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CROSSED PRODUCTS OVER PRIME RINGS 

BY 

S U S A N  M O N T G O M E R Y  A N D  D. S. PASSMAN 

ABSTRACT 

In this paper we obtain necessary and sufficient conditions for the crossed 
product R * G to be prime or semiprime under  the  assumption that R is prime. 
The main techniques used are the A-methods which reduce these quest ions to 
the finite normal  subgroups of G and a study of the X- inner  au tomorphisms  of 
R which enables us to handle these finite groups. In particular we show that 
R * G is semiprime if R has characteristic 0. Fur thermore,  if R has characteris- 
tic p > 0 ,  then R * G  is semipr ime if and only if R * P  is semipr ime for all 
e lementary abelian p-subgroups  P of A+(G)O G,.,.  

Let G be  a mul t ip l i ca t ive  g r o u p  and  let R be  a r ing with 1. Then  a c rossed  

p roduc t  R * G of G ove r  R is an associa t ive  ring d e t e r m i n e d  by G, R and  

cer ta in  o the r  p a r a m e t e r s .  To  be  more  precise ,  for  each x E G the re  exists  an 

e l e m e n t  ~ ~ R * G and  every  e l e m e n t  a E R * G is un ique ly  wr i tab le  as a finite 

s u m  

: ~ = ~  r,.~ 
x E G  

with r, E R. T h e  add i t i on  in R * G is the  obv ious  one  and  the mul t ip l ica t ion  is 

given by the fo rmulas  

~ = t(x, y ) x y ,  

r£ = Xr ~ 

for  all x, y E G and r E R. H e r e  t : G x G ~ U is a map  from G x G to the  

g r o u p  of  units  U of R and,  for  f ixed x E G, the  m a p  ~:r----~r i is an 

a u t o m o r p h i s m  of R. 
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It is a simple exercise to determine the relations on t and the automorphisms ~ 

which make R * G associative. Furthermore one knows that R * G  has an 

identity element namely 1 = t(1, 1)-'],  that each .~ is invertible and indeed that 

0~ = {u~ lu E U,x  ~ G }  

is a multiplicative group of units in R * G. Thus the equation r~ = Yr ~ is 

equivalent to £-~r~ = r ~ and hence the automorphism ~ is merely conjugation by 

a unit in R * G. In fact it is clear that (S~ acts on R by conjugation. In general, 

R * G  does not contain an isomorphic copy of G. However we do have 

R _C R * G by way of the embedding r ~ r l  and then U <1 (~ with (~/U ~- G. 

Certain special cases of this construction warrant additional mention. The 

simplest is the case in which t(x, y) = 1 for all x, y and r ~ = r for all x, r. This is 

the ordinary group ring which we denote by RIG]. Again if we assume that 

t(x,y) = 1 for all x, y, but if we allow an action of G on R, then we obtain a skew 

group ring, usually denoted by RG. In both of these cases, since ~ = xy, R * G 

contains a copy of G and, by setting ~ = x, we identify G as a subgroup of the 

units of R * G. Finally, if we assume that r ~ = r for all r, x, then we obtain a 

twisted group ring R'[G]. Here it is clear that each t(x, y) must belong to the 

center of R. 

Recently there has been a growing ring theoretic interest in crossed products 

and in particular in skew group rings of finite groups. This is due mainly to their 

relationship to a possible Galois theory for rings. For example, if G is a finite 

group of automorphisms of R, then the skew group ring RG contains all the 

necessary ingredients of the theory, namely G, R and the fixed ring R ~. Thus 

there is now a body of results concerning these rings when G is finite. On the 

other hand, there is a technique which has proved fruitful in the study of 

ordinary group algebras which can frequently reduce problems from infinite 

grotips to the finite case. It is the aim of this paper to show that these A-methods 

can also apply to yield theorems on crossed products at least when R is prime. 

For the most part we will be concerned with the problem of determining when 

R * G is prime or semiprime under the assumption that R is prime. In Section 1 

we develop the necessary A-methods to reduce these questions to the finite 

normal subgroups of G. In Section 2 we study X-inner automorphisms of R, 

amplifying known results on crossed products of finite groups and further 

reducing these problems to certain twisted group algebras. Finally in Section 3 

we consider these twisted group algebras in detail and obtain the main result on 

the semiprimeness of R * G. In the course of this work we also obtain some facts 

on annihilator ideals as well as a sharpening of the A-methods in the case of 
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twisted g roup  rings. We remark  that the hypothesis  that R is prime is used at 

crucial points th roughout  this paper.  In fact very little is true without  this 

assumption.  In a later paper  we will consider  what  can be salvaged in case R is 

just semiprime.  

Finally we note  that even if R does not have a 1, it is still possible to define and 

study skew group  rings RG. In fact, with just a little addit ional care, one can 

show that the main results of this paper  also hold in this extended context.  

Nevertheless,  we will assume th roughout  that 1 ~ R. 

§1. A-methods 

We  consider  a crossed product  R * G and in t roduce some notat ion.  First, in 

view of the fact that 1 = t(1, 1)-~1, there is really no loss of generali ty in assuming 

that ] = 1. We will therefore  make  this assumption th roughout  the remainder  of 

this paper.  

Now if a = 5:r,~ E R * G, then the support  of a is defined to be 

S u p p a = { x ~ G [ r , # 0 } .  

Thus  Supp a is a finite subset of G. If D is any subset of G, then we let 

R * D  = { a E R * G [ S u p p a C _ D } .  

It is clear that  R * D  is both a right and left R - s u b m o d u l e  of R * G. Further-  

more  if D = H is a subgroup of G, then R * H  is also a crossed product  of H 

over  R with cor responding  twisting t : H x H---* U and au tomorph i sms  inher- 

ited f rom R *G.  Observe  that if H <3 G, then (~ acts by conjugat ion hs 

au tomorph i sms  on R * H. Hence  we see easily that R * G is a crossed product  of 

G/H over  the ring R * H. 

Again  if D is a subset of  G, we define the project ion map zro : R * G --~ R * D 

by 

x ~ D  

Thus  ~'o t runcates  a = E ~ a r ~ £  to just the partial sum of its terms with x ~ D 

and we call rrD ( a )  the segment  of a in D. Observe  that ~ro is both a right and left 

R - m o d u l e  homomorph i sm,  but even if D = H is a subgroup,  ~rD need  not be a 

ring homomorph i sm.  In the special case in which D = (1), the map  ~r~ is usually 

called the trace map and is deno ted  by tr. 

If G is an arbitrary group,  we define two characterist ic subsets as follows: 
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and 

a -- A(G) = {x ~ G I[G :c~ (x)] < oo} 

a ÷ = A+(G)  = {x E G [ [ G  : Ca  (x)] < oo and x has finite order}. 

The  next  two lemmas ,  for  the most  par t  due to B. H. N e u m a n n ,  contain all the 

g roup  theoret ic  in format ion  we need.  See [6, l emmas  4.1.3, 4.2.1, 4.1.6 and 4.1.8] 

for  proofs.  

LEMMA 1.1. Let  H, ,  H2," • ", H ,  be subgroups o f  G. 

(i) I f  each Hi has finite index in G, then so does H1 N H2 fq • . .  tq H,.  

(ii) I f  there exists a finite collection o f  elements x~j E G such that G = I,.J~jH~x~i, 

then for some i, [ G : H~] < oo. 

LEMMA 1.2. Let  G be a group. Then  

(i) A and A + are both characteristic subgroups o f  G. 

(ii) A/A + is torsion free abelian. 

(iii) A n y  finite subset o f  A + is contained in a finite normal subgroup H o f  G with 

H C A  +. 

We  now reserve  the symbols  0 and 0 + for  the pro jec t ion  maps  0 : R * G -o  

R *A and 0 + : R  * G - o R  *A ÷. F u r t h e r m o r e  if D is a finite subset  of G we 

define D~ = D N A and 

S ( D )  = {x E C a  (D~) [ x - l ( D  \ D ~ ) x D  N D ~ D  = Q}. 

In o ther  words,  the la t ter  condi t ion asserts  that  the equa t ion  x-ld~xd~ = d3d, has 

no solution with d, ~ D \D~,  d3 @ D~ and d2, d4 E D. T h e  following l emma,  in all 

its different variants ,  is essentially the A-method.  

LEMMA 1.3. Let  D be a finite subset o f  G with H = Ca (Da) and T = ~-(D) .  

Then [G : H] < oo and for all ht, h 2 , " . ,  hm E H we have 0 7  T h , ~  f~. Further- 

more suppose aj,  as," • ", a,, ~8~, ~2, " " ", ~,  E R * D C_ R * G satisfy the identity 

,~[3, + a~[3~ + .. • + a.g[3. = 0 

for all x ~ G. Then we have 

o(o,,)'[3, + o ( a ~ ) %  + . . .  + o (~ . ) '~ .  = o 

and 

0(,~,),0(/3,) + 0 ( , ~ 0 , 0 ( / 3 ~ ) + . . .  + 0( ,~.) '0( /3.)  = 0 

for all y E T. 
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PROOF. If d E D~, then [G : C~ (d)] < oo. Hence since D~ is finite, Lemma  

1.1(i) yields [G : H I  < oo. Now let 

W = g \ r  = {x E H I x - ' ( D \ D ~ ) x D  n D ~ D / Q } .  

Then for each x E  W there exist d, E D \ D ~ ,  d 3 C D ~  and d2, d, E D  with 

x-~.d~xd2 = d 3 d 4 .  Now for fixed d, ,  d2, d3, d4, the set of solutions x of this 

equation is clearly either empty or a coset of C , ( d , ) .  Hence it follows that 

w = U C . ( d ) w ~ j  
d ~ D \ D ~  

i 

is a finite union of appropriate  right cosets of these centralizers. But [G " H]  < 

and [G : Cz (d)] = ~ since d ff A so [H  : Cn (d)] = ~. Therefore  Lemma 1.1(ii) 

implies that W ~  H. In fact for all h~ ,h2 , . . . , h , ,  E H, 

W h  l U W h  2 U " " U Wh, ,  ~ H.  

Thus since H \  Wh,  = Th, ,  we conclude that N ,  T h e ~  Q.  

Now suppose a , , a 2 , . .  " ,a , , /3 , , /32 , ' "  ",/3. C R * D  _C R * G satisfy the iden- 

tity 

, ~ /3 ,  + a : ~ / 3 :  + • " + a . ~ / 3 .  = 0 .  

