E  A N D  D. H. S A T F I N G E R  

ABSTRACT 

A number  of authors  have investigated conditions under  which weak solutions 
of the ini t iabboundary value problem for the nonlinear wave equat ion will blow 
up in a finite time. For certain classes of nonlinearities sharp results are derived 
in this paper. Extensions to parabolic and to abstract operator equations are 
also given. 

1. Introduction 

Consider the nonlinear hyperbolic equation 

u,, = A u  + f ( u )  

(1.1) u(x,0) = Uo(X), u~(x,O) = Vo(X) 

u = 0 on 3D, 

with t > 0 and x ~ D, where D is a smoothly bounded domain in R". A number 

of authors (J. B. Keller [3], D. H. Sattinger [9], [10], K. J6rgens [2], M. Tsutsumi 

[13], [14], [15], R. T. Glassey [I], H. A. Levine [5], [6], [7], and others [4]) have 

investigated conditions on the initial data and nonlinearity f for which the 

solutions of (1.1) blow up in a finite time. In this paper we establish a number of 

sharp results in this direction. In addition, we derive these results for weak 

solutions of (1.1). We hope that our work will contribute to a better intuitive 

understanding of the phenomena of instability. 

In order to describe the results it will be convenient  first to consider the 

one-dimensional mechanical analogue of (1.1), namely 

(1.2) g = - x  + f ( x ) ,  

where x is a real number. Equation (1.2) describes a mechanical system with 

one degree of f reedom, while (1.1) may be thought of as a system with an 

infinite number of degrees of freedom. Let  

F ( x )  = f ( s ) d s .  

t The publication of this research is supported in part by NSF  Grant  21806 (DHS) and by NSF  

Grant  GP33031X (LEP). 
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The potential energy for Equation (1.2) is 

X 2 
V(x  ) = T - F ( x ) .  

Suppose that V has the qualitative shape shown in Fig. 1: a local minimum at 

x = 0 and a local maximum at x = x~. 

The set 

V ~ 

x 1 

Fig. 1 

= - X  

W ={x:  V ( x ) < d , x  <x~} 

describes a potential w e l l - - a n  interval containing the origin. The total energy 

of (1.2) (kinetic plus potential) is 

o2 

E = 2  + V ( x ) .  

E is of course conserved under the motion; if E(0) < d and x(0) E W, then, by 

the conservation of energy, x ( t )  must lie in W for all t > 0. On the other hand, 

if E(0) < d and x > xl, then x ( t )  > x~ for all t. The solution can never  cross into 

W because,  to do so, ~ts total energy would have to be greater than d. 

Now let us make the additional assumption that 

x f ( x ) > c l x l  p+~ whenever  x > x ,  

for some c > 0  and p > 1. This simply says that Equation (1.2) is strictly 

nonlinear for x > x,. Then, under these assumptions, it is easily demonstrated 

that x(t)--~ +oo in a finite time. This result is sharp in that it gives a precise 

description of the initial data for which (1.2) has global bounded solutions, and 

those for which the solution tends to infinity in a finite time. 

In this paper we extend the above results to the infinite dimensional case 

(1.1). The potential energy associated with (1.1) is the functional 
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where 

f0 u F(u) = f(s)ds. 

Under  certain assumpt ions  on f(u) (which apply,  for  example ,  in the cases 

f ( u ) = u  p, or u[u] ~-', p < ( n + 2 ) / ( n - 2 ) )  we prove  that (1.I) has a local 

minimum at the origin, a potential well W, and a saddle point w. The potential 

well has a positive depth d;  and, just as in the finite dimensional  case, if 

~(0) < d and u0 lies outside W, then the solution u to (1.1) tends to infinity in 

finite time (in the L2 norm). 

It has previously been shown [10] that, if uo lies inside W and ~(0) < d, then 

u( t )E  W for  all t and (1.1) has a global solution. 

On the other hand, Levine and Tsutsumi have proved a number  of  interesting 

instability theorems ~. The principal innovations in the present  paper  are the 

construct ion of the saddle points of  J, and the use of  related propert ies  of  J to 

obtain the sharp conditions for  instability mentioned in the previous parag- 

raphs. 

In Section 2 we discuss the characterizat ion of the potential  well W by 

certain differential-integral inequalities. In addition, we prove  the existence of 

saddle points of  J (unstable critical points) by a direct method.  The method 

may possibly be applicable to other problems in the calculus of variations,  for  

example,  the construct ion of unstable minimal surfaces  or surfaces  of constant  

mean curvature.  

In the homogeneous  case,  f (u )= u" or f (u )= u lu I"-', there is a direct 

connect ion between the solution w to 

A w + f ( w ) = O ,  w = 0  on OD 

(which is the Euler  equation for  the critical points of J )  and an associated 

Sobolev inequality. 

If  for a smoothly  bounded domain D in R" we define the norms 

t Generally speaking, the class of nonlinear functions.f(u) considered in this paper is more 
restrictive than that considered by Levine and Tsutsumi. However, in this more restrictive class the 
results of the present paper are considerably sharper than those of Levine and Tsutsumi. 
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for 1 < p < ~, then the associated Sobolev inequality is given by 

In Ip ----~p Ilu II. 

In fact, the function w is an extremal to the Sobolev problem 

n Ilull 3'~ --i f lu i~ 

over functions u with finite Dirichlet norm which vanish on the boundary. The 

depth d of the potential well can be computed exactly in terms of the Sobolev 

constant 3% and one obtains 

-I (P -2)/2p 
2p d] , 

vp = b--~_ 2 

provided p < 2 n / ( n - 2 )  (xERn).  These connections are discussed in 

Section 3. 
In Section 4 we prove the instability results. These are proved by obtaining 

appropriate second order differential inequalities on 

= fo u2dx" M(t) 

In Section 5 we discuss similar results for parabolic problems, and in Section 

6 we discuss generalizations to abstract second order Cauchy problems of the 

type 

Pu,, + Qu = f (u) ,  

where Q is a positive definite operator on a Hilbert space and f is a gradient 

operator. 

The results in this paper were obtained while the authors were attending the 

1973 Applied Mathematics Summer Institute, sponsored by the Office of Naval 

Research, Contract No. N00014-67-A-467-0027. The authors gratefully ack- 

nowledge the support and interest of the Office of Naval Research. 
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2. Potential wells in function space 

In this section we first impose conditions on the nonlinear function f (u)  

which will insure that all non-trivial critical points of J are unstable equilibria 

for (1.1)*. We characterize these critical points as extrema of a variational 

problem, proving first the uniqueness and constant sign of the e x t r e m a  

(assumed to exist) and then establishing existence of the extrema. The latter 

proof actually establishes the existence of a potential.well W of depth d > 0. 

