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THE CLASSIFICATION OF DISCRETE 
2-GENERATOR SUBGROUPS OF PSL(2, R) 

BY 

J. PETER MATELSKI' 

ABSTRACSI 

This paper gives a short geometric algorithm for deciding the discreteness of 
most 2-generator subgroups of PSL(2, R), as well as a self-contained algorithmic 
approach to the complete classification. 

Our goal is to give a new and self-contained proof of the classification of 

2-generator Fuchsian groups. This problem has been discussed in part by Knapp 

[1] and then extensively by Purzitsky [5-9]. If A, B ~ PSL(2, R), neither the 

identity, then there are seven cases to consider: 

A B 

I. elliptic elliptic 

2. elliptic parabolic 

3. parabolic parabolic 

4. elliptic hyperbolic 

5. parabolic hyperbolic 

6. hyperbolic hyperbolic 

7. hyperbolic hyperbolic 

axes disjoint 

axes intersecting 

This numbering of the cases will be used throughout this paper. In Case I, 

Knapp's result decides the discreteness of G = (A, B). We show that deciding 

discreteness in Cases 2-6 reduces immediately to previous cases via a short 

algorithm. Thus Cases 1-6 are strongly unified. Our technique is to adjoin to G a 

particular reflection of H 2, related to the Lie product of A and B, which gives 

strong geometric information about G and a nearly canonical fundamental 

domain when G is discrete. Case 7, on the other hand, is qualitatively different 

and requires a long algorithm. We point out and correct an error in the 
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treatment of Case 7 in [9]. In conclusion, we give a new proof of the existence of 

uniform collars (with sharp constants) used in [4]. 

I would like to thank Prof. L. Keen for sharing her expertise with me during 

the inception of this work; Prof. B. Maskit for introducing me to Fenchel's use of 

half turns; and Prof. I. Kra and Prof. B. Maskit for valuable criticisms of the 

manuscript. 

The Classification 

We think of A and B as acting as isometrics of H 2 which preserve orientation. 

The unit disc will be our standard model of H 2. An elliptic, parabolic, or 

hyperbolic isometry of H 2 is respectively a rotation, limit rotation, or translation. 

In Cases 1-6 we make the following normalizations: A and B either fix a point 

of the real axis or have axis of translation perpendicular to the real axis, A being 

to the left of the imaginary axis and B to the right - -  these adjustments can be 

accomplished by changing coordinates. Then, by replacing A by A -t or B by 

B-I if need be, we assume that A and B map 0 to the (closed) upper half plane. 

For convenience, call X E PSL(2, R) primitive if X is hyperbolic, parabolic, or 

elliptic of order l (written l = o ( X ) )  and X rotates by 2,r/l. 

THEOREM. If  A ,  B ~ PSL(2, R) are primitive and normalized as above, then 

G = (A, B)  is discrete if and only if the following conditions of  an algorithmically 

decidable nature are satisfied: 

Case 1 (Knapp [1]): A B - '  is primitive or one of  the following five conditions 

holds: set n = o ( A  ), m = o (B ) ,  n <= m, also set I = o ( A B - ' )  and let A B  -l rotate 

by k(27r/ l)  so that k and l are relatively prime. 

(i) k = 2, n = m, 1/l + l /n  < l/2; 

(ii) k = 2 ,  n = 2 ,  m = l ,  m=>7; 

(iii) k =3, n = 3 ,  m = l ,  m=>7; 
(iv) k = 4 ,  n = m = / ,  m = 7 ;  

(v) k = 2 ,  n = 3 ,  m = l = 7 .  

Case 2: A B - i  is primitive. 

Case 3: A B  ~ is primitive, or A B - 1  rotates by 2(2zr/l) where o ( A B )  -~ = I. 

Cases 4, 5, and 6: A NB- ~ is not elliptic for all N >= 1, or if A '%B -~ is elliptic for 

some No >= 1, (A  N,,B-1, A )  is discrete (which reduces to a previous case). 