Write a~ = a'~+a'~ with a ' =  O(a~). Then for all x E G we have 

2 2 - 1  t -  ~ - -  O~ iX[~i 2 ----1 " -  X O~ i X ~ i .  
i i 

Observe that every group element  in the support  of the right hand term is of the 

form x -~d txd2  with dt ~ D \DR, d2 E D. Furthermore,  if x E H = Cz (DR), then 

every element in the support  of the left hand term is of the form x - ~ d 3 x d 4  = d3d4 

with d3 E DR, d4 E D. Thus if x ~ T, then by definition of T we conclude that the 

right and left hand terms have disjoint supports and hence both must be zero. 

-1 , -  = O(a,)~ this yields E, ~ @ T. Finally if we apply 0 Since ~ a~x 0 (a,)/3, -- 0 for x 

to this formula, we conclude immediately that E,O(a , )~O( /3 , )= 0 and the result 

follows. 

For the most part we will only use the fact that T ~  O in the above. For 

example,  in the ordinary group ring situation we have 

LEMMA 1.4. L e t  R [ G ] be an  ordinary  group ring. Suppose  that  a~, az,  . . . , a . ,  

/3,,/3~, • • . , /3 ,  E R [G] sa t i s fy  the ident i ty  

c~,x/3, + ~2x/32 + ' "  + c~.x/3. : 0 
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[or all x E G. Then we have 

and 

o ( ~ , ) f l , +  o ( ~ ) ~ +  . . .  + o(~.)~. = o 

o ( ~ , ) o ( ~ , ) +  o ( ~ ) o ( ~ ) +  . - .  + o ( ~ . ) o ( ~ . ) =  o. 

PROOF. Let D be the union of the supports of all a~, /3~ and apply the 

preceding lemma. Observe that T ~  O and if y E T then y centralizes the 

supports of all 0(a,).  Thus since y acts trivially on R, we see that 0(a,)  y = 0(a,)  

and the result follows. 

There are of course numerous applications of this fact in the study of ordinary 

group algebras. Many of these can be found in [6] and in particular in Chapter  4 

of that book. Our concern here however is with the more complicated case of 

crossed products. 

The whole difficulty in applying A-methods to crossed products is the presence 

of the conjugating elements )~ in the formulas of Lemma 1.3. Admittedly there 

are many such y which work, but the range of possible choices unfortunately 

varies with the supporting set D. The goal then is to eliminate these group 

elements y. The next lemma is given in a form which is useful even if R is not 

prime. 

LEMMA 1.5. Let A and B be ideals of R * G with A B  = O. If  0 ( A ) B  ~ 0 then 

there exists an element a E A with 

(i) t r a  = a ~ 0 ,  

(ii) 0 ( a ) B ~  0, 

(iii) for all fl E B, there exists y @ C~ (Supp O(a)) with 

Ra~R .O(a)f l  = O. 

PROOF. Since 0 ( A ) B  ~ 0, we can choose 0 (a )  E 0 (A)  of minimal support 

size with O(ct)B~O. If z E S u p p O ( a ) ,  then O(~-Ia)B = ~ - 1 0 ( a ) B ~ 0  and 

l ~ S u p p 0 ( ~ - l a ) .  Thus we may clearly assume that l ~ S u p p 0 ( a ) .  Write 

a = E a , . ~ U A  with a z = t r a  = a ~ 0 .  Then of course a satisfies (i) and (ii) 

above. 

Fix [ 3 E B .  If y E C ~ ( S u p p 0 ( a ) ) ,  then a ~ = y , a ~ y ~ E A  and S u p p 0 ( a ~ )  = 

Supp 0(a) .  Since ] -- 1, this now implies that for all r ~ R 

y = a~ra - a~ra @ A 
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with ISupp 0(7)1 < [Supp 0 ( a ) [ .  Hence,  by the minimality of ISupp 0(a) [  we 

have 0 (7)B = 0. In particular, 0(7)/3 = 0 yields the identity 

a ~rO (a)/3 = 0 (a)~ra/3 

for all r ~ R .  

Set D = Supp a U Supp/3. Then a, s/3 E R * D for all s ~ R and then for all 

g ~ G we have 

~t g(s/3 ) E A B  = O. 

Hence,  by Lemma  1.3, 

0 (c~)~s/3 = 0 

for all y E T = ~ ( D ) .  Note that T g  O and that T _C CG (Da) C_ Cz (Supp O(a)).  

Thus setting s = ra = r tr a in the above and applying our preceding identity we 

have 

0 = O(a)~ra/3 = a~rO(a)/3. 

Since this holds for all r E R, we obtain finally 

R a  JR • 0 (a)/3 = 0 

and (iii) is proved. 

We remark that if H <~ G and if I is an ideal of R * G then 

I C_ 7rH(I)(R * G )  = (R  * G)Tr,  (1) 

(see [6, lemma 1.1.5]). Hence  if I ~  0, then ~'n (l) ~ 0 and in particular O(I) ~ O. 

LEMMA 1.6. Let  R be a prime ring. 

(i) I f  A and B are ideals o f  R * G with A B  = O, then 0 ( A ) B  = O. 

(ii) I f  A1, A 2 , ' - . , A ,  are ideals o f  R * G  with A I A 2 . . . A ,  = 0 ,  then 

O ( A , ) O ( A 2 ) . . .  O ( A , )  = O. 

PROOF. Suppose A B  = O. If 0 (A)B  ~ 0 then Lemma  1.5 applies. But observe 

that if R a ~ R . O ( c t ) f l  = 0, then the nonzero ideal R a ~ R  of R annihilates all 

coefficients in O(a)/3 and hence since R is prime we have O(a)/3 = 0. Thus 

O ( a ) B  = 0. Since this contradicts the definition of a, we conclude that O ( A ) B  = 

0 and (i) follows. 

For (ii) we show by induction on n that if A , A 2 . . . A , B  = 0 ,  then 

O ( A , ) O ( A 2 ) . .  • O ( A , ) B  = 0. The case n = 1 is given above and for n > 1 we 

conclude by induction from A , A 2 . . .  A , _ I ( A , B ) - - 0  that 
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O(Az) " " O ( A , - O A , B  = O. 

Hence if C is the ideal 

C = (R  * G ) O ( A 1 ) . . .  O (A ,_ I )A ,  

then C B  = 0. We now conclude from (i) that O ( C ) B  = 0  and since clearly 

O(C) ~_ O ( A 1 ) . . .  O(A ,_ t )O(A , ) ,  the induction step is proved. Finally (ii) follows 

immediately by taking B = R * G. 

As will be apparent soon, the above lemma yields the necessary reduction 

from R * G to R *A. The next two results on crossed products of ordered 

groups facilitate the further reduction to R * A ÷. The second of these, due to J~. 

Roseblade, is a generalization of [6, theorem 4.3.16] and [8, theorem 5.5]. We 

thank Dr. Roseblade for allowing us to include this lemma here. 

Let A ~ 0 be an ideal of R * G. If k is the minimum support size of a nonzero 

element of A, we define fi, to be the additive subset of A spanned by all o~ E A 

with I Supp eel= k. It is clear that ,A~ 0 and that ,,i is both a right and left 

R-submodule of A. Furthermore,  since I Supp a I = I Supp a~ I for all x E G, we 

see that ,'~ is an ideal of R * G and that tr(fi,) is a nonzero ideal of R. 

LEMMA 1.7. Let  G be an ordered group and let A and B be nonzero ideals o f  

R * G  with A B  =0 .  Then t r ( , ~ ) . t r ( / 3 ) = 0 .  

PROOF. Let a E A, /3 @ B be elements of minimal support sizes n and.m 

respectively. Since G is ordered, we can write 

= ate1 + a2$z + • • • + a,£,, 

3 = b ,~ ,+ b 2 y 2 + " "  + brays, 

w i t h x ~ < x 2 < - . . < x , , y j < y : < - . . < y r ,  anda i ,  b i E R .  S i n c e A B  = 0 w e h a v e  

a/3 = 0 and from the group ordering it is trivial to see that (at.~)(b~y~)= 0. 

Fix subscripts i, j. Now (a,~)/3 ~ B  and by the above we have 

ISupp(a~.f~)/31< m. Thus the minimality of m yields ( a ~ ) / 3  = 0 and hence 

(a,£~)(bj~j) = 0. Similarly a(b~]j )E A and ISupp ot(bj)Tj)[ < n. Thus ot(bj],) = 0 

and (a~i)(bj]j)  = 0 for all i,]. This clearly implies that (tr a ) ( t r /3 )  = 0. Since ,,~ is 

spanned additively by all such a and /3 by all such /3, we conclude that 

t r ( / i ) ,  tr(/3) = 0. 

LEMMA 1.8. Let  G be an ordered group with R * G semiprime, l f  A and B are 

ideals o f  R * G with A B  = O, then t r ( A ) ,  t r (B)  = 0. 

PROOF. Let P = {x ~ G Ix => 1} so that P is a normal multiplicatively closed 
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subset of G. We first study A ÷ = A O (R * P )  and B*  = B O (R * P).  It is clear 

that these are right and left R - s u b m o d u l e s  of  R * G which are (~-invariant. 

Hence  the same is t rue of A1 = t r A  ÷ and BI = t r B  ÷. Since A B  = 0 we have 

A +B ÷ = 0 and hence,  by the order ing,  we conclude immediately  that A~B1 = O. 

Suppose I is a (~-invariant ideal of R with 12 = 0. Then  it is easy to see that 

I (R * G)=  (R * G) I  is a two sided ideal of R * G with 

[I(R * O)]  2 = (R * G)IZ(R * G) = O. 

H e n c e  the semipr ime assumpt ion yields I (R * G ) =  0 and I = 0. Two  applica- 

tions of  this are as follows. First, let C = {r ~ R ] A  ~r = 0}. Then  since A1 is a 

(g-invariant ideal of R, so is C, and since 

(AIC)  2 = A , (CA , )C  C A zC = 0 

the above  yields A1C = 0. Similarly, if D = {r E R 1 r(tr  B )  z = 0} then we deduce  

that D . t r B  = 0. 

We  show now that A1B = 0. To  this end, we prove  that A,/3 = 0 for /3  fEB by 

induct ion on [Supp/3 I. Thus  suppose  A1 annihilates all 1, E B with I Supp 3' [ < 

m and let /3 E B with [Supp/3 1 = m. Wri te  

3 = b l y l  + b2y2 + " " " + b,.y,. 

with yl < y 2 < ' "  ' < y,, and b, E R. Then  /3)7i I E B ÷ so bl U B1 and Azbl = O. 

Thus  we see that A~/3 C B and every e lement  of A1/3 has support  size smaller 

than m. Hence  by induct ion we have AZ~/3 = AI(A~/3)= 0 so AZ~b, = 0 for all i. 