We assume throughout that D is a smoothly bounded domain in R". We 

denote by/ : / i  the closure of the class Co (D) under the norm II II, introduced in 

(1.4). The reader will recall the Sobolev embedding theorems which state that 

(a): for p <= 2n/(n - 2) there is a constant Sp such that ]u Ip ---- Spll u II for all 

u E HI; and (b): the injection from/ZL into Lp is compact  for p < 2n/(n -2 ) .  

The latter statement means that every  bounded set in/--), contains a subsequ- 

ence which converges in L~. 

Consider the functional J on H~ defined by 

, fo x(u)= llull 2 -  f(u)dx. 

This functional, which may be regarded as the potential energy functional for 

the infinite dimensional dynamical system (1.1), is well defined provided that 

IF (u ) l  = O(]u ]P) as ]u ]--~oo for p <-_2n/(n-2). The critical points of J are 

functions w in /4, which satisfy the Euler equation 

(2.1) ±w + / ( w ) = 0 ;  

w = 0 on OD, 

where f = F ' .  Since (2.1) is elliptic, the critical points of J are regular functions 

on D, provided f is regular. 

Throughout  this paper we make the following assumptions: 

(i) F ( u ) =  fg f ( s )d s .  

(ii) [ is C ~ and f ( 0 ) =  f ' ( 0 ) =  0; f ~  0 in a neighborhood of the origin. 

(iii) (a) f is monotone and is convex for u > 0, concave for u < 0; 

or (b) f is convex.  

(iv) (p + l)F(u)<-_u[(u), and luf(u)l<= y IF(u) l ,  where 2 <(p  + l)_--<y < 

2n/(n - 2). 

* The fact that J has non-zero critical points has been established under various hypotheses by 
others (see, e.g., A. Ambrosetti and P. Rabinowitz, J. Functional Analysis 14 (1973) and papers 
cited therein). We include a simple proof in this section for completeness. 
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REMARK. In all the proofs that follow, the two cases (iii) (a) and (b) must be 

treated slighly differently. 

LEMMA 2.1. Under the conditions (i)-(iv) above we have 

I F ( u ) I  = O(lu [~); (2.2) 

and in case (iii) (a) 

(2.3) u(uf,-D>_o, 

with equality holding only for u = O. The inequality (2.3) also holds in case (iii) 

(b) for u >-O. 

PROOF. The growth condition (2.2) is obtained by integrating the inequality 

[ uf(u)[  < y IF(u)[ ,  using the fact that F ' =  [. The inequality (2.3) follows by 

noting that the quantity 

f(u)- uf'(u) 

is the y-intercept of the tangent line to the graph of f at the point (u, f (u)) .  

The second variation of J at a critical point w is the quadratic functional 

fo / ~2J[v] =-~ 

A necessary condition that w be a local minimum of J is that 82J be positive 
definite. This is the case at the origin (w = 0), since there 62J[v] = 1] v [[2/2. At a 

non-trivial critical point, however,  t3zJ is not positive definite. In fact, noting 

that w satisfies the boundary conditions and so is an admissible trial function, 

we compute 

1 

'Io = -~ w[Aw +['(w)wldx 

=-lfo2 w[wf'(w)-I(w)]dx. 

If f satisfies (iii) (a), then from (2.3) we see that ~ J [ w ]  < 0. If f is convex then, 

by the maximum principle, w > 0, since 

A w  = - f ( w ) < 0 ;  

therefore, again by (2.3), ~2J[w] <0 .  (Incidentally, note that if f is positive 

homogeneous of degree p then w f ' ( w ) =  pf(w) ;  and so 
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, fo 62J[wl = - ~ ( p  - 1) wf(w)dx = - ~ ( p  - 1)11 w IT2< O. 

The reader will note that the proofs which follow are particularly simple in case 

f is homogeneous.) 
Thus, under conditions (i)-(iv) on f, all non-trivial critical points are a priori 

unstable equilibria for the hyperbolic problem(1.1). The origin, however, is at 

least formally a stable equilibrium. We are going to show that under the growth 

condition (iv) w = 0 is a local minimum of J and that the depth of the potential 

well is positive. 

Let u be an arbitrary element of H, and consider the real valued function 

j(A ) = J(Au)  

j'(3`) = 3  ̀Jlu JJ2- fo uf(3`u)ctx and 

J"(3`) = II u II 2 -  fD uT(3`u)dx. 
Therefore j(O) = j ' (O)=  0 and j"(O)= Ilu I1'> O.Thus for any u E/- ' / , , j(3`) is a 

convex function of 3  ̀ for small 3 .̀ Let us show that under our assumptions on f 

and F, j(3`) has a unique positive critical point 3`* = 3`*(u). 

LEMMA 2.2. I f  f satisfies (i)-(iv) then [or any u E f-I,, u ~ 0, 

(a) lim~_+~j(3`) = - ~; 

(b) there is a unique 3.* = A * ( u ) > 0  such that j ' (3`*)=0;  

(c) j"(3` *) < 0, 
In case (iii) (b) we also assume u >= O. 

PRoov. We first consider the case (iii) (a). From the inequality 

(p + l ) F ( u ) =  < uf (u)  (F  and u f are nonnegative in this case) we obtain the 

growth condition 

F ( u ) > - B [ u l  ~÷' for Jul_->l, 

where B = rain{F(1), F ( -1 )} .  Accordingly 

3̀  2llu [12_ fo /(3`) = 2 F(  3`u ) dx 

<3`211Uir-n13`l.+'/o lul~+'dx. 
= 2 n t u ~ l X }  

Since (p + 1)>2,  j(3`)----~ - ~  as A ---~ oo. 

of A 
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The case (iii) (b) may be handled in the same way as (iii) (a), since we assume 

in addition that u > 0. 

To prove (b), suppose that there are two roots, say A, < As, of j'(A ) = 0. (The 

existence of A * is guaranteed by the facts that j ( A ) ~ -  ~ as A--~o~ and that 

j(A) is convex for small A.) Then 

~, I[ u II 2 - fo ul(~, u) dx 0 

and 

A=tl u I ( -  fo uf(x2u) dx O. 

Eliminating ]] u ]{2 f rom these two equations, we get 

fo u[f(A2u)-f(A'u)][ A2 A, dx =O. 

Putting w = A,u and A = A r i A , ,  this condition can be rewritten as 

(2.4) fD w[f(Aw) - Af(w)] dx = 0, 

where A > 1. If [ satisfies (iii) (a), or if [ satisfies (iii) (b) and u > 0, then it is 

easily seen that the integrand in (2.4) does not change sign and does not vanish 

identically. Therefore  (2.4) is impossible and (b) is proved. 