Case 7 (Purzitsky [9[): A B A - ' B  -~ is primitive or the square of  a primitive 

element, or A and B, up to a conjugation, occur in one of three wel l -known discrete 
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groups, a (2,3, v) or a (2,4, v) or a (3,3, v) triangle group, where v =  

o ( A B A - - I B - ' ) .  

PROOF. 

Case 1: Let A, B fix a ,b  E H  2 respectively, o ( A ) =  n, o ( B ) =  m. Construct 

the convex, three-sided polygon T in H 2 with vertices at a and b and with angles 

7r/n at a and rc/rn at b. Let R, R~, Rb be the reflections in the sides of T where 

R fixes a and b. Then A = RoR, B = RbR. Note that AB-~  = R o R R R b  = RaRb 

measures the relative positions of the axes of Ro and Rh. 

Let (~ = (A, B, R);  then G = (A, B)  is the orientation preserving subgroup of 

(~ of index 2 and G and (~ are discrete or non-discrete together. 

If A B  -~ is primitive, i.e., A B  ~ is hyperbolic, parabolic, or elliptic rotating by 

27r/o(AB-~) ,  then T satisfies the hypotheses of Poincar~'s Polygon Theorem, 

see Maskit [3], and we may conclude that (3 is discrete with T as fundamental 

domain. A fundamental domain for G can be obtained by juxtaposing T and 

RT. 

Suppose that T has a third vertex c so that A B  -~ is elliptic. If the angle of T at 

c is irrational times zr, then t~ is not discrete. If the angle at c is k( l r / l ) ,  k > 1, 

l = o ( A B - I ) ,  Knapp's Theorem says that there are just five situations in which t~ 

is discrete. We now give a proof of this result designed to exploit the reflections 

in (~. 

Since k > 1, there are additional axes of reflection in 0 passing through c and 

making angles of 7r/l, 2(r r / l ) , - - - ,  (k - 1)(rr/l)  with the segment ac. We say that 

these reflections are implied by the angle at c. Consider the 2 end triangles, 

A a d ' c  and Acdb, so formed in T and call these the first generation ends. Repeat 

this procedure with A a d ' c  and with Acdb to obtain, at most, 4 triangles called 

the second generation ends. There are, similarly, at most 2 N N-th generation 

ends. We can decide the discreteness of (~ by induction on N such that the 

process terminates with the N-th generation ends. The process must indeed 

terminate if 0 is discrete because only finitely many axes of reflections can cross 

Z 

Assume that we have termination with N = 1; then ( a d ' c  and "(cdb must 

both be _-< zr/2 because an obtuse angle always implies more reflections. Thus 

d = d',  cd is an altitude of Aabc, k = 2, and so n = m and (i) holds. 

If we have termination with N = 2, either A a d ' c  or Acdb must be obtuse, say 

Acdb is, for otherwise (i) would hold for Aabc. Note that Acdb must terminate 

after one step, so the above implies that , (cdb = 27r/a, ot an integer. Since 

2~r/a > ~'/2, we conclude that a = 3. If k = 2, then (ii) holds. If k = 3, (iii) holds. 
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If k ~ 4 ,  then (iv) holds because we must have that Acd'a is obtuse and so 

~cd'a = 2~/3  and k = 4 follows. 

Assume that the process stops with N = 3. We may take Acdb to be obtuse. 

Acdb then terminates on step 1 or 2. If (i) holds for Acdb, then e;.cdb = 27r/3 

because this is the only obtuse angle with numerator  2 and odd denominator.  If 

(ii) holds for Acdb, then ~cdb =2~r/3 again and we are forced to have a 

subtriangle with angles ~r/2, 7r/3, Ir/3 which is impossible in hyperbolic 

geometry.  Similarly, if (iii) holds for Acdb, then 4.cdb = 3rr/4 or 37r/5 leading to 

an impossible triangle. If (iv) holds, then ~cdb = 47r/7. Thus a 1 or 2 step obtuse 

end triangle has obtuse angle 27r/3 and (i) holds or 4~'/7 and (iv) holds. Now if 

k = 2, then Aabc satisfies (v). We can rule out k > 2 as follows: ef.cd'a would 

then be --- 27r/3 because the configuration (v) sits inside Aabc. The only way for 

Acd'a to terminate in 1 or 2 steps is for k = 3, (i) holds, and ef.cd'a = 2~'/3 - -  

this readily gives the contradiction 7r/2 = 37r/7 for instance. So there is a unique 

3 step triangle. 