The  result of the preceding paragraph now shows that Albi = 0 and hence  that 

A1/3 = 0. Thus  we conclude that A1B = 0. In particular, by applying the trace 

map we see that A l . t r B  = 0. 

Finally we reverse the roles and show that A • tr B = 0. Here  we p roceed  by 

induction on I S u p p a  [ with a E A to prove that  a ( t r B ) = O .  Say I S u p p a  I = n 

and assume that the result is known for e lements  of smaller support  size. Wri te  

= ~ a l  + 9¢202 + • • • + Xnan 

with x l < x z < "  " - < x ,  and a, E R .  Then ~ - l a  E A  ÷ so a l E A t  and hence, by 

the above,  a~(trB)C_A~(trB)=O. Thus we see that a( t rB)C_A and every 

e lement  of a ( t r B )  has support  size smaller than n. Induct ion therefore  yields 

a ( t r B ) 2 = ( a  . t r B ) ( t r B ) = 0  so a , ( t r B ) 2 = 0 .  The  result of the second para- 

graph now shows that a ~ ( t r B ) = 0  and hence  a ( t r B ) = 0 .  In o ther  words,  we 

have proved that A ( t r B ) =  0 and therefore ,  by applying the trace map,  we 

conclude that ( t r A ) ( t r B )  = 0. 



Vol. 31, 1978 CROSSED PRODUCTS 233 

We remark that, even in the case of ordinary group rings, the above is false 

without the semipr~me assumption. See [6, page 145] for an example. 

Now suppose R * G is given. If H </G, then 6~ acts on R * H by conjugation 

and hence (~ permutes the ideals of R * H. Recall that U '~ (~, where U is the 

group of units of R, and (~/U = G. Thus since each ideal of R * H is clearly 

U-invariant, the group (~/U ~ G in fact permutes the ideals of R * H. We say 

that R * H  is G-prime if for all G-invariant ideals A , B  C_ R *H, A B  =0 

implies A = 0 or B = 0. Similarly R * H is G-semiprime if for all G-invariant 

ideals A _C R *H, A 2 =  0 implies A = 0. It is clear that if R * H  is prime or 

semiprime, then it is also G-prime or G-semiprime respectively. 

The following is the main result of this section. 

THEOREM 1.9. Let R be a prime ring. Then R * G is prime o~ semiprime, 

respectively, if and only if for all finite normal subgroups H of G, R * H is G-prime 

or G-semiprime, respectively. 

PROOF. If H </G and if A is a G-invariant ideal of R * H, then it is trivial to 

see that A ( R  * G) = (R * G)A  is a two-sided ideal of R * G. Suppose now that 

R * H is not G-prime. Then we can find nonzero G-invariant ideals A , B  C_ 

R * H with AB --0. It therefore follows that 

A ( R  * G ) . B ( R  * G ) =  (R * G ) A  . B ( R  * G ) = 0  

and R * G is not prime. Similarly, if R * H is not G-semiprime, then by taking 

A = B in the above argument we see that R * G is not semiprime. We now 

consider the converse. 

Suppose first that R * G is not prime and let A and B be nonzero ideals of 

R * G with A B  = 0. If A1 = O(A) and B1 = 0(B), then A~ and B~ are nonzero 

G-invariant ideals of R *A with A~BI = 0, by Lemma 1.6(ii). Hence we now 

know that R * A is not G-prime. 

Set S = R * A + and observe that R * A is a suitable crossed product of A/A + 

over the ring S. Say R * A = S * (A/A+). By Lemma 1.2, A/A + is a torsion free 

abelian group and hence an ordered group. We can now apply Lemma 1.7 and its 

notation to A~,BI C_ S*(A/A +) with A~B~ = 0. Thus if A2 = tr(,4~) and B2 = 

tr(/3~), then we conclude from that lemma that A2B2--0. Certainly A2 and B2 

are nonzero ideals of S = R * A +. Moreover it is trivial to see that, in its action on 

S *(A/A +) = R *A, the group (~ leaves invariant A~, BI, ,4~,/~ and then A2 and 

B:. Thus we see that R * A + is not G-prime. 

In view of Lemma 1.2, there exists a finite normal subgroup H of G with 

H _C A + and A3 = As fq (R * H),  B3 = B2 ¢q (R * H )  both not zero. Then A3 and 
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B3 are G-invariant  ideals of R * H with A3B3 = 0 and R * H is not G-pr ime.  

This completes the proof  of the theorem in the prime case. 

The semiprime argument  is similar. Suppose A is a nonzero ideal of R * G 

with A 2 = 0. If A1 = O(A),  then Lemma  1.6(ii) yields At  ~ 0 and A~ = 0. Again 

we view R , A  = S*(A/A +) and setting A2 = tr(.~l) we have A ]  = 0 by Lemma  

1.7. Moreover  A2 is a nonzero G-invariant  ideal of S = R * A ÷ so there exists a 

finite normal subgroup H of G with H C A  + and A3 = A2N (R * H ) ~ 0 .  Then 

A3 is a nonzero G-invariant  ideal of R * H with A 32 = 0. Therefore  R * H is not 

G-semipr ime  and the result follows. 

Thus we have reduced the prime and semiprime considerations f rom R * G to 

R * H for H a finite normal subgroup of G. Another  consequence of this 

A-reduction is the following generalization to crossed products of [6, theorems 

4.3.17 and 8.1.9]. Recall that A is an annihilator ideal of a ring S if and only if 

A = l (B) ,  the left annihilator of B, for some ideal B of S. This clearly implies 

that A is also an ideal. Recall also that the nilpotent radical NS of S is defined to 

be the join of all nilpotent ideals of S. 

THEOREM 1.10. Let R * G be a crossed product over the prime ring R. 

(i) I f  A is an annihilator ideal of R * G, then 

A = ( A  N ( R * A ) ) R * G .  

Furthermore, if R , A is semiprime, then 

A = ( A  O ( R * A * ) ) R * G .  

(ii) The nilpotent radical N = N ( R  * G)  satisfies 

N = (N n (R *A))R * G. 

PROOF. Observe  that for any ideal I of R * G and any normal subgroup H of 

G we have 

(I N ( R  * H ) ) R  * G  C I C  ~' . (1) .  R *G.  

Thus if ~rn (I)C_/,  then we conclude that equality must occur throughout and 

hence that I = (I O (R * H ) ) R  * G. 

We first consider (i). Let A = l (B)  for some ideal B of R * G. Then A B  = 0 so 

Lemma  1.6(i) yields O(A)B  = 0  and hence O ( A ) C I ( B ) = A .  By the above 

observation,  A = (A N (R * A))R * G. 

Now suppose that R , A  is semiprime. By Lemma 1.6(ii) we have AtB1 = 0 

where A~ = O(A) and B, = O(B). Again we view R * A =  S*(A/A +) where 
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S = R * A +. By Lemma 1.2, A/A* is torsion free abelian and hence ordered. Thus 

since A~Bj = 0  and S *(A/A*) is semiprime, Lemma 1.8 applied to S ,(A/A+) 

yields ( t r A , ) ( t r B , ) =  0. But it is clear that the trace map in S *(A/A*) corres- 

ponds to the map 0* in R *A so we actually have O*(A~) • O+(BI) = 0. Moreover, 

clearly 0+(A~) = O*(O(A))= O*(A) and similarly 0+(B0 = O+(B). Since B C_ 

O * ( B ) . R * G  and O*(A).O~(B)=O, we conclude therefore that O+(A)C_ 

l (B)= A and hence that A = (A N (R *A*))R * G. This completes the proof of 

(i). 
For (ii), let A be a nilpotent ideal of R * G .  Then A " = 0  for some n so 

Lemma 1.6(ii) yields O(A )" = 0. But O(A ) . (R  * G) = (R * G) .  O(A ) so we see 

that B = O ( A ) . R  *G also satisfies B" =0 .  Hence, if N = N(R *G),  then 

B C_N and hence O(A)C_N. Since N is the join of all such A, we conclude 

therefore that O(N)CN.  Thus N = ( N O ( R * A ) ) R * G  and the theorem is 

proved. 

We close this section with an example to show that, even if R is a prime ring, 

the conjugating elements y E T are required in the conclusion of Lemma 1.3. 

EXAMPLE. Let K be a field and consider the vector space M of all matrices 

over K whose rows and columns are subscripted by the integers Z. In other 

words, these are the doubly infinite matrices since Z = { . . - , - 2 , - 1 ,  

0, 1 , 2 , . . .  }. Now let R be the set of all row and column finite matrices in M. 

Then it is trivial to see that R is a prime ring with 1. We define the 

automorphism tr on R to be a positive shift by 2 in both the row and column 

directions. Thus for example, if e~ G R denotes the element with 1 in the (i,j)th 

position and 0 elsewhere, then eT, = e~÷2.j÷2. It is clear that cr is indeed an 

automorphism of R. 

Now let G = A (x) be a group with A a normal abelian subgroup and with 

G / A  ~- (x) infinite cyclic. Furthermore, we assume the action of x on A is so 

chosen that A(G) = (1). It is a trivial matter to construct such examples. Finally 

we define the action of G on R by the condition that A acts trivially and that x 

acts like tr. This is clearly well defined and we form the skew group ring RG. 

Fix a ~ A, a ~ 1 and define the elements a =eoo - eo~a, [3 = eol + e~la-1 ~ RG. 

We claim that ag[3 = 0  for all g E G, but that O(ce)O([3)~O. The latter is of 

course trivial to see. Namely, since A = (1), we have O(a) =eoo, 0(/3) = eo~ and 

hence O(a)O([3)= e0oeo~ = e o ~ 0 .  For the former, it suffices to show that 

(g-~ceg)/3 = 0 for all g E G. Write g -- bx' with b E A. Then since A is abelian 

and acts trivially on R we have g iceg = x-icexi and thus we may assume that 

g = x'. If i = 0, then we have easily (x-'cex~)/3 = ceil = 0. On the other hand, if 

i~  0, then since 
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X io~xi = e e i , 2 i -  e2i, a i+ la  xi 

and since {2i, 2i + 1} is disjoint from {0, 1}, we again have (x- 'ax ' ) /3  = 0. Thus the 

linear identity ag[3 = 0 for all g E G yields a suitable counterexample and the 

conjugating elements are definitely needed in Lemma 1.3. Observe that here, for 

all y ~ G I A  we have 0(a)Y/3 =0 .  