To prove (c) we note that 

 *rlu I1 - fo uf(A*u)dx; 

and so 

j"(A*) --II u II 2 -  ~o U 2f'(A *U) dx 

--- (X*)-2 fo A*u {f(A*u)-(A*u)['(A*u)}dx 

< 0  

by (2.3) in either of cases (iii) (a) or (b). This completes the proof of Lemma 2.2. 

Having proved that there exists a unique A* = A*(u) such that 

d j(xu) ~ . ~ . = 0 ,  

we now define 

H(u) = J(X*u). 
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We may think of H ( u )  as the highest level attained when leaving the "potential  

well" along a ray in the direction u. We now define the depth d of the potential 

well by 

d = inf H ( u ) .  
u ~ O  

Equivalently, if we always normalize u so that A* = 1, that is, so that 

ii - fo ur(u)dx --0, K(u)~f l lu  

then our variational problem may be written 

(2.5) 

subject to the constraints 

(2.6) 

d = inf J(u)  

Ilu I1¢0, K(u)=O. 

Cleary every non-trivial critical point of J is an extremal of (2.5)-(2.6), since 

every such critical point of J satisfies the constraint (2.6). The existence of 

extremals of (2.5)-(2.6) will be shown below. We now prove: 

THEOREM 2.3. Let [ satisfy conditions (i)-(iv). Then any extremal of  (2.5)- 

(2.6) is a critical point of  J. I f  an extremal exists in case (iii) (b), then it is unique 

and positive. In case (iii) (a) no extremal can change sign and there can exist at 

most  one extremal W, under the additional constraint u >= 0 in (2.6) and at most 

one extremal W2 under the additional constraint u <= O. I f  an extremal exists and 

f is odd, then W~ = - W2. 

PROOe. Let  us first show that if f is convex then any extremal of (2.5)-(2.6) 

is non-negative. Suppose u is an extremal, so that d = J(u)  and K ( u )  = 0. If u 

changes sign then K([ u 1) < K ( u )  = 0. By Lemma 2.2 (b) there exists a unique 

_---0 such that K ( A I u  1)= 0. Since K (1 u I) < 0, )~ must be less than one, and 

since K ( A u ) > 0  for A < 1 and 

d J(Au) = K ( A u ) > 0  
dA 

we have 

for A < 1, 

d =J(u)>J(£u)>J(£lu I)- 

Thus the function )~1 u [ satisfies the constraint K (£1 u 1) = 0 and L (£1 u l) < d, 

in contradiction to the definition of d. Therefore  u cannot  change sign. 

The above result can be rephrased in the following way. Let  
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d '  = inf J(u) 

subject to 

K ( u ) = 0  and u = 0 .  

Then d _-__ d ' ,  since d is obtained by minimizing over a larger admissible class. 

On the other hand, by the argument of the preceding paragraph, one can see 

that d '  =< d. 

In fact, given a function u such that K ( u ) =  0, we choose ,~ < 1 such that 

K ( ~ l u  1)=0 .  Then, as above, K(AIu  I ) = 0  and J(Xlu  I ) < J ( u ) .  Therefore  

d ' = d .  
A similar argument works in case (iii) (a). If u is an extremai and u changes 

sign, then there is a ~ < 1  such that K(,~lul)--0 and J(~lul)<J(u), 
contradicting the hypothesis that u was an extremal. To obtain the positive and 

negative extremals, we minimize over  the classes of positive and negative 

functions respectively. 

Let  us now show that an extremal of (2.5)-(2.6) is an extremal of J. 

The Euler equation associated with (2.5)-(2.6) is 

(Aw + f(w))+ A(2Aw + wf'(w)+ f(w)) =0,  

(2.8) 

since 

o r  

(2.7) ( 1 + 2A) (A w + f(  w )) - A(f(w ) - wf'( w )) = O, 

where A is the Lagrange multiplier. Multiplying (2.7) by w and integrating, we 

obtain 

A (  w if(w)- w[ ' (w) }dx  = O, 
.Io 

II w I1=- ~o wf(w)dx=O 

by (2.6). 

If f satisfies (iii) (a), then the integral in (2.8) cannot vanish as a consequence 

of (2.3). The same argument applies when f is convex,  since we have already 

seen in that case that w -> 0. Thus, in either case, A = 0 and w satisfies the Euler 

equation Aw + f ( w ) = 0 .  If f is convex then Aw =<0 and w > 0  by the strong 

maximum principle. If f is monotone and w => 0, then Aw = 0 and again w > 0 

by the strong maximum principle. Similarly, if w -< 0 then w is in fact  strictly 

negative. 
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To prove uniqueness in case (iii) (b) we use a result known as "Serr in 's  

Sweeping Sta tement"  (see [11], p. 40; [12], p. 15). A statement of Serrin's 

theorem is given in the appendix of the present paper. To apply the theorem let 

w be a solution of (2.1) and consider the family {Aw},__-,. From the convexi ty  of 

f for w > 0  we obtain 

A(aw)  +[(,~w) <-X(Aw + f(w))  = 0 

for A => 1. Let  u be any other solution of (2.1). If u(x)  > w(x )  somewhere in D, 

choose )t so large that u(x)<=Aw(x) .  Then, f rom the first part of Serrin's 

theorem, u(x)  < w(x) ,  since v = Aw = 0 on OD. Thus u(x)  <= w(x )  everywhere  

in D. Similarly, applying the second statement of the theorem to the family of 

lower solutions {)~w}~__<,, we see that u(x)  >->_ w(x )  everywhere  in D as well, so 

that u =- w. 

In case (iii) (a) we prove by similar arguments the uniqueness of the positive 

and negative extremals separately. 

COROLLARY 2.4. Let f satisfy (i), (ii), and the growth condition I f (u) [  = 

0 (I u I p) where p + 1 <= 2n [(n - 2). I f  w is an extremal of  (2.5)-(2.6) for which 

d 2 
(2.9) dA z J(Aw)  < 0 ,  

~.=1 

then w is a critical point o f  J. 

PROOF. We have 

ilwtt=- fo wf(w)dx=O, 

IIw 112-fo w2f'(w)dx <0. 
Substracting, we get 

(2.10) fo w [ f ( w ) -  w f ' (w ) ]dx  < 0 .  

Referring to the proof of Theorem 2.3, we see that again we may conclude that 

A = 0, and so w is a critical point of J. 