Lastly, assume that the process terminates with N = 4. Then Acdb say is a 3 

step triangle and eZcdb = 2zr/7. This forces e;.cd'a >- 5~'/7 which cannot be in a 1 

or 2 step triangle. Hence there are no 4 step triangles and no N step triangles 

with N => 4. 

Case 2: Construct a three sided convex polygon T with angles ~r/n at a and 

0 at b where A fixes a, o ( A ) =  n, and B fixes b. If R, Ro, and Rb are the 

reflections in the sides of T as above, then A = R~R, and B = RbR. 

If A B - '  is primitive, then (~ is discrete with T as fundamental domain. The 

converse also holds - -  let Rc be a further reflection implied by a third vertex c of 

T. Say that the axis of Rc meets ab at d. Then Aacd contains a fundamental 

domain of (~. Since the cusped triangle Acdb has finite area, it must be tiled by 

finitely many copies of the fundamental domain, but Acdb is not compact - -  

contradiction. 

Case 3: Construct T again so that A = RoR, B = RhR, A fixes a, and B fixes 

b, a ~  b. If A B  -~ is primitive, we are done. If o(AB ' ) =  l and A B  -~ rotates by 

k(27r/l) about c, k > 1 ,  then k = 2 ;  if k > 2 ,  there would be a compact 

fundamental domain; but, as in Case 2, we could not then tile the cusps. Since 

k = 2, exactly one half of T is a fundamental domain for 0 - -  T behaves like an 

isoceles triangle. 

Case 4: Let R be the reflection with axis passing through a, the fixed point of 

A, and perpendicular to the axis of B. a might well lie on the axis of B. Consider 
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the factorizations A = R , R ,  B = RbR where R,, and Rh are reflections as 

before. Also write A '~ = R,,~R. If A "~B ' =  R,,.~Rh is never elliptic, then (~ is 

discrete: there is exactly one N. rood n, n = o ( A ) .  such that the axis of Rb is 

contained in the sector bounded by the axes of R,.,,,, and R,,r,.,,+,~. The convex set 

bounded by the axes of R,~,,, R~(.,,,,~ ~, and R~ is then a fundamental domain for 

8. 
If A ' " B - ' =  Ro,~,,Rh is elliptic for some N,,. then we apply Case 1 to the 

generators A N"B ~ and A to decide discreteness. For clarity, we carry this out. 

Let T be the convex set bounded by the axes of Ro..,,,, R,~.,,. ~, and R,., where R,. 

is a reflection whose axis makes an angle of zr/m,  m = o ( A  ~,,B -'), with the axis 

of R~.,,,, at c, the fixed point of A :"B ~. Either T is a fundamental domain for (~, 

or T is one of Knapp 's  five triangles, or (~ is not discrete. 

Case 5: Note that if A and B share a fixed point, then G is not discrete. 

(This is well known, but can be proved by adjoining the reflection R '  in the axis 

of B - -  consideration of the images of the axis of the reflection A R '  under 

powers of B shows nondiscreteness.) Otherwise, proceed as in Case 4, using 

Case 2 to finish the argument.  

Case 6: Again, if A and B share just one fixed point G is not discrete. (Look 

at the subgroup H = (A ,  B A B  ~)of G and observe that A and B A B - '  share just 

one fixed point; there is a reflection R '  such that R ' A R '  = B A B  '; IZI = (H,  R ' )  

is non-discrete as before.) Otherwise, Jet R be the reflection in the common 

perpendicular to the axes of A and B and proceed as in Case 4 using Case 4 a 

second time to finish the argument.  

Case 7: Consider A, B hyperbolic with axes intersecting in exactly one point 

p. Let E be elliptic of order 2 fixing p. E was introduced by Purzitsky in [9]. 