§2. X- inner automorphisms 

In the last section we reduced the questions of the primeness and semiprime- 

hess of R * G from G itself to the finite normal subgroups of G. The goal here is 

to further study these finite normal subgroups. Actually this problem has already 

been effectively handled in [2] using ideas from [3], at least in the case of skew 

group rings. As we will see, crossed products cause no additional difficulty, so 

much of this section is essentially an amplification of the work in [2]. For the sake 

of completeness, we include the proofs of several requisite ring theoretic facts 

found in [4] and [3]. In this section, R will always denote a prime ring with 1. 

We begin by briefly discussing a certain ring of quotients S = Qo(R) which is 

defined in [41 essentially as follows. Consider the set of all left R-module  

homomorphisms [ : RA ---* RR where A ranges over all nonzero two-sided ideals 

of R. Two such functions are said to be equivalent if they agree on their common 

domain, which is a nonzero ideal since R is prime. It is easy to see that this is an 

equivalence relation. Indeed, wb.at is needed here is the observation that if 

f : RA --* RR with A f  -- 0 and if f is defined on b E R, then b[ = 0. This follows 

since Ab C_ A so 0 = (Ab)[ = A (b[) and hence b[ = 0 in this prime ring. We let 

denote the equivalence class of f and we let S = Qo(R) be the set of all such 

equivalence classes. 

The arithmetic in S is defined in a fairly obvious manner. Suppose [ : RA --~ RR 

and g : RB --~ RR. Then t + g is the class of [ + g : a(A A B)---~ RR and [~ is the 

class of the composite function [g:R(BA)--~RR. It is easy to see that these 

definitions make sense and that they respect the equivalence relation. Further- 

more the ring axioms are surely satisfied so S is in fact a ring with 1. Finally let 

a, :,~R--~ RR denote right multiplication by a E R. Then the map a ~ ti, is 

easily seen to be a ring homomorphism from R into S. Moreover,  if a ~ 0, then 

Ra,~ 0 and hence d ,~  0 by the observation of the preceding paragraph. We 

conclude therefore that R is embedded isomorphically in S and hence we will 

view R as a subring of S with the same 1. 

As we see below, the reason for studying S is that it is close to R and yet large 

enough to contain certain needed additional units. The following lemma, 
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essentially conta ined  in [4], lists the closeness propert ies  we require.  Addi t iona l  

facts concerning  Qo(R)  can be found in [1]. 

LEMMA 2.1. Let  S = Qo(R ) be as above. 

(i) I f  s ~ S and A s  = 0 for some nonzero ideal A of  R, then s = O. 

(ii) I f  s ~ , s 2 , . . . , s ,  ~ S, then there exists a nonzero ideal A of  R with 

As1, As2 , .  • . ,  A s ,  C_ R. 

(iii) S is a prime ring. 

(iv) I f  o" is an automorphism of  R, then or extends uniquely to an automorphism 

o f  S. 

(v) I f  C = C s ( R ) ,  then C is a field and the center o f  S. 

PROOF. Suppose  f : RA ---> RR and a ~ A. Then a, f  is defined on RR and for 

all b @ R we have 

b(a , f )  = (ba ) f  = b ( a f )  = b(a f ) , .  

Hence  & f  = (a~), and the map f translates in S to right multiplication by f. We 

will use both of these interpreta t ions  in the proof  with hopeful ly no confusion.  

(i) Let s E S with A s  = 0. If s = f, then the above  shows that f vanishes on an 

ideal in its domain  and hence  s = f = 0. 

(ii) Let  s~, s2," . . ,  s, E S with s, = ~. Then  we can surely assume that all f~ are 

defined on the c o m m o n  domain  A and f rom this we have As~ = Af~ C, R for all i. 

(iii) It follows f rom (i) and (ii) above  that every nonzero  ideal of  S meets  R 

nontrivially. Thus  since R is prime, so is S. 

(iv) Now let o" be an au tomorph i sm of R and let f :  RA --~ RR. Then  the map 

f "  : RA" ~ RR given by a ' f  ~ = (a f )  ~ is surely a left R - m o d u l e  h o m o m o r p h i s m  

and f rom this it follows easily that the map f--~ f "  gives rise to an au tomorph i sm 

of S extending o'. To  prove uniqueness  of  extension,  it suffices to show that if ~" is 

an au tomorph i sm of S fixing R elementwise,  then r = 1. To  this end, let s E S 

and let A be a nonzero  ideal of R with A s  C_ R. Then for  all a @ A we have 

as = (as)" = a ' s"  = as' .  

Thus  A (s - s T) = 0 and (i) implies that s ~ = s. 

(v) Finally let C = Cs ( R )  and suppose s E C, s ~ 0. Since s commutes  with R 

it is clear that T = {t E R I ts = 0} is a two sided ideal of R and hence  we must 

have T = 0  by (i). Let A ~ 0  be an ideal of  R with A s C _ R .  Then the map 

f : RA ~ RR given by af  = as E R is a left R - m o d u l e  h o m o m o r p h i s m  which is 

one  to one  and on to  A f  = B. Hence  there exists an inverse map g : RB ~ RR so 

that fg = 1 on A. But observe that B = A f  = A s  = sA  is a nonzero  two sided 
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ideal of R so ~ E S is now an inverse of f = s. Moreover ,  since s commutes  with 

R, we must have s - ~ E  C and therefore  C is at least a skew field. Finally, 

conjugat ion  by s induces an au tomoph i sm of S which is trivial on R. Hence  by 

(iv) the au tomorph i sm must also be trivial on S. Thus  s is central  and the l emma 

is proved.  

The  next result shows that S contains the units we need. It is a very special 

case of  the work in [3] and its p roof  is a minor  modification of the proof  of  [4, 

t heorem 1]. 

LEMMA 2.2. Let  cr be an automorphism o f  R and let a, b E R be f ixed  nonzero 

elements.  I f  

arb = br" a ~ 

for all r E R,  then there exists a unit  s E S = Oo( R ) such that b = as and  such that 

conjugat ion by s induces the automorphism cr on R.  

PROOF. Let A = R a R ,  B = R b R  and define the maps  f : A - - - ~ B  and 

g : B - - - * A  by 

[ : ~ x,ay, ~ ~ x,by 7 
i i 

Z Z cr-I g : xiby~ ~ x~ay~ . 
i i 

To see that f is well defined, it suffices to show that 0 = E,x,ay, implies that 

0 = Y.~x~byT. To this end, suppose 0 = E~x,ay,. Then  for all r E R the formula  

atb = bt~ a ~ yields 

and hence  0 = Y. x,by7 since a " ~  0 and R is prime. Similarly if 0 = Eix~by~, then 

for  all r E R we have 

and we deduce  that 0 = E x~ay, . Thus  both f and g are well defined and since 

they are clearly left R - m o d u l e  homomorph i sms ,  we have f = s E S and ~ E S. 

Fu r the rmore  fg  = 1 on A and g f  = 1 on B so ~ = s -1 and s is a unit in S. 

Observe  that a , f  is defined on R and for  all x E R we have 

x ( a , f )  = ( x a ) f  = x b  = xb , .  
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Thus tiff =/~, or equivalently as = b. Finally let c E R. Then gc, f is defined on B 

and for all xby E B we have 

(xby ) (gcrf) = (xay ~-') (c , f )  = (xay ~ 'c ) f  

= xbyc ~ = (xby)c  7. 

Thus ~t~rf = c7 so s - l cs  = c ~ and the result follows. 

This lemma motivates the following definition due to Kharchenko [3]. An 

automorphism o" of R is said to be X- inner  if and only if it is induced by 

conjugation by a unit of S = Qo(R).  In other  words, these automorphisms arise 

from those units s ~ S with s - ' R s  = R.  If s and t are two such units, then clearly 

so is st. Thus we see immediately from Lemma  2.1(iv) that the set of all X- inner  

automorphisms of R is in fact a normal subgroup of the group of all automor-  

phisms of R. 

Now let R * G be given. Then (9) acts on R and the elements  of U surely act 

as X- inner  automorphisms.  Thus since (~6/U ~- G we see that 

G~no = {x E G I ~ is an X- inner  au tomorpbism of R} 

is a normal subgroup of G. 

By Lemma 2.1(iv) the automorphism ~ of R extends to a unique automorph-  

ism of S which we denote by the same symbol. It then seems reasonable to 

extend R * G to a crossed product S *  G of G over S using the multiplication 

formula 

(a$) (b~)  = (ab~- ' t (x ,  y))~y 

for a ,b  E S and x ,y  E G. Here  of course t : G × G ~ U is the given map for 

R * G. In the case of skew group rings it is fairly obvious that this gives rise to an 

associative multiplication. However  for crossed products a certain amount  of 

checking is necessary and this Will be done in the first part of the lemma below. 

The next two results are applications of Lemma 2.2. They indicate why these 

X- inner  automorphisms are important  here and why the structure of S * G is 

somewhat  nicer than that of R * G. We fix notation so that R * G is given, 

S = Oo(R)  and C is the center of S. 

LEMMA 2.3. There exists a unique crossed product S * G extending R * G. Let  

E be the centralizer of  S in S * G .  Then E C S . G m n ,  S * G ~ , , = S ~ c E  and 

E = C '  [Gm.], some twisted group algebra of  G~.. over the field C. Furthermore if H 

is a subgroup o f  Gin., then S * H =  S @ c ( E  71(S * H ) )  and E ( 'I(S * H ) =  

C ' [ H ]  C_ C'[Gm.],  where the latter is the natural inclusion. 
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PROOF. Since a u t o m o r p h i s m s  of R ex tend  unique ly  to a u t o m o r p h i s m s  of  S 

by L e m m a  2.1(iv), it is c lear  that  the  a b o v e  def ini t ion for  S * G is the  only 

poss ib le  ex tens ion  of R * G. W e  need  only verify the  associa t iv i ty  of mul t ip l ica-  

t ion.  Let  us obse rve  first that  (~ acts on R and  hence  the  un iqueness  of ex tens ion  

impl ies  that  we ob ta in  a g roup  act ion of ~ on S. W e  use this impl ic t ly  in the  

c o m p u t a t i o n s  below.  Let  a, b, c ~ S and x, y, z E G. Then  by def ini t ion 

[ ( a~) (b~) ]  ( c ~ )  = s ,  x y z  

and 

( a~)  [(by)  (ce)]  = s2 x y z  

for  su i tab le  s~, sz ~ S. In fact we see easily that  

Sl  = a b ~ - ~ c r ~ - ' " x ' Y ) - ' r i  

and 

S2 = ob~-JcY-~i-~r2 

where r~ and r2 are elements of R independent of a,b and c. Since ,~)7 = 

t ( x ,  y ) x y ,  the  a, b and  c t e rms  in the  two express ions  are  equal .  But in the  

special  case when a = b = c = 1 the  above  p roduc t s  occur  in the  associa t ive  r ing 

R * G so surely rl = r2. H e n c e  sl = s2 and S * G is associat ive.  