Corollary 2.4 applies in general - -  that is, f need not satisfy any of the special 

condition (iii). Below, in Theorem 2.6, we prove that d > 0 and demonstrate the 

existence of extremals of the variational problem (2.5)-(2.6). We first prove 

LEMMA 2.5. Under assumptions (i), and (ii), and a growth condition on f, 

( I f (u )  l = 0 (l u I p) where (p + 1) =< 2n/(n - 2)), the [unctionals J and K are 
continuous on I~L. 
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{ F ( u ) - f ( v ) } d x  <= l u - v l I [ ( . + r ( v - u ) ) I d r  dx 

! 

u v dr - r'. ,}'" 

( r - ' +  s ' = 1). Since I f ( u ) [  = O (] u ]o) where  (p + 1 ) -<2n / (n  -2) ,  we m a y  take  

r = 1 + p -~ and  s = p + 1. T h e n  the a b o v e  d i f fe rence  is d o m i n a t e d  by  

fo' {fD ~P'~P+" 
lu-vlp+  Iv+,(u-v)l°+'d,,l d, 

fo' -< s ~ + , l l u  - v II ( I v + . ( u - v ) l o + , r d ~  

<- C ( p , I  u I..,,l v Io+1)1t u - v I1, 

where  C is a cons t an t  depend ing  on p, I u [,+t, and I v [0+,. This  inequal i ty  shows  

in fac t  that  J is L ipsch i t z  con t inuous  on if/,. 

THEOREM 2.6. Let y satisfy (i)-(iv). Then d > 0; and, further, if 2 < 2/< 
2n/(n - 2), there exists an extremal of the variational problem (2.5)-(2.6). I f[  is 
convex, there is a unique positive extremal, while in case (iii) (a) there are two 

extremals - -one  positive and one negative. 

PROOF. To  p r o v e  that  d > 0 we es tabl ish  a lower  bound  for  J(u) when  u 

satisfies (2.6). As we  have  a l ready  seen  in the p roo f  of  T h e o r e m  2.3, it is 

sufficient to min imize  o v e r  the class of  non-nega t ive  func t ions  in case  (iii) (b), 

and as in case  (iii) (b) we  m a y  a s s u m e  in addi t ion to (2.6) that  u -> 0. T h u s  

J(.)= Llull - fo F(u)dx 

fD _-__ u l l  2 p + l  uy(u)dx; 

hence  

fo 

It suffices to show that  the func t iona ls  

fo F(u)dx and fo u f (u)dx  

are con t inuous  on H , .  We  shall d e m o n s t r a t e  this fac t  for  the first funct ional .  

By the mean  value t h e o r e m  we have  

Io' F ( u ) - F ( v ) =  (u - v ) f ( u  +z(v - u ) ) d r ;  
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hence from the constraint K ( u ) =  0, 

(2.11) Y(u )=  2 Ilu II 2 . 

On the other  hand, uJ:(u)<= yF(u)<= const, l u I', so by Sobolev's  inequality 

2 ~ 2 2 ~D ,~  2 ful~=s,llull2=s, uf(u)dx =AS, lu  Iz, 

for some constant A. It follows that 

and hence that 

(2.12) 

Therefore  

1 
lu I~4-=~ AS2, 

1 > { l ~,1,,-2, 
It" II--- g-~r I" I" = ~3-g~," / 

> l / p - l ~ (  l ~2"" -~' 

We now prove the existence of extremais to (2.5)-(2.6). 

minimizing sequence. Thus 

and 

Let  {u,} be a 

u. ~ /L ,  Ilu, ll~0, K(u . )=0 ,  

lim J ( u , )  = d.  
n 

We first note that, from (2.11), {u,} is a bounded sequence in flit. Therefore  we 

may select a subsequence which converges strongly in L~ for y < 2n/(n - 2). 

Without loss of generality, we may assume that it is the original sequence {u. } 

which converges,  and that this sequence also converges a.e. Denoting the limit 

function by w we have 

lu°-wJ,~0, 

H w I1--> lim II u, II = lim II u, [I .* 

From (2.12) we see that 

hence [ w [., ¢ 0. 

1 "]l/(,t-2) 
I w l , : ! i m l . ° l , > - s ,  cA-S~,/ ; 

* Since foF(u. )dx-- -~foF(w)  and J(u.)---~d, we have lira. Ilu. 112/2 = d +foF(w)dx ,  and the 
limit of II u.  Jl exists. 
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If II w II = lim,~=llu, II, then K(w)= 0 and Y(w)= d, and we are done. If 
II w l[ < lim,-=l] u, II, then K(w) < 0 and J(w) < d. In that case, there exists by 

Lemma 2.2 a A < I  such that K( )~w)=0 ,  since for sufficiently small A, 

K ( A u ) > 0  for any u E H , ,  u # 0 .  For this choice of A we have 

Let 

f 
J(£w) = 7 t l  w II 2 -  P Y,w) ax 

-<- ~21imll u" 112- f D 2 :  .~= F(Aw)dx 

1 (w)} dx. =d + fo {F(w)-F( f tw) -~(1- ;2)wf  

1 (w)} dx. 

We distinguish the cases (iii) (a) and (iii) (b). As already remarked, w may be 

assumed to be non-negative in case (iii) (b). Thus, in either case, 

1 wf(w)} dx < 0 I (0 )=  fD { F ( w ) - ~  

from (iv) and 

I(1) = 0 .  

Moreover, 

I '(A) = fo w[Af(w) -] ' (Aw)] dx, 

which is positive for 0 < A < 1 in either ease. Therefore / (3 , )  < 0 for 0 < A < 1 
and 

J(Aw)<d while K(Aw) =0, 

in contradiction to the definition of d. 

In case (iii) (a), of course, we may consider two variational p r o b l e m s - - o n e  

over the positive and one over the negative functions, thereby obtaining a 

positive and negative extremal. 

The interior of the potential well W is characterized by the integral 
inequalities 
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(i) J(u) < d 

(ii) -~-d,j(Au)_->0 for 0<A_--<1. 
U A  
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It was shown by Sattinger [10] that, if the total energy of the initial data is 

less than d and Uo lies in W, then (1.1) has global solutions in time. In this paper 

we exhibit an exterior region ~ in/~,  such that, if the initial position lies in 

and the total energy is less than d, then the solution (1.1) goes to infinity in a 

finite time. Specifically, in case f is convex, ~ is characterized by 

(i) J(u) < d 

(2.14) 

(ii) K (u)  < 0 .  

In case (iii) (a) there are two regions ~', and ~2 characterized by the 

inequalities in (2.14) with d replaced, respectively, by d, and d2, where 

d, = inf J ( u ) ,  

subject to 

Ilu I1#0, K(u)  =0 ,  and u _-__0, 

etc. Note that in all cases the regions '~' are unbounded. 

The following lemma will be needed in Section 4. 