Observe that E A E = A  ~ and E B E = B  ' . S e t  A = E ~ E  and B = E h E  s o t h a t  

Eo and Eh are elliptic of order 2. Note also that A B A - ~ B  ' = A B E A E B  ' = 

A E b A E b  = (AEb)'-. AEh  is a square root of the commutator .  It is easy to 

construct A E b  : drop a perpendicular I from the fixed point of E~ to the axis of A 

and do the same for A E ~ A  ' to obtain t'. Draw perpendiculars )t and ,k' to l and 

I' through the fixed points of Eh and A E b A  ' respectively. AEb  then maps ,~ to 

,i '  taking the fixed point of A E b A  ' to the fixed point of Eh. So, for instance, AE~ 

is elliptic if and only if ,~ and h '  intersect and then AEh  fixes the point of 

intersection. 

Let G '  = (A, B ,E ) ;  G '  has G = (A, B} as a subgroup of index 2 or G = G ' .  

Now the convex polygon P bounded by the axis of A and by 1, l ', )t, and A ', is a 

fundamental domain of G '  if A E h  is primitive. 



314 J.P. MATELSKI lsr. J. Math. 

Assume that  o ( A E b ) =  n and that  A E b  rota tes  by k ( 2 7 r / n ) ,  k > 1. To  deal 

with this si tuation,  we use the area  f o r m u l a  for Fuchsian groups,  see [2], p. 77. 

If F is a finitely genera ted  Fuchsian group with area (I-Y/F)< ~, then 

a r ea (W/F)  = 2rr {2(g - I) + , ~  (1 - 1 )  } 

where  g = genus (W/F)  and F has m conjugacy classes of maximal  elliptic and 

parabol ic  cyclic subgroups  of orders  uj, 2 <= uj <= ~ ,  v, <= v2 < �9 �9 �9 < v,,. 

Note that  a r ea (P )  = ~" - 27rk /n .  Since the sides of P are identified by e lements  

of G ' ,  it follows that  P contains a fundamenta l  domain  of G '  provided  G '  is 

discrete.  In fact, a r e a ( P ) = p ,  a rea(H2/G ') for some integer p, as one readily 

sees. 

The  inequali ty area  (H ' - /G ' )  < a rea (P )  implies that  g = 0 and m = 3, so that  G '  

must be a triangle group.  

The  inequali ty 2 .  a rea(H2/G ')-< a r ea (P )  can be writ ten 

k < ( 1  + 1 3 ~ + 1  
., 

If ( )_-<0, then k / 2 < = n / v 3 ,  but k ~ 2  and n<-_v3; therefore  k = 2 ,  n = v , ,  

( ) = 0 ,  v ~ = 2 ,  v , = 4 a n d p = 2 ,  seeF ig ,  l. I f (  ) > 0 ,  t h e n v ~ = 2 a n d v _ , = 3 .  In 

this case p �9 a rea(H2/G ') = a r ea (P )  can be writ ten ( p / 3 ) ( v 3  - 6) = v3 - 2 d k  where  

d = v3/n  is an integer.  Now if p = 2, then as one checks by count ing the possible  

n u m b e r  of angles of 27r / v ,  that can occur in P, k = 2 and d = 1, and there are no 

solutions. If p > 3, then v~ - 6 <- v~ - 2 d k ,  or d k  =< 3, so that  d = 1 and k = 2, 3. If 

k = 2, then we are led to p = 9 and v~ = 7 which actually occurs (see Fig. 1), or  to 

p = 5 and v3 = 9 which cannot  occur  in our  situation. If k = 3, then p = 3; again 

see Fig. 1. 

We have shown that  if G '  is discrete,  then G '  is a (2, 3, n)  or  a (2, 4, n)  triangle 

group where  n = o ( A E ~ ) .  If k = 3 we have the first possibility and if k = 2 we 

have the second possibility unless n --- 7 when we have both possibilities - -  this 

last fact was omi t t ed  in Purzi tsky [9]. 