Now let E be the  cen t ra l i ze r  of S in S * G. W e  show first that  E C S * G~.°. To  

this end  let a ~ E and let x E S u p p a .  Say a = s~ + -  " .  Then  by L e m m a  2. l ( i )  

(ii) the re  exists a E R with a a  @ R * G and with x E S u p p a a .  Since a com- 

mutes  with ra  we have  a r a a  = ac~ra for  all r E R. H e n c e  the a b o v e  impl ies  that  

a r a s ~  = a s £ r a  = a s r ~ - ' a  ~ '£. 

Thus  since b = a s  is a nonze ro  e l emen t  of R we see that  the  iden t i ty  

a r b  = b r ~ - ' a  ~-' 

holds  for  all r E R. T h e r e f o r e  L e m m a  2.2 implies  that  con juga t ion  by ~ - i  is an 

X - i n n e r  a u t o m o r p h i s m  and  thus  x E G,,o. 

Fo r  each x ~ G, , ,  choose  a unit  s, E S inducing the a u t o m o r p h i s m  ~ on R and 

let .~ = sx'.~. W e  claim that  the e l emen t s  ./ for  all x E G~n form an S-bas i s  for 

S * G~,° and a C-bas i s  for  E. T h e  fo rmer  is obv ious  and for the  la t te r  we know at 

least  that  the  .~'s are  C- l inea r ly  i ndependen t .  O b s e r v e  that  each .~ is a unit  in 

S * G which acts by con jga t ion  on S cent ra l iz ing all of R. H e n c e  by L e m m a  
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2.1(iv), i must centralize all of S and we have i ~ E .  Finally suppose 

a ~ E _C S * Gi,,. Then we can write a = E a~l with a~ E S and it is clear that 

each a~i centralizes S. Thus since ~ is a unit in E we have a~ E S n E = C and 

we conclude that the elements  £ do indeed form a C-basis for E. Since C is 

surely central in E we now know that S.* G~.. = S @ c E .  

Note that E is an associative C-algebra  with basis {:~ [x E G~,°}. Fur thermore  

for x, y E G~,,, i)7 ~ E and i)7 = sx~y for some s E S. Thus clearly s must be a 

nonzero element of C and we deduce that E is isomorphic to C'[G~°.], some 

twisted group algebra of Gmn over the field C. Moreover  by the way this algebra 

is constructed, the remaining observations on S * H for H a subgroup of Gin. are 

obvious, so the lemma is proved. 

We now fix the notation G~.., E and C'[G~°,] as given in the previous lemma 

for use in the remainder  of this section. The second application of Lemma 2.2 is 

the key ingredient in the work of [2] on skew group rings. 

LEMMA 2.4. Let H be a subgroup of  G and let A be a nonzero ideal o f  R * H. 

Then there exists a nonzero element ct E A such that ct = a/3 for some a E R and 

/3 ~ E n ( s , n ) .  

PROOF. Let oe # 0 be an element  of minimal nonzero support  size in A. Since 

we can multiply c~ by any :9 with y E H without changing the support  size, we 

may clearly assume that 1 ~ Supp ~. Write ~ = X a~i and let a = a~. Then for 

any r ~ R, ~ = arc~-  ~ra E A and I Supp71 <ISuppc~ I- Thus T = 0 and ar~ = 

ara for all r E R. In particular for all x E Supp a we have 

and hence 

~-i £ i_ 
araxx = axxra = axr a x 

£- i  t - i  
arax = a x r  a . 

L e m m a  2.2 now applies and we conclude that there exists a unit b. E S such that 

ax = abx and with conjugation by bx inducing the automorphism ~-' on R. In 

particular, if /3 = X bxg then a = a/3. Moreover ,  conjugation by bxg yields an 

automorphism of S trivial on R so b~g E E and hence /3 ~ E. Thus /3 E 

E n (S • H )  and the lemma is proved. 

It is perhaps worth noting, as we see from the proof, that any element a E A 

with trot # 0 and with a of minimal support  size satisfies the above condition. 

We now wish to exploit the relationship between R * H  and C ' [ H ]  for 

H C_ Gi,,. Let H <~ G with H C_ Gin,. Then (~ acts on R * H, S * H and S so (g 

acts on E A ( S . H ) =  C ' [ H ] ,  the centralizer of S in S * H .  But observe that U 
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acts trivially on C'[H] so we see that  G ~- OJ/U in fact acts on C'[H]. Thus  we 

can speak of C'[H] as being G - p r i m e  or  G - s e m i p r i m e .  

LEMMA 2.5. Let H be a subgroup of G~,,. 

(i) I f  H <1 G, then R * H is G-prime or G-semiprime, respectively, i]: and only i[ 

C'[H] is G-prime or G-semiprime, respectively. 

(ii) R * H is prime or semiprime, respectively, it' and only i[ C'[H] is prime or 

semiprime, respectively. 

PROOF. T h e  p roof  of  (ii) is precisely the same  as that  of (i) but ignoring all 

r e fe rence  to ideals being G- inva r i an t .  Thus  we consider  only (i). 

Let  A and B be nonzero  G- inva r i an t  ideals of C'[H] with A B  = 0. Then  

since S * H  = S @cC'[H] ,  by L e m m a  2.3, we see that  A~ = SA and B1 = SB 

are nonzero  G- inva r i an t  ideals of S * H  with AIB t=O.  Fur the rmore ,  it is 

appa ren t  f rom L e m m a  2.1(i) (ii) that  A2 = A ,  N (R * H )  and B2 = Bl A (R * H )  

are nonze ro  G- inva r i an t  ideals of  R * H  with A2B2 = 0. Thus  if C'[H] is not 

G - p r i m e ,  then ne i ther  is R * H.  Moreove r ,  by taking A = B, we see that  if 

C ' [ H ]  is not G - s e m i p r i m e ,  then nei ther  is R * H. 

Now let A and B be nonze ro  G - i n v a r i a n t  ideals of  R * H  with A B  = O. 
Define  

.,{ = {3, E C'[H]I  13, C A for  some  nonzero  ideal 1 C R} 

and 

/3 = {3' E C ' [ H ]  1 13" C_ B for some  nonzero  ideal I _C R}. 

We  claim that  ,,{ a n d / 3  are nonzero  G- inva r i an t  ideals of  C ' [ H ]  with .,{/~ = 0. 

We  first consider  ,4,. Suppose  y, ,  3'2 E A with I13"1,123,2 C_ A and let 6 E C'[H]. 

By L e m m a  2.1(ii) there  exists a nonzero  ideal J of R with J6 C_ R * H. H e n c e  

since 3,,, 3,z and 8 c o m m u t e  with R we have  

(1, M I2)(3"t + 3'2) C A, 

I , J (3 ' , 8 )  = (I13' ,)(J8) C_ A 

and 

Thus  T l +  T2, T,$, 3 y ~ / t  so .'{ is an ideal of  C'[H] which is clearly 

G- invar ian t .  Moreove r ,  by L e m m a  2.4, there  exists a = a/3 E A with a #  0, 

a E R and /3 E C'[H]. Thus  since /3 c o m m u t e s  with R we have  
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(RaR ){3 = R(a[3 )R C A  

so /3 E / i  and fi, ~ 0. The same is of course true for /~ .  

Now let T I ~ A ,  T2E/3 with IzTIC_A and 12T2C_B. Then 

I~l~(yly2) = (/zy,)(I2T2) C A B  = 0 

so since I~I2 is a nonzero ideal of R, Lemma  2.1(i) implies that T~/2 = 0. Thus 

.~,B = 0  and we see that if R * H  is not G-pr ime  then neither is C ' [ H ] .  

Moreover,  by taking A = B, we conclude that if R * H is not G-semipr ime,  then 

neither is C'[H]. This completes the proof. 

The next result is a useful consequence of the above work. 

PROPOSITION 2.6. Let R be a prime ring. 

(i) I[ A is a nonzero ideal o[ R * G, then A A (R * Gi,,) ~ 0. 

(ii) R * G is prime or semiprime, respectively, i[ and only i[ R * O,,o (or 

equivalently C'[G~,,]) is G-prime or G-semiprime, respectively. 

PROOF. Part (i) is an immediate  consequence of Lemma  2.4, with H = G, and 

Lemma 2.3. 

Suppose A and B are nonzero ideals of R * O with A B  = O. Then by (i), 

A~ = A fq (R * Gin.) and B~ = B fq (R * G~.,) are nonzero G-invar iant  ideals of 

R * G~.. with A tB~ = 0. Conversely if A and B are nonzero G-invar iant  ideals 

of R * G~.n with A B  = 0, then Az = (R * G ) A  and B~ = (R * G)B  are nonzero 

ideals of R * G  with A~Bj = 0 .  Thus we see that R * G  is prime if and only if 

R * G~., is G-pr ime.  Moreover,  by taking A = B we conclude that R * G is 

semiprime if and only if R * G~.. is G-semipr ime.  Finally the equivalence of the 

above properties of R * G~,. with the corresponding ones of C'[Gi..] follows 

from Lemma 2.5(i) with H = G~n,. 

We now combine the work of this section with the earlier A-method results to 

obtain the following two theorems which we prove together. Theorem 2.8 and its 

corollary are the main results of this paper  on the question of the primeness of 

R * G. Theorem 2.7, which concerns semiprimeness,  will be further sharpened in 

the next section. Note also that in the latter result, the expected condition of 

G-semipr imeness  of R * H is replaced by the simpler condition of ordinary 

semiprimeness.  

THEOREM 2.7. Let R * G be a crossed product of G over the prime ring R. Then 

R * G is semiprirne if and only if for all finite normal subgroups H of G with 

H C Gin. we have R * H (or equivalently C'[H]) semiprime. 

THEOREM 2.8. Let R * G be a crossed product of G over the prime ring R. Then 
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R * G is prime if and only if for all finite normal subgroups H of G with H C_ G~.. 

we have R * H (or equivalently C' [H])  G-prime. In particular, if A + ( G ) n  G,.o = 

(1), then R * G is prime. 

PROOF. We first consider the prime case. If H is a finite normal subgroup of 

G with R * H  not G-pr ime,  then by Theorem 1.9 R * G is not prime. 