LEMMA 2.7. Let f satisfy conditions (i)-(iv) (with (p + 1) < 2n/(n - 2)), and 

suppose {u.} is a sequence in I~l, such that K(u,)<=O and K(u.)---~O. Then, if 

JJ u, [[ # 0 for all n, 

lim J(u,) > d. 
r t ~  

PROOF. As in Theorem 2.6, we choose a strongly convergent subsequence in 

Lp+,, and let w denote the limit. Then [1 w [[ # 0 and K(w)  <= O. If lim,~=l] u. [1 = 

[[w[[, then K ( w ) = 0  and l im,_~J(u,)=J(w)>=d. On the other hand, if 

K(w)  < 0 we choose A so that K(Aw)= 0. Then, as in the proof of Theorem 

2.6, we can show that 

J(Aw) < lim Y(u,) + I(,~), 

where I (h)  is given by (2.13). In case (iii) (a), I ( )~)< 0; so if l im ,~®J(u , )<  d, 

then J(~tw) < d while K ( h w )  = 0, contradicting the variational definition of d. 
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In case (iiib) we must proceed more carefully, since we cannot be certain that 
w =0 .  Suppose that [ is convex and that {u~} is such that K(u.)--*O while 
K(u.)<=O. Then 

J~u~) >>- J<l u~ I) 
and 

0>= K(u.) >-_ K( I u~ I). 

Let u. ~ w and I u. I---" [ w [. Since K(] w ]) < 0, we may choose A < 1 such that 

K ( £  l w I) = 0. Then 

£2 fo J<£1 w I) = ~ II w fl 2-  f ( £  I w t) dx 

£5 fo -<- - -  l i m  II u .  115 - F ( £  I w 1) d x  - 2 . ~ =  

= lira llu" ~ +  limll u. I} 2 -  F(£} w I)dx 

= lim {J (u . )  1 - £ 2 "  )dx}-  I 

=<lim{ J ( u " ) + l - £ 2 ( ~ =  2 Jo u"f(u")dx+fo F(u,,)dx} 

fo F(,~I w I)dx 

_--< n~:lim J (u . )  + fo { ~ 7 ~  -wf (w)  + F(w) -  F(A I w I)} dx 

<= iim J(u") + { ~ - [  w l.f(I w [) + F(] w ])- F(£1w [) } dx 

_-< lim J(un).  

Now if i i m , ~  J(un) < d, then we have a function )~l w ] such that K ( £  I w J) = 0 

and J ( £  I w ]) < d, which is impossible. 

3. Sobolev constants 

Although the following remarks are not essential to the development of our 
subject, we thought it worthwhile to clarify the relationship of the Sobolev 
constants to the preceding considerations about potential wells. Consider the 

nonlinear equation 
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(3.1) 
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Aw+lwlS-'w = 0  
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w = 0 on 0D.  

If  w is a solut ion of  (3.1), then for  all A > 0, the fami ly  (A,A '/(] . ) w )  = (A, v(A)) 

is a o n e - p a r a m e t e r  fami ly  of  solut ions  of  the equa t ion  

~v +A]v  Is-'v =0  

(3.2) 
v = 0 on OD. 

This  is an immed ia t e  c o n s e q u e n c e  of  the h o m o g e n e i t y  of  the funct ion  I u I s - '  u. 

N o w  define 

= infl  Ilu tl S,+, [p+l 

o v e r  the class u E Hi .  The  Euler  equa t ion  for  this h o m o g e n e o u s  var ia t ional  

p r o b l e m  is 

(3.3) Au + A [u [ s - '  u = 0 ,  

where  A is a Lag range  multiplier .  

Since the rat io  II u ]]/] u is+, is h o m o g e n e o u s ,  we can  rep lace  the ex t r ema i  u by  

any  scalar  mult iple  of  u and the re fo re  by  w itself,  so that  

[[ w II 
&+' - -Jw  lp+," 

On the o the r  hand,  

II w IJ2: (f w [s+,)s+' 
f r o m  (3.1) and 

T h e r e f o r e  

! 
a - - i i  w f r - b - ~ ( i  w Is+,) .+, 

p - 1  t 

4. Finite blow-up time 

In this sec t ion  we  p r o v e  two  main  results .  First ,  we p r o v e  that  if u is a w e a k  

solut ion of  (1.1) such that  Uo~ '~' and E(0)  < d, then  u will b low up in a finite 
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time. We then show that if the solution starts inside the potential well and 

E (0) < d, the kinetic energy fo u 2 dx will remain bounded for all time. Further- 

more, u will remain bounded in H~ for all t. 

Under similar assumptions on [(u), Sattinger [10] has already established 

global existence (see also Tsutsumi [13]) and boundedness (in certain norms) 

for solutions starting inside the potential well. We repeat some of the results 

here for completeness.  

Since it is well known that classical solutions of nonlinear hyperbolic 

equations may not exist for all time no matter how smooth the data, coeffi- 

cients, and geometry,  we shall introduce a class of weak solutions. This is 

motivated at least in part by the fact that in many physical problems whose 

solutions are characterized by solutions of initial or initial-boundary value 

problems for nonlinear hyperbolic systems, the existence of a unique weak 

solution can sometimes be established in cases where classical solutions do not 

exist. 

For simplicity we define the weak solution of (1.1) over the interval [0, T), 

but it is to be understood throughout that T is either infinity or the limit of the 

existence interval. 

We say that u is a weak solution of (I .I)  on [0, T) if it satisfies the following 

conditions: 

(1) u(t) is a weakly continuous mapping from [0, T) to H,;  thus II u(t)l] and 

l u(t)  12 are uniformly bounded on.compact  subsets of [0, T). 

(2) There is a weakly continuous mapping from [0, T) to Lz(D), denoted by 

u,  such that 

f,2 
(4.1) (u,q~) I~, = (u,,q~)ds 

I 

for any t~,t2, 0 N t , < t 2 <  T and any ~ E L2(D). Here ( , )  denotes the inner 

product  on L2(D). 
(3) For any q~" [0, T)---, A~ with the same properties as u above, 

(4.2) (u,  ~) I',~ = { (u , ,~ , ) - ( (~ ,u ) )+(~ , f (u ) ) }ds ,  
I 

where ((,)) denotes the inner product  on /:/,. 

(4) The energy E(t) ,  defined by 

, fo E ( t ) = ~ ( l u ,  Ig+llull~) - f ( u ) d x ,  

satisfies 
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(4.3) E(t~) < E(t,) 

for any t~ < t2 < T. 

From (4.1) it follows that the mapping u(t) is weakly absolutely continuous 

(take q~ to be a constant vector in L2(D)). Moreover,  since [u, I is bounded, u(t) 
is weakly Lipschitz continuous in t, that is, (u(t), ~) is Lipschitz continuous for 

any ~ in L2. 

Putting ~# = u in (4.2) we get 

(4.4) 

LEMMA 4.1. Let 

ft t2 12 (u,,u)l',~, = {lu, - t lu  t (+(u , f (u ) }ds  
I 

M(t)= fo u2(x,t)dx, 

where u is a weak solution of (1.1). Then lf/l exists a.e. in [0, T), and lfl(t) is 
Lipschitz continuous there. 