We claim that  G = G '  if and only if n is odd and that  G '  has index 2 in G '  if 

and only if n is even,  n = o ( A E ~ ) .  Set v = o ( A B A  ' B - ' ) .  If n is even,  then 

n = 2 v  and G '  is a (2,3, n)  tr iangle group.  A (2,3, n)  triangle group has a 

subgroup  of index 2 precisely when n is even,  this subgroup  being a (3,3, v) 

tr iangle group.  If n is odd,  then n = v because A B A - ~ B  J = (AEb) ' -  and thus 

G = G ' .  To  comple te  the a rgument ,  assume that  n is even and obse rve  that  E, 

or  E , ,  or  Eb, can not be an e l emen t  of the (3, 3, v) subgroup:  if v is odd,  this is 
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R 

ii) 

Ea E 

E b 

p= 2 
k = 2 

vl 

z A 

p- -3  
k =3 

l p , 9  

k =2  

Fig. I. 

clear, otherwise, look at P and note that there would be too many angles of 2rein 

to be consistent with p = 3. So A or A E  = E,  and B or B E  = Eb are in the 

subgroup and therefore G has index 2 in G'. 

In Fig. 1, the model situations for G'  discrete are shown. In each of these 

examples, one can repeatedly do "leap frog" operations on the generators E, E~, 

and Eb and still obtain the same group. Purzitsky has shown that any set of three 
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elliptic elements of order 2 generating a discrete group is Nielsen equivalent to 

one of the standard sets. Another test for discreteness is to determine when E, 
Ea, and Eb, up to a conjugation, occur in a (2, 3, n ) or a (2, 4, n ) triangle group - -  

this can clearly be accomplished in a finite number of steps. 

Collars 

Let F be a Fuchsian group. The axis of a hyperbolic element of F is called 

simple if it projects to a simple closed geodesic o n  I-I2/F, i.e., if it is precisely 

invariant under its stabilizer in F which is hyperbolic cyclic. A collar about a 

simple axis is a neighborhood which we take to be of constant width which is also 

precisely invariant under the stabilizer of the simple axis. 

Say that A • F generates the stabilizer of a simple axis. For any X E F - (A), 

the axis of X A X  1 is disjoint from the axis of A and the axis of A is simple with 

respect to (A, XAX-I) .  Now (A, X A X  -~) is a subgroup of (A, E') of index 1 or 2, 

where E '  is elliptic of order 2 fixing the midpoint of the segment perpendicular 

to the axis of A and the axis of XAX-~; the axis of A remains simple with 

respect to (A, E'). We ask the following question: how close can the fixed point 

of an elliptic element E of order 2 be to the axis of A such that (A, E)  is discrete 

and the axis of A is simple in (A, E)? This can be resolved using our present 

methods. 

Consider (A, E, R) where R is the reflection with axis passing t.hrough the 

fixed point of E and perpendicular to the axis of A. A and E factor into 

A = RaR, E = ReR, where R~ and Re a r e  reflections, the axis of Re being 

perpendicular to the axis of R. If A E  = R~Re is hyperbolic, parabolic, or 

primitive elliptic, then (A, E)  is discrete and the axis of A is simple in (A, E). 

The converse also holds: if A E  is elliptic but not primitive, then suppose t h a t  

(A ,E)  is discrete and construct a triangular fundamental domain for (A ,E)  

which intersects the axis of A, is invariant under R and which is bounded by the 

axes of reflections in (A, E, R). One readily sees that the axis of A is not simple 

with respect to (A, E). We conclude that E,, is closest satisfying the conditions 

exactly when AEo is elliptic of order 3, and the distance from the axis of A to the 

fixed point of Eo is the width of the best possible uniform collar. 

Similar but easier reasoning can be carried out when A is parabolic or elliptic. 

If A is parabolic or elliptic, o(A)=>7, the answer again is o(AE)=3 .  If 

o ( A ) = 6  or 5, the answer is o(AE)=4 .  If o ( A ) = 4 ,  then o ( A E ) = 5  and if 

o(A ) = 3, o(AE)  = 7. One can use hyperbolic trigonometry to find the widths of 

the various collars and to show that they are mutually disjoint on H2/F as in [4]. 
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