Conversely if R * G is not prime, then by Theorem 1.9 there exists such a finite 

normal subgroup H with R * H not G-pr ime.  Suppose in fact that A and B are 

nonzero G-invariant  ideals of R * H with A B  = 0 and set H~°° = H n G~.. <J G. 

Then by Lemmas  2.4 and 2.3 we see that A I = A  N ( R * H m . )  and B I =  

B n (R • H~..) are nonzero G-invariant  ideals of R *H~.. with A1BI = 0. Thus 

H~.~ _C Gin. and R * Hmo is not G-pr ime.  Lemma 2.5(i) now yields the first part of 

Theorem 2.8. 

Note fur thermore that if H is a finite normal subgroup of G with H _C G,oo, 

then H _C A+(G) n G,... Thus if A+(G) N G,,. = (1), then H = (1) and R * H = R 

is prime. We therefore conclude from the above that R * G is prime in this case. 

It is clear that the argument  of the first paragraph also shows that R * G is 

semiprime if and only if for all finite normal subgroups H of G with H _C G~,° we 

have R * H (or equivalently C'[H]) G-semipr ime.  But observe that C ' [ H ]  is a 

finite dimensional C-algebra  and hence if it has a nonzero nilpotent ideal, it has 

a characteristic such ideal, namely its Jacobson radical. Thus C' [H]  is semiprime 

if and only if it is G-semipr ime and hence, by Lemmas 2.5(i) (ii), the same is true 

for R * H. This completes the proof of Theorem 2.7. 

COROLLARY 2.9. Let R be a prime ring with S = Qo(R ) and assume that the 

crossed product R * G is semiprime. Then R * G is prime i[ and only i[ S * G 

contains no nontrivial central idempotent. 

PROOF. Supposee~O, l i sacen t ra l idempo ten t inS*G.  T h e n A  = e ( S * G )  

and B = (1 - e)(S * G) are nonzero ideals of S * G with A B  = 0. Furthermore,  

by Lemma 2.1(i) (ii), A , = A  A ( R  * G )  and B , = B  A ( R  . G )  are nonzero 

ideals of R * G with A,B,  = 0. Thus R * G is not prime. 

Conversely suppose R * G is not prime. Then by Theorem 2.8 there exists a 

finite normal subgroup H of G with H C_ G~°, such that C'[H] is not G-pr ime.  

But, by Theorem 2.7, since R * G  is semiprime, we know that C'[H] is 

semiprime. Thus C'[H] is a finite dimensional semisimple C-algebra.  Let A and 

B be nonzero G-invariant  ideals of C'[H] with AB = 0 .  Since C'[H] is 

semisimple, we know that, as a ring, A has an identity element e which is of 

course a central idempotent  in C'[H]. Certainly e ~ 0 , 1  since A , B ~ O  and 
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A B  = 0. Furthermore,  e is a characteristic element of A and A is (~6-invariant so 

e commutes with (~6. But e E C'[H] _C E, the centralizer of S in S * G, so we 

conclude that e is a nontrivial central idempotent in S * G. The result follows. 

We remark that if G ~  (1) is a finite group, then the integral group ring Z[G]  

is never prime. Furthermore,  by [6, theorem 2.1.8], Z[G] contains no nontrivial 

idempotents. Of course the rational group ring Q[G] does contain the nontrivial 

central idempotent e = 1/I G lY.x~ox. We now offer two more examples. The first 

shows that the G-prime condition in Theorem 2.8 cannot be replaced by 

ordinary primeness. 

EXAMPLE. Let F be a field containing an element e of prime order  p and 

form the ordinary group ring F[(x)] where (x) is cyclic of order p. Then F[(x)] 

certainly admits an automorphism o" fixing F with x ~'= ex and we form the 

skew group ring F[(x)] (y) where (y) is infinite cyclic and y acts like or. It is trivial 

to see that this ring is in fact F'[G], a twisted group algebra of the group 

G = ( x ) x  (y) over F. Since p is prime, it is clear that H = (x) is the unique 

nonidentity finite normal subgroup of G. Furthermore,  it is immediate that 

F'[H] = F[H] is G-prime,  since it contains the p primitive idempotents 
p - I  

e, = ( l / p )  
j=o  

for i = 0 , 1 , . . . , p - 1  and these are permuted transitively by (~6. Thus by 

Theorem 2.8, F ' [ G ]  is prime. On the other  hand, F ' [ H ]  = F[H] is certainly not 

prime. 

The second example shows that the G-prime or G-semiprime assumption in 

Proposition 2.6 cannot be replaced by just ordinary primeness or semiprimeness. 

It is fairly easy to construct an appropriate skew group ring counterexample for 

this with G not acting faithfully. However  to get a faithful action requires a little 

more work and we first isolate two necessary facts in the following lemma. 

LEMMA 2.10. Let R be a ring and let W be a group of units in R. Then W acts 

on R as inner automorphisms by conjugation. 

(i) Suppose H is a group acting on R and normalizing W. Then the semidirect 

product WH acts on R with H acting as given and with W acting by conjugation. 

(ii) Let if" be an isomorphic copy of W and ]:orm the skew group ring R I~' where 

~," acts on R as W does. If W is abelian, then R IX' = R [ if'J, where the latter is of 

course the ordinary group ring of if" over R. 

PROOF. (i) This is fairly obvious and a simple argument is as follows. Form 

the skew group ring RH. Then H and W are contained in the group of units of 
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R H  and H normalizes W. Thus since H n W -- (1), the semidirect product W H  

exists in R H  and the action of W H  on R H  by conjugation yields the appropr ia te  

action on R. 

(ii) Let -" W--)  I~' denote the isomorphism. For each x E W define x"  = 

x - ' ~  E Rlg/. Since W is abelian, W centralizes W and hence tr is an isomor- 

phism of W with a group of units in R~ ' .  Indeed for x, y E W we have 

x~y ~ = ( x - ' ~ ) ( y - ' ; )  = ( x - ' y - ' ) ( ~ ; )  = (y - ' x  - ' )  (xy) = ( x y F .  

Furthermore  the elements of W ~" are clearly an R-basis  for R W centralizing the 

ring R. Thus R I ~ / =  R W  ~" = R [  W ~] = R [ I~ ] .  

EXAMPLE. Let F be a field of characteristic p > 0 containing an element h of 

infinite multiplicative order and set K = F(~'), the rational function field over  F 

in the indeterminate ~'. Let R = M2(K) be the simple ring of 2 x 2 matrices over  

K and set 

where I = ~F[~] G K. Then W is an elementary abelian p -group  of units of R 

and since W A Z(R)  = (1) we see that W acts faithfully on R by conjugation. 

Let o- be the automorphism of K fixing F and defined by ~ = h~. Then o- 

extends in an obvious manner  to an automorphism of R = M f f K )  and, since ~ 

normalizes the set I, we see that or normalizes the group W. By Lemma 2.10(0, 

the semidirect product W(o-) acts on R and we consider the skew group ring R G  

where G = if'(6") is an isomorphic copy of W(tr)  which acts in the same way. 

Observe that R is simple so O o ( R ) =  R. Thus it follows that every X- inner  

automorphism of R is an ordinary inner automorphism which must therefore 

centralize the scalar matrices in R. We conclude from this that G~,, = lg/, since 

~'~"= h"~" implies that every element x E G \ I ~ '  acts nontrivially on K. 

Moreover  since W acts faithfully on R we see that G does also. 

Now W is abelian, so it follows from Lemma  2.10 (ii) that RG~.. = Rff" = 

R [if '] .  Hence,  since R = M f f K )  we have RG~,, --- M2(K[ff ' ] ) .  But K is a field of 

characteristic p and if '  is a nonidentity elementary abelian p-group.  Thus K[  if ']  

is not semiprime and therefore neither is RG~,°. Finally we explain the choice of 

I. If f(~') E I and if f(~')~" = f(~r) for some n ~ 0, then since f(~') is a polynomial 

with zero constant term and since ,~ has infinite multiplicative order, we see that 

f(~r) = 0. Thus every nonzero element of I has infinitely many (o')-conjugates. It 

therefore follows easily that A+(G) = (1) so R G  is prime, by Theorem 2.8, even 

though RG~., is not even semiprime. 
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We close this section with a remark on the intersection of ideals of R * G with 

R. Note that G acts on the ring C'[G,no] and we say that the latter ring is 

G-s imple  if and only if it contains no proper  G-invariant  ideal. Part (ii) of the 

following of course applies when G is finite. 

PROPOSITION 2.11. Let R * G be a crossed product of G over the prime ring R. 

(i) Every nonzero ideal of R * G has a nonzero intersection with R if and only if 

C'[G~,,] is G-simple. 

(ii) Suppose that I G~n, I < 0°. Then every nonzero ideal of R * G has a nonzero 

intersection with R if and only if R * G is prime. 

PROOF. We first consider (i). Suppose C'[G~.°] is not G-simple  and let I be a 

nonzero G-invariant  ideal of that ring. Then, by Lemma 2.3, S @ I is a nonzero 

G-invariant  ideal of S * G ~ . . =  S@¢C'[Gm.] ,  where S = Qo(R). Moreover  

suppose I'  is a complementary  C-subspace for I in C'[G~°.] with 1 E I ' .  Then we 

have the direct sum S ~ C'[G~.,] = (S (~ I) + (S @ I') and hence (S ~) I )  n S = 

0. Now set B = ( S @ l ) ( S * G ) .  Since S @ I  is G-invariant ,  B is a two-sided 

ideal of S * G with B n (S * G~.°) = S @ I. It follows from the latter that B ~ 0 

and B N S  = 0 .  Finally if A = B N ( R  * G ) ,  then, by Lemma 2.1(i) (ii), A is a 

nonzero ideal of R * G with A n R = 0. 

Conversely suppose that C'[G~,.] is G-s imple  and let A be a nonzero ideal of 

R * G. Then, by Lemma 2.4, there exists a nonzero element a = a/3 E A with 

a E R and fl ~ E O (S * G )  = C'[G,,,]. Certainly (RaR) f l  C_ A since R/3 = fiR. 

Let 

.A = {y E C'[Gmn] I ly  C A for some nonzero ideal I _C R}. 

Then, as in Lemma 2.5, ,'~ is a nonzero G-invariant  ideal of C'[G~°.]. But 

C'[G~..] is G-simple,  so we conclude that d, = C'[G~,.]. Since 1 E ,'~ we then 

have A N R f i  0 and (i) is proved. 

Finally we consider (ii). Since G~,. is a finite group, it is clear from the 

Wedderburn theorems that C'[G,,,] is G-s imple  if and only if it is G-pr ime.  The 

result now follows from (i) above and Proposition 2.6 (ii). 