PROOF. Let Q(t,s)=(u(t) ,u(s)) .  Since u(t) is weakly absolutely continu- 

ous, and u, is weakly continuous, 

M(t)= ( °  Q ( t , s ) + °  Q(t,s)) t,=,= 2(u,,u), 

and so from (4.4) we have 

f,2 r M(t2)-M(t , )=2 {]u, -Ilu II=+(u,f(u))}ds 
I 

for all 0 =< t~ < t2 <5. T. Since each term in the integrand is bounded on compact  

subsets of [0, T), we see that M(t) is Lipschitz continuous on such sets. 

Therefore ,  AT/ exists a.e. in [0, T), and 

(4.5) M ( t )  = 2{I u, I~-[lu II=+(u,f(u))} a.e. 

We establish now the following lemma: 

LEMMA 4.2. Let ~ be a region o[I?t, satisfying (2.14). Then ~ is invariant 
under the flow of (1.1), provided 

E(o)=-~[lluol[2+lVol~l-fo f(uo)dx < J ( w ) = d .  
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(This condition provides that the total energy of the initial data is less than the 

potential of the saddle point on the boundary of ~.) 

PROOF. Let u(t) denote the weak solution of (1.1) with initial data u(0)=  

Uo, u,(0)= vo (properly interpreted). By the energy inequality we must have 

J(u(t)) < E(0). To check that u(t) remains in ~, we proceed as follows: If u 

leaves ~ at time t = to then we must have 

K(u(to)) = O. 

In fact, let t, ~ t o .  Then K(u(t,))<=O. By the lower semi-continuity of the 

norm II II, 

K(u(to)) <= lim K(u(t , ))  <- O. 

If K(u(to))< 0, then u(t0)E ~. On the other hand, if K(u(to)) = 0, then, by the 

variational definition of d, we must have J(u(to))>-_d. This, however, is 

impossible, since it violates the energy inequality. 

We can now prove one of the main instability theorems. 

THEOREM 4.3. Let f satisfy the conditions (i)-(iv), and let W denote the 
corresponding potential well associated with the potential energy of  (1.1). If 
Uo @ ~ and 

E (0) < d, 

then l u [2--~ at a finite time. 

PROOF. Let 

Then 

M(t)  = [u I~. 

M(t) = 2(u,, u) .  

By (4.5) we have 

I(/1 = 21 u, 12 , + 2 fo uf(u) dx - 2 II u [r. (4.6) 

Since u lies in ~ for all t in the existence interval, than 

(4.7) fo u f (u)dx  -][u 112_->0, 

and so ~t _> 0. Moreover, by assumption (iv) 

.M ---21 u, 1~ + 2(p + 1)fo F(u)dx  -2[ ]u  l] 2. 
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From the energy inequality (4.3) it follows that 

fo r(.)ax  ½tLL. 112+1., 
Thus, 

i . e .  

(4.8) 

/~ ->_2]u, 12-211uj12+2(p + 1 ){ l [ l u ,  l~+j]ul]2]-E(0)},  

~/_-> (p + 3) I u, 122 + (p - l)II u 112 - 2(p + l) E (0). 

293 

will eventually became positive, and will remain positive thereafter. Thus for 

large enough t we would have 

M_-__(p + 3)f u, 15, 
and 

Since 
[ (fo ;] M ~ I - ~ M  =>(p+3) [M[u,l~- uu,dx >-0. 

Or" °' 
(M ~ y =  - Mo+2(MM-(a + 1)/~/2), 

we see that for a = (p - 1)/4 we have (M ~ )  =<0. Therefore M -~ is concave 

for sufficiently large t, and there exists a finite time T for which M ~ ~ 0. In 

other words, 

lim M(t) = oo. 
t ~ T -  

These arguments are justified by the fact that /~/  is absolutely continuous, as 

we can see from assumptions (1)-(3). 

From the variational inequality 

(4.9) tlu {[2_>_ h~lu 15 = A,M, 

where A, is the principal eingenvalue of the Laplacian, we get 

37/>(p +3) lu ,  I~+X,(p - 1 ) M - 2 ( p  + I ) E ( 0 ) .  

Since M is a convex function of t, it follows that if these exists a time t, such 

that M ( t , ) > 0 ,  then M(t) is increasing for all t > t ,  (within the interval of 

existence). In that case, the quantity 

X,(p - I ) M -  2(p + 1) E (0) 
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The proof  will be complete  once we have shown that M > 0 for some t. 

Suppose M _-< 0 for all t. Then since M > 0 and M is convex,  M must tend to a 

finite, positive limit as t ---~ ~. (M cannot  tend to zero because then for large t, u 

would lie inside the potential well, which, as we have seen, cannot  happen.)  

Therefore ,  there is a sequence {t. } such that, as t. ~ 2, M ~ A > 0, ~ / ~  0 and 

~ 0 .  From (4.6) and (4.7) we see that 

l i m l u , . l ~ = 0 . .  
t n ~ 

But f rom the energy inequality we have 

I -~[[,u,12+,u,,~-2 fo F(u)dxl<--E(O). 

Thus, as t.--~ 2, 

I~[lu il2- fo F(u)dx]-+ B <=E(O), 

where B is a constant.  On the other hand, f rom (4.6) we may conclude that, as 

t .  ---> oc 

fD Uf(u)dx -I[u 112--, 0. 

We now apply Lemma  2.7 to the family {u(t);  t ->_ t .};  we see that 

lim inf J(u(t.))_-> d > E(0); 
t n ~  

but this contradicts  the energy assumption.  It follows therefore  that M(t)--->oo 
in a finite time, and the proof  of Theorem 4.3 is complete.  

Suppose now that the solution starts inside the potential well, i.e. K(uo)> 0; 

suppose further  that E(0) < d. By arguments  similar to those used in the proof  

of L e m m a  4.2, we can show that, provided additional assumptions  are made on 

f which will insure that K(t) is continuous (see, e.g., L e m m a  2.5), then W is 

invariant under the flow of ( I. I), i.e. K (u) > 0 for all t. However ,  by assumption 

(iv), 

J(u)  Ilu IV- uf(u)dx=-~-~K(u) + Ilu I1= o. 

Thus, since we know [ 10] that the solution exists for all time, it follows that at 

any time t 
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lIo E ( t )  = ~  

which in turn implies that 

1 

Also, since 

E(O)>=EU)>= ~ fo 
we observe in fact that 

N O N L I N E A R  H Y P E R B O L I C  E Q U A T I O N S  

u2, dx +J(u)<=E(O), 

u~dx=< E(O), f o r a l l t .  

~ + l  (p - 1) 
u~dx + K(u)+~-~-+ T)llull 2, 
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II u II ~ ~ M, for  all t, 

and since K(u) and J(u) are both non-negative, there exist constants Mi such 

that 

fo uf(u)dx<=M~' fo F(u)dx<=M2' f o r a l l t .  