§3. Twisted group rings 

In this final section we study twisted group rings with two goals in mind. In the 

first part, we consider when twisted group algebras of finite groups are 

semiprime. In conjunction with Theorem 2.7, this then yields our main results on 

the semiprimeness of R * G. In the second part, we sharpen the A-lemmas of 

Section 1 in the case of twisted group rings over  prime rings. As an application 



248 S. IvlONTGOMERY AND D. S. PASSMAN Israel J. Math. 

we determine the center of the classical ring of quotients of a twisted group 

algebra. 

We start by considering finite groups G. Observe that if F is a field then F'[G] 

is a finite dimensional F-algebra.  In particular, F'[G] is semiprime if and only if 

it is semisimple. The following result f rom [7] is a combination of Maschke 's  

theorem and an observation on von Neumann regularity. 

LEMMA 3.I. Let F' [ G ] be a twisted group algebra of the finite group G over the 

field F and let H be a subgroup of G. 
(i) If F'[G] is semisimple, then so is F'[H]. 

(ii) If [G : H I  ~ 0 in F and if F'[H] is semisimple, then so is F ' [ G ] .  

PROOF. (i) Suppose that F'[G] is semisimple. Then F'[G] is certainly also 

yon Neumann regular. Hence if o~ E F'[H], then there exists fl E F'[G] with 

aflot --or. Thu's by applying the projection map 7rH we have aya = a where 

!/= rr, ([3)E F'[H]. We conclude therefore that F'[H] is also yon Neumann 

regular and hence also semisimple. 

(ii) Suppose now that F'[H] is semisimple and that n = [G : H I  is not zero in 

F. We show that all F'[G]-modules are completely reducible by the usual 

averaging process. Let V be a right F'[G]-module and W a submodule.  Since 

F'[H] is semisimple, there exists an F'[H]-complement for W in V and hence 

there is an F ' [H] -pro jec t ion  map f :  V---~ W. 

Let x~,x2, . . . ,x ,  be a right transversal for H in G. Since 1/n E F  we can 

define g : V ~ W  by 

g(v) = ( l /n )  ~ f (v2/ ' )2 , .  
I 

This does indeed map to W since f(v2:[J)E W and W is an F'[G]-submodule. 

Let x E G. Then x permutes  the right cosets Hx, ,Hx2 , . . . ,Hx ,  of H by right 

multiplication and thus x,x U Hx,,, where i ---* i '  is a permutat ion of the subscripts 

{ 1 , 2 , . . . ,  n}. This implies that 2~2 = a,2~, for some unit a, E F'[H] and since 

2~a, = ~27,, ~ we have 

g(v )~ : ( l /n )  ~ f ( v 2 ; ' ) , ~ , 2  = (l/n) ~ f (vY,  ; ' ) a ,2 , ,  

= ( I /n )  ~ f(v2s'a,)2,, = ( l /n )  ~ f(v227,')2,. = g(v2). 

Thus g is clearly an F ' [ G ] - m o d u l e  homomorphism.  Moreover,  if w E W, then 

wx,--~ ~ W so f(w.~, 1) = w~? ~ and g(w)= w. We conclude that g is an F'[G]- 
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projection of V onto W and the kernel of g is an appropriate F'[G]- 

complement for W in V. Thus F'[G] is a completely reducible ring and 

therefore semisimple. 

In particular if F is a field of characteristic 0, then the above lemma with 

H = (1) shows that F'[G] is semisimple. This then combines with Theorem 2.7 

to yield 

THEOREM 3.2. Let R be a prime ring of characteristic O. Then the crossed 

product R * G is semiprime. 

Suppose now that F has characteristic p > 0  and that G is finite. If P is a 

Sylow p-subgroup of G then, by Lemma 3.1, F'[G] is semisimple if and only if 

F'[P] is. Thus we are reduced to considering finite p-groups in characteristic p 

and we let JF'[P] denote  the Jacobson radical of such a twisted group algebra. 

The next two lemmas are motivated in part by the work of [7]. 

LEMMA 3.3. Let F'[P] be a twisted group algebra of a finite p-group P over a 

field of characteristic p. Then 
(i) F' [ P ]/JF' [P] is a purely inseparable field extension ofF offinite degree. 
(ii) F'[P] is commutative i[ and only if P is abelian. 
(iii) If P C_ G', the commutator subgroup of the finite group G, and if F'[P] C_ 

F ' [ G ] ,  then F'IP]-- F[PI. 

PROOf. Let P denote the algebraic closure of F. Then 

F'IP ] C_ P@FF'IP] = F'I P] 

and, by [6, lemma 1.2.10], F'[P] = F[P] .  

(i) By [6, lemma 3.1.6], JF[P] is a nilpotent ideal with F[P]/JP[P] = F. By the 

isomorphism, the same is true of F ' [P ] .  Thus if I = JF'[P] ~ F'[P], then I is a 

nilpotent ideal of F'[P] with F' [P]/I an F-subalgebra of F. It follows from this 

that F'[P]/I is a finite dimensional field extension of F and hence also that 

I = JF'[P]. Furthermore the field extension is purely inseparable since it is 

generated by the images of the elements ~ with x E P and these satisfy ~ "  E F 

for some n. 

(ii) It is clear that F'[P] is commutative if and only if P ~ )FF ' [P]  = F[P]  is 

commutative and surely the latter occurs if and only if P is abelian. 

(iii) Again we let 

~ --  {u~ l u ~ u = F \{0} ,  x ~ O}.  

Then U = F\{0} is central in (~6, so (~ is center-by-finite and hence (~' is finite by 
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[6, l e m m a  4.1.4]. F u r t h e r m o r e ,  since C~6/U = G we have  (B'/V ~-G' where  

V = U A (~6'. Now P _C G '  and (~' is finite, so there  exists a finite p - s u b g r o u p  

Q C (B' with Q V / V  = P. But Q f3 V = (1) since F, being a field of character is t ic  

p, has no e lements  of  o rder  p. Thus  Q -~ P and we conclude that  for  each x E P 

there  exists a unique f~ ~ V C_ F with f ~  = .~ E Q. "Since £)7 = x"~ and since the 

e lements  {~ Ix @ P} form an F-bas i s  of F'[P], we deduce  that  F ' [ P ]  = F[P]. 

LEMMA 3.4. Let F'[P] be a twisted group algebra of a finite p-group P over a 

field F of characteristic p. Then F' [P]  is semisimple if and only if for all elementary 

abelian central subgroups Po of P we have F'[Po] semisimple. 

PROOF. If F ' [ P ]  is semis imple ,  then by L e m m a  3.1(i) so is F ' [Po]  for  all 

subgroups  P0 of P. 

Converse ly  assume that  F ' [ P ]  is not semis imple .  If P is nonabel ian ,  then we 

can take  Po to be  a subg roup  of o rde r  p in Z(P) f3 P'. It follows f rom L e m m a  

3.3(iii) that  F'[Po] ~- F[Po] and the lat ter  is not semisimple .  On the o the r  hand,  

suppose  that  P is abel ian so that ,  by L e m m a  3.3(ii), F'[P] is c o m m u t a t i v e .  Let  

Po = {x E P Ix p = 1} so that  Po is a central  e l emen ta ry  abel ian subg roup  of P. 

Since JF'[P} is a nonze ro  ni lpotent  ideal, we can choose  a ~ JF'[P], a ~  0 with 

:~ P = 0. F u r t h e r m o r e  since F'[P] is commuta t ive ,  we can mult iply a by some  

with y E P to gua ran t ee  that  tr a J 0 while still preserving the fact that  a p = 0. 

Say a = E axg with at E F, a,  ~ 0. Then ,  again using the commuta t iv i ty  of the 

ring, we have  

O ~ olP ~_ ~ P--P axx . 
x 

H e n c e  if /3 = 7rPo(a)=ExP~,axg, then / 3 ~ 0  and /3P = 0 .  Thus  /3 genera tes  a 

nontr iviai  n i lpotent  ideal in F ' [Po]  and F ' [Po]  is not semisimple .  

It is unfor tuna te ly  not t rue  that  F'[P] is semis imple  if and only if for  all 

subgroups  Po of o rde r  p we have  F ' [Po]  semisimple .  An easy example  mot iva t ed  

by unpubl i shed  work  of R. Snider  is as follows. Let  F = K(~')  where  char  K = p 

and let F ' [ P ]  be  the twisted g roup  a lgebra  of  the g roup  P = (x)  x (y)  of o rde r  p 2 

given by £)7 = )Tg and ~P = ~, )TP = 1 + ~'. If z is a nonident i ty  e l emen t  of P then 

z = x~y j for  some  i, j with 0 -  < i, / < p  and gP = ~P')TpJ = ~"(1 + ~')J = b is not a 

p t h  power  in F. H e n c e  since F ' [ ( g ) ]  is i somorphic  to the po lynomia l  ring F[ r / ]  

modu lo  the principal  ideal ( ~ P - b ) ,  we see that  F ' [ (~ ) ]  is a field and  thus 

semis imple .  On the o the r  hand  a = l + g - ) 7  satisfies a p = 0  so F'[P] is not 

semis imple .  

T h e o r e m  3.2 is of course  our  main result on the semipr imeness  quest ion if R 
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has characteristic 0. The following is now our main result on this same question 

in characteristic p. 

THEOREM 3.5. Let R * G be a crossed product of the group G over the prime 

ring R of characteristic p > O. 

(i) I f  A*(G) n G~o. contains no elements of order p, then R * G is semiprime. 

(ii) I f  the commutator subgroup of A+(G) O Ginn contains an element of order p, 

then R * G is not semiprime. 

(iii) R * G  is semiprime if and only if R *P  (or equivalently C'[P]) is 

semiprime for all finite elementary abelian p-subgroups P of A+(G) O G,.,. 

PROOF. Suppose first that R * G is not semiprime. Then by Theorem 2.7 

there exists a finite normal subgroup H of G with H C_ A*(G) O G~,o and with 

R * H (or equivalently C'[H])  not semiprime. If P is a Sylow p-subgroup of H, 

then since C is a field of characteristic p, Lemma 3.1(ii) implies that C ' [P]  is not 

semiprime. Thus, by Lemmas 3.4 and 2.5(ii), P has an elementary abelian 

subgroup P0 with C'[Po] (or equivalently R * P0) not semiprime. Since P0_C 

A*(G) N G~,, this clearly proves (i) and one direction of (iii). 

Now suppose there is a finite p-subgroup P of A+(G) O Gin, with C ' [P]  (or 

equivalently R * P) not semiprime. This equivalence is of course a consequence 

of Lemma 2.5(ii). Since A+(G) N G~,, <1 G, it follows from Lemma 1.2(iii) that 

there exists a finite normal subgroup H of G with P C_ H C_ A+(G) O G,,.. By 

Lemma 3.1(i), C'[H] is not semiprime. Thus by Theorem 2.7, R *.G is not 

semiprime. This clearly yields the opposite direction of (iii). 

Finally suppose (A*(G) n Gin°)' contains a subgroup P of order p. Then since 

A*(G) is locally finite, there exists a finite subgroup H of A+(G)n G~oo with 

P _C H' .  But C'[P] C_ C' [H] ,  so we conclude from Lemma 3.3(iii) that C'[P] = 

C[P] is not semisimple. The above therefore implies that R * G is not 

semiprime, so (ii) follows and the theorem is proved. 

Thus we see that the question of the semiprimeness of R * G is answered 

unambiguously if A+(G) n G~,n is either a p'-group or it contains a nonabelian 

p-subgroup. In the remaining case, when A+(G) O Ginn is not a p'-group hut has 

all p-subgroups abelian, the result can of course go either way. In view of 

Lemma 3.3(0, this problem really occurs because C, the center of Qo(R), can be 

a nonperfect field. Indeed we have 

COROLLARY 3.6. Let R be a prime ring o[ characteristic p > 0 and assume that 

the center of Qo( R ) is a perfect field. Then a crossed product R * G is semiprime if 

and only if A+(G) n G,., has no elements of order p. 
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PROOF. If A+(G)N G~,, is a p'-group, then Therorem 3.5(i) implies that 

R * G is semiprime. On the other hand, suppose A÷(G)O G~,, contains a 

subgroup P of order p. Then since C is perfect, Lemma 3.3(i) implies that 

JC'[P] ~ 0 and Theorem 3.5(iii) yields the result. 

This completes our work on the semiprimeness problem. In the remainder of 

this section we study twisted group rings of infinite groups and sharpen the 

~-Iemmas of the first section. This extends some work of [5]. 

Let R' [G]  be a twisted group ring of G over R. Then we let U' denote the 

group of central units of R and we define 

(~' = {u~ lu ~ u',  x ~ G}. 

Since t(x, y ) C  U' for all x, y E G, we see that (9)' is a multiplicative subgroup of 

units of R ' [ G ] .  Observe that (t~' acts by conjugation on R ' [G ]  and that U'  acts 

trivially. Thus we have a well defined action of G = (~' /U'  on R'[G] .  

If x E G, we let C ' (x)  = {g E G I~.~ = Sg}. Then C' (x)  is a subgroup of G 

contained in C(x). Furthermore,  if g E C ( x ) ,  then ~-~,~g=A~(g) .£  and 

A~ : C(x)---~ U'  is a linear character into the center Z of R with kernel precisely 

C'(x). 
We let a'(G)= {x ~ G I[G :C'(x)]<o~}. Then A ' ( G ) i s  clearly a normal 

subgroup of G with A'(G)C_ A(G).  In fac. if R is prime it is easy to see that 

A * ( G ) C A ' ( G ) C _ A ( G )  as follows. If x EA*(G) ,  then [ G : C ( x ) ] < o o  and 

C(x) /C' (x)  is isomorphic to the image in Z\{0} of A~. But if x" = 1, then it 

follows easily that (see for example [6, lemma 1.2.6]) 

Ax (g)" = A , . ( g )=  A,(g) = 1. 

Since R is prime, Z is an integral domain and has at most n elements of order  

dividing n. Thus IC(x)/C'(x)l  ~ n and x E A'(G).  We let 0' : R'[G]---) R'[A'] 

denote the natural projection. 

The following lemma explains why we need the additional properties of the set 

,~-(D) given in Lemma 1.3. 

LEMMA 3.7. Suppose Z is a commutative integral domain and let 

/~,:G---)Z/{0} for i = l , 2 , . . . , n  be n distinct Z-linear characters. Let 

a~, ct2, •. •, ~, belong to a torsion free Z-module  V. Suppose that T is a subset of G 

and that ]:or all x E T 

,~,(x )~, + A~(x ) ~  + . . .  + ,~. (x )~.  = o. 

Then either all or, = 0  or there exist g~ ,g2 , " ' , gm E G ]:or some m with 

n j Tg, = (~. 
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PROOF. We proceed  by induction on n. If n = 1, theft certainly ei ther  a ,  = 0 

or  T = Q .  Suppose  now that a ~ f i 0 .  Since A ~ A n  there exists g E G  with 

a , ( g ) ~  An(g). Of  course  g need not belong to T. Set S = T N  Tg-'. If x E S ,  

then x E T and xg E T so we have 

and 

I 1 

O =  A n ( g ) ~  A,(x)a, = ~ A, (x )A. (g )a, . 
I 1 

Subtract ing then yields 

n - !  

O= ~ A, (x ) ' (Z , (g ) -Zn (g ) )a ,  
I 

for all x E S. Since a ,  # 0 ,  A , ( g ) ~  Am(g) and V is a torsion free Z - m o d u l e ,  we 

see that the above  is a nontrivial dependence  which holds for all x ~ S. Hence,  

by induction,  there exist g , , g 2 , " ' , g , .  E G with n j s g j  = 0 .  Then  certainly 

( n j  Tg,) n ( A t  Tg-'g~) = O and the lemma is proved.  

We now obtain two versions of  the A-reduction which we prove simultane- 

ously. 

LEMMA 3.8. Let R be a prime ring and let a~ ,a2 , ' . . ,  a,, [3~,[32,"., [3, E 

R ' [ G ] .  Suppose that 

for all x E G. Then 

and 

LEMMA 3.9. 

R'[G].  Suppose that 

]:or all x E G. Then 

,~[3, + ~ [ 3 2  + -- • + a..e[3. = 0 

e(~,)[3, + o (~2) [32+ . . .  + s(,~o)[3n = o, 

~ , s ( [3 , )  + ~ o ( [ 3 2 ) + . . .  + ,~.o([3n) = o 

o ( ~ , ) o ( [ 3 , )  + o ( , ~ 2 ) s ( [ 3 2 ) + . - .  + o ( ~ . ) e ( [ 3 . )  = o. 

Let R be a prime ring and let a~ ,a2 , ' . . , c t . ,  [3,,[32,...,[3n 

,~[3, + a~[3~ + .. • + a.;?[3. = 0 
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and 

0'(o.)~, + 0 ' ( o . ) / 3 ~  + . . .  + o ' ( ~ o ) t L  = o.  

]~ 1 0 1 ( ~ , ) +  o/201([32)+ - . .  + ol[not(f3tt) = 0 

o ' ( , ~ , ) o ' ( ¢ 3 , )  + o ' ( , ~ 2 ) o ' ( [ 3 ~ )  + . . . + o ' ( ~ , . ) o ' ( ~ . )  = o .  

PROOF. The third equation in each follows from either of the first two by just 

applying the appropr ia te  map 0 or 0'. The first two equations are just right-left 

analogues of each other so we will only prove the first one. 

Let D be the union of the supports of the finitely many a~ and fl,. Then D is 

finite, H = C ~ ( D  NA) has finite index in G and we consider the function 

defined for all x E H by 

~ ' (X)  = 0 ( ~ 1 ) £ ~ 1  "t- 0(012)i~[32 "~ " ' "  + O(oltt)X'~n. 

By Lemma 1.3, r vanishes on T = 3 ( D ) .  

Observe that H centralizes each a E Supp 0(a~) and hence for x ~ H we have 

a ~ = h~ (x)ci. Thus if we group terms in r ( x )  with the same Z- l inear  character,  

then since G acts trivially on R we see immediately that 

~-(x) = ,~,(x)~,, + ,~2(x)~,~ + - . - +  ,~. ( x ) , / .  

for suitable distinct linear characters A; : H - - * Z \ { 0 }  and suitable elements 

3'; E R ' [ G ] .  But r vanishes on T and n k T h k # O  for all h, ,h2 , . . . ,h ,  E H by 

Lemma 1.3. Furthermore,  since R is prime, R'[G] is a torsion free Z-module .  

Thus we conclude from Lemma 3.7 that 3'; = 0 for all ]. In particular 

0(a,)/3, = r(1) = ~ 7; = 0 
i j 

and Lemma  3.8 follows. 

Finally observe that if a E D N A, then [H  :C~(a) ]  = IA, (H)[ .  Thus since 

[ G : H ] < o o  we see that a E A ' ( G )  if and only if [A, (H)[<oo.  It therefore 

follows immediately,  since h '  _C A, that 

i j 

where the second sum is over  all those j with I Aj (H)I  < ~. This completes the 

proof of Lemma 3.9. 

As an application we consider the centrof the classical ring of quotients of a 

twisted group algebra F' [G]  assuming this quotient ring exists. The argument  is 
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essentially the same as given in [6] for ordinary group algebras, so we merely 

sketch it here. For twisted group algebras, the role of A is played by A'. 

Suppose S is a finite subset of A'(G).  Then since A' <~ G and A' C A, we know 

that S C H . ~  G where H is a finitely generated subgroup of A'. It then follows 

' 0o [H C~(H)]  < ~. Here  of course that [G :C . c (H) ]<  so : 

C'~(H) = {g E G I ~,h = hg for all h E H}. 

Now C~(H)  has a characteristic torsion free abelian subgroup A of finite index. 

It then follows easily that F'[A  ] is a central integral domain in F'[H].  Moreover  

the ring of fractions F'[A  ]-~F'[H] is clearly some twisted group algebra of the 

finite group H / A  over the field F '  [A]-~F'  [A]. Finally the action of G on 

F' [H] is given by the finite group G/C'~(H). With these observations, the proof 

of [6, lemma 4.4.4] goes over to yield 

LEMMA 3.10. Let a @ F ' [ G ] .  

(i) I[ a E Z(F ' [G] ) ,  then ct is a zero divisor in F '[G] if and onlf ip is a zero 

divisor in Z(F '[G ]). 

(ii) I f  a is not a zero divisor in F'[G],  then there exists e E F'[G] such that 

O'(3,a) is central in F'[G] and not a zero divisor. 

We should remark that Z ( F ' [ G ] ) C  F'[A'] .  Now given Lemmas 3.9 and 3.10, 

the proof of [6, theorem 4.4.5] goes over immediately to yield 

THEOREM 3.1 I. Let F be a field and let the twisted group algebra F' [ G ] be an 

Ore ring. Then the center of the classical ring of quotients Q, (F'[G])  is equal to 

o~ (Z(F' [G ])). 
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