It follows then by (3.6) that 

I u I, ~_-< ~11 u Ir --< ~ / A , ,  A I  

and hence that u is bounded in L2 for all t. We have thus established the 

boundedness of u, in L2 and the boundedness of u in /:/, for  all t. 

If E(0) > d, a solution starting in W may or may not leave the potential well. 

Other sufficient criteria for  finite time blow up have been given by various 

authors ([1]-[7], [9], [10], [13]). 
As a specific example consider the case n =< 3, f(u) = u3. In this case 

U 4 
F ( u )  = ~ - ,  

so that p --3, 3' --4 in (iv). We now have 

= 21 u, 1~+21 u21g - 21In II 2 

From the arguments at the end of Section 3 it follows that 

Ilull'>=adlu21~, 
which may be rewritten as 
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Ilu 1(-->4d { - 4 E ( 0 ) - 2 [  u, 12+ 211u 112}, 
or 

[llu I t -  4dl 2-> 16d{d - E ( 0 ) } +  8d lu, 12. 

This inequality clearly shows that if 

E (0) < d 

Ilu011~>ad, 

then throughout the existence interval 

II u l[ = > 4d, 

The two inequalities 

then imply that 

which shows that 

E(t)< E(O)< d 

Ilul(>ad 

[lu 112+ 21 u, 1~- lu21~<0, 

Israel J. Math. 

5. Parabolic problems 

In this section we consider weak solutions of 

u, = Au + f ( u )  

(5.1) u(x,O) = Uo(X) 

u = 0 on OD, 

where D is as before.  We make the same assumptions on f as in the previous 

sections. We say that u is a weak solution of (5.1) on [0, T) if it satisfies the 

conditions (1) and (2) used in defining a weak solution of (1.1), as well as the 

conditions: 

(3') For any ¢ : [0, T)---~ Ht  with the properties of u given by (1) and (2), 

(5.2) (q~, u, ) + ((~o, u )) - (q~, f (u  )) = O. 

K(u)=I[u Jl2-Iu2[~ <O. 

The concavity arguments then clearly imply blow up in a finite time. This 

example has been discussed by Tsutsumi [13]. 
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(4') 

(5.3) 
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J(u)  satisfies the inequality 

~o' [u' ]2 J(u) J(uo). ds + <= 

If we now define 

(5.4) f0 t M,(t) = lu [~ds, 
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/~f,(t) = lu 12= luot 2 2+ 2fo' 

Using (5.2) we rewrite this expression as 

and compute 

IOl,(t) = 2{(u,f(u)) -I[ u ]12} = - 2 K( u ) .  

(The steps may be justified as in the previous section.) By Lemma 5.2, since 

UoE ~, K ( u )  must remain negative for all t in the existence interval. Thus 

( u, u, ) ds. 

f0 t M,(t)=tu,,/~-2 {/lul12-(u,l(u))}ds, 

where u is a weak solution of (5.1), then the analogue of Lemma 4.1 follows 

directly, i.e. 

LEMMA 5.]. For M,(t)  defined by (5.4), it follows that ~f, exists a.e. in [0, t) 

and ]~/',(t) is Lipschitz continuous there. 

The proof is the same as the proof of Lemma 4.1. 

The following analogue of Lemma 4.2 is likewise easily established: 

LEMMA 5.2. Let ~g be a region in /I, satisfying (2.14). Then ~ is invariant 

under the flow of (5.1), provided 

(5.5) J(uo) < J(w ) = d. 

We now establish the main theorem of this section. 

THEOREM 5.3. If U is a weak solution of (5.1), uoE ~ and J(uo) < d, then 

[ u 12--> oo in a finite time. 

To prove the theorem we assume the contrary and show that this leads to a 

contradiction. 

From (5.4) it follows that 
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/fL(t) > 0  and /~,(t)=>0 for all t <= T. It is clear from the proof of Lemma 5.2 

that K(u)< 0 for all finite time (in the interval of existence). To prove that 

K(u,) =-K(u(., t,)) cannot tend to zero through a sequence of t , ' s  tending to 

infinity, we invoke Lemma 2.7 which would then imply 

lim J(u,)>-d > J(u0). 

However, this contradicts (5.3), and thus we conclude that K(u) < 0 for all t in 

the interval of existence. From this it follows that as t increases M(t )  will 

eventually become larger then any prescribed constant. 

Now by assumption (iv) 

1) ~D F(u)dx -211u 1[~, hT/t(t) ~ 2(p + 

or, using the second of inequalities (5.3), 

fo ' 2d - M,(t)_->2(p+l)  [u~[2 ~ + ( p  1)[lu[[2-2(p+l)J(uo) 

fo -> 2(p + 1) I u~ 1~ d-~ + (p - 1) h,~/ ,( t)  - 2(p + 1) J (Uo). 

We now form 

2 

+ (p - 1 ) a , m , / f / , -  (p + 1)[ Uo[~ M, 

p + l  -2(p + l)J(uo)M, + - - T -  ] u0[~. 

The first term on the right is non-negative by Schwartz's inequality and the 

second term will eventually dominate the remainder. Thus for sufficiently large 

t, i.e. t > [, the right hand side will be positive. This leads as before to 

M,-'P-"/2 (t )<= M, ,o-,/2 ( / ) { 1 - ( _ ~ ) ~ h ) / ' ( [ ) ( t - [ ) } ,  

which establishes the blow up in finite time. 
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6. Abstract problems 

It is possible to generalize the results of the previous section and put them 

into an abstract setting. In this section we indicate how this is done. 

Let  D be a dense linear subspace of a Hilbert space H ;  denote by ( , )  the 

scalar product  on H and by [[ I[ the corresponding norm. For simplicity we shall 

deal only with real Hilbert spaces. The extension to complex spaces is obvious. 

Let  P and 0 be linear operators mapping D into H. We assume that P and 0 

are positive definite, symmetric,  and not necessarily bounded. The subspace D 

is also to be a Hilbert space and the injection D - - ~ H  is assumed to be 

continuous. 

We are interested in abstract equations of the form 

(6.1) P u , , - - - Q u + f ( u ( t ) )  in (0, T) 

u ( 0 )  = Uo, u , ( 0 )  = Vo, 

where f:  D ---> H is a gradient operator,  i.e. f is the Fr~chet derivative in the D 

norm of a scalar valued function G:  D --> R, which is generally referred to as 

the potential of f. We assume throughout that P and 0 do not depend on the 

parameter  t. 

Our conditions (i)-(iv) are now replaced by: 

(i') G(x)=f~( f (px ) , x )dp ,  for a l l x E D ;  

(ii') f(x)  has a strongly continuous symmetric Fr6chet  derivative f~, for  all 

x @ D, and f(0) = 0, fx (0) = 0; 

(iii') (fx . x - f ( x ) , x )>=O,  for all x E D ;  
(iv') (x,f(x))>=(p + l ) G ( x ) , p  > l,  

and (x,f(x)) is completely continuous with respect  to (x, Qx). Furthermore,  for  

some a > 1 and for all x,y E D, 

(6.2) if(x), y)Z <_ k2(x, Qx)~ (y, Qy),  k = constant.  

Again it is possible to put the problem (6.1) into a weak setting; i.e., we say 

that u is a weak solution of (6.1) on [0, T) if the following are satisfied: 

(1) u(t) is a weakly continuous mapping from [0, T) to D. 

(2) There is a weakly continuous mapping from [0, T) to D, denoted by u,, 

such that 

(u, P~,)I;; = (u,, P~)  ds 
I 

for  any t~,t2 such that 0_<- t~ =_N t2< T and any ~ E D. 
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(3) (u, Pu), (u, Qu) and 1[ u [1 are uniformly bounded on compact subsets of 
[0, T). 

(4) For every ¢:[0, T ) ~ D  with the same properties as u above, 

t 2 - -  f t2 (Pu,,¢) I , , -  {(Pu, ,q~,)-(q~,Qu)+(¢,f(u))}dt .  
t 

(5) The energy E( t )  defined by 

1 
E( t  ) =- ~{(u,, Pu,) + (u, Qu )} - G(u ) 

satisfies 

E(t2) <= E(t,) ,  0 <- t, < t2 < T. 

With the conditions (i')-(iv') it follows easily as before that any non-trivial 

critical points are a priori unstable equilibria for (6.1). 

In the proof of the analogue of Lemma 2.2 we use the fact that under the new 
conditions (i'), (ii') and (iv') we now have 

G(,~u ) 

which is sufficient to guarantee 

and (c) parts of Lemma (2.2) 

appropriate scalar products and 

-> AP+'(G(u), A=>I 

that j(A)---~ - ~  as A --.o~. The proof of the (b) 

follow as before, with integrals replaced by 

derivatives replaced by Fr~chet derivatives. In 
a similar manner the analogue of Theorem 2.3 is proved. 

Lemma 2.5 does not follow directly in the abstract case. We now have 

G ( u ) - G ( v ) =  (f(v +A[u - v l ) , u  - v ) d l ,  

o r  

fo' IG(u)-G(v)l=< I f ( v + A [ u  - v l ) , u - v ) l d A .  

Making use of assumption (6.2), we obtain 

Io' [G(u)-G(v)l<= ((v+X[u-vl)>°d,~ ((u-v>) 

--< C(((v>> ~, ((u>) ~) ((u - v>>, 
where we have used the symbol 

((u - v)) = (u, Qu) m. 

It follows then that J(u)  is continuous in the Hilbert space formed by 

completing D in the norm ({)). This statement clearly applies also to K(u) .  
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ward extension of the proof of Theorem 4.3. We require, however,  the 

additional asssumption 

We then set 

from which are obtained 

and 

Since u 

(u, Qu ) >= tz(Pu, u ) . 

M =  (Pu, u ) ,  

/~/= 2(u, Pu, ) 

= 2 [(u,, Pu,) - (u, Qu) + (u , I (u ) ) ] .  

lies in ~ for all t, it follows that 

( u , I ( u ) ) "  (u, Ou)  >= O, 
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To prove that d > 0 we observe,  as in the proof of Theorem 2.6, that 

1 
J (u )  = ~ (u, Qu) - G ( u )  

> i (u, Q u ) -  I 

p - I  

2(p + 1)(u,,~u).C~ 

But ( u , f ( u ) )  2 <-_ k:(u, Ou)"+' = k 2 ( u , f ( u ) y  +' 

or  

(u,f(u))>-_ k z'o-'). 
Thus 

> p - 1  
d = 2 ( p  + l) ( u ' ' zu )  f~ 

= (p - 1) k - ~ ' - "  
2(p + 1) 

Because of the complete continuity assumption (iv), the proof of the 

existence of an extremal follows along the lines of the proof of Theorem 2.6, 

where ] u ]o +, is to be replaced by (u, f(u))'/'~ +" and I[ u II by (u, Qu)"2. The proof 

that in the abstract case ~ is invariant under the flow is an obvious extension of 

the proof  of Lemma 4.2, and the analogue of Lemma 2.7 is established along 

the lines of the abstract version of Theorem 2.6. 

The proof of blow up in finite time for Uo• ~g and E ( 0 ) <  d is a straightfor- 
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which implies A4-> 0. As before we are led to 

h~t _-> (p + 3) (Pu,, u,) + tx(p - 1) M - 2(p + 1) E (0), 

and to 

p + 3  "2 
M f ' I - ~ M  >=M[tz(p - 1 ) M - 2 ( p  + 1)E (0)]. 

The implications of blow up in finite time follow as before.  

Israel J. Math., 

Concluding remarks  

It would clearly also be possible to put the parabolic problem in an abst ract  

setting. It would likewise be possible with the appropriate  assumpt ions  on f ( u )  

and g ( u )  to treat instead of (1.1) the more general problem 

u.  = a u  + f ( u )  

u (x, O) = Uo(X), u, (x, O) = Vo(X ) 

au 
,gv g (u  ) on c~D, 

with t > 0 ,  and x E D. Here  O/c3v denotes the normal derivat ive of u on aD. 

Such a problem could likewise be placed in a more general abstract  setting. The 

case f - 0 and g (u) ~ 0 might present  some difficulties, since any solution w of 

the corresponding equilibrium equations would have to satisfy ~or, g ( w ) d S  = O. 

In particular, if g ( w )  = w ~'+' for some positive integer N, then w would have 

to change sign on aD. t 

Appendix 

Serr in ' s  Sweeping S ta temen t s  

THEOREM. Suppose  v (x, A) = v~ is an increasing fami ly  o f  upper  solut ions  o f  

(2.1) on a <=A <-_b; that  is, 

A v ( x , A ) + f ( v ( x , A ) ) < = O  in D .  

I f  u is any  solution o f  (2.1) such that u(x)<= vb and u <= v, on OD, then either 

u =- v~ o r u  < va in D. Similarly,  if v, is an increas ing fami ly  o f l o w e r s o l u t i o n s  

t The authors wish to express their appreciation to the referees for their constructive 
comments and suggested improvements of the original manuscript. 
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Av~ +f (vA)>=O in D ,  

a n d  u is a s o l u t i o n  o f  (2.1) s u c h  t h a t  u >= Va a n d  u >--_ vb on  cgD, then  e i ther  u =- Vb 

o r  u > vb i n D .  
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