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THE BANACH-SAKS PROPERTY 
IS NOT L 2-HEREDITARY 

BY 

WALTER SCHACHERMAYER 

ABSTRACT 

We construct a Banach space E, which has the Banach-Saks property and such 
that L2(E) does not have the Banach-Saks property. The construction is a 
somewhat tree-like modification of Baernstein's space. 

1. Introduction 

Recall that a Banach space E has the Banach-Saks property (abbreviated 

(BS)) if for every bounded sequence {x,}7=, in E there is a subsequence {x'}:~ 

converging in Cesaro-mean (i.e., II n-~ E~ x ~ -  x I1 0 for some x ~ E). 

We construct an example of a Banach space E having (BS) such that L~o, lj (E)  

does not have (BS). 

After constructing this example I have been informed that J. Bourgain has 

already constructed a Banach space with this property ([3], [6]). However, our 
construction is quite different and - -  as we believe - -  simpler and there might be 

some interest in the technique of the construction. 

Our space E will be a somewhat tree-like modification of Baernstein's space 
[1] and is based on a very elementary probabilistic lemma. It will be convenient 

to use interpolation theory (following an idea of B. Beauzamy [2]) to avoid 

certain technical difficulties arising in Baernstein's construction. Let us note 

however that it is possible to construct our example following exactly the lines 

[1]. 

2. An elementary probabilistic result 

LEMMA 1. Let N E N and let X ~ , . . . ,  XN be independent random variables 

taking their values in the set {1,-..,  N} in a uniformly distributed way (i.e. for 
1 <- i, ] <= PC, P{X~ = j} = N-l).  Let 
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Then 

(I) 

Px~ooF. 

Y(to) = card{/: there is an i, 1 <= i <_ N, such that X~ ( to ) = ]}. 

P{ Y >= N/4} -> 1/4. 

For 0_-<n _-_N let Y~(to) = card{j :there is an i, 1--<i _-<n, such that 

X~(to) =/}.  Clearly 

O= Yo<- Y~<= . . .  <= YN= Y. 

Assume that (1) does not hold; then it fails for each Y,. Fix 1 -< n < N and let 

A be an atom in the o'-algebra generated by X~, . .  -, X, such that, for to E A, 
Y.(to)< N/4. As Xn+~ is independent of I:, and the law of X.+t is uniformly 
distributed, 

P{to E A : Y,+~(to) = Y,( to)+I}>=~.P(A) .  

Summing over the atoms on which Y~ is less than N/4 we see that on a set of 
3 3 probability greater than or equal to ~. ~ we have Y~+~ = Y. + 1, hence 

E(Y~+i)>-_ E(Y~)+9/16>= E ( Y , ) +  1/2. 

It follows that E ( Y )  = Y.~.-~ E(Y,+~ - Y . )  >-_ N/2. On the other hand Y _-< N;  

hence if (1) does not hold, then 

E(Y)<=a,. N/4  +~. N < N / 2 ,  

a contradiction. [] 

3. Construction of the space 

Let ~o be the space of finite sequences and let {en}~-~ be its natural base. We 

write n (uniquely) as 2~+ v (0_-< v-< 2 u -  1), and associate to n the number 

t(n) = v12" E [0, I[. 
A finite subset y = {n~,.- -, n~ } of N, where n~ < n2 < --" < nl, will be called 

admissible, if: 
(I) I ~ nl (Baernstein's condition). 

(2) Let p be defined by 2P-I< n~ -<2 p. For every 0f/" <2 ~ there is only one i 

so that t(n,) E [./12 p, (/+ I)/2P[. 

For example, for u EN the set 3' ={2",2" + I,...,2 u+~- I} is admissible. 

Let A be the set of admissible y's. For yEA and x ={xi}7-1E~o define 

o-ix, 7) = l llx If, = sup{o-(x, E 
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Clearly II lit defines a norm on ~o, II II, ~ II I1 --II I1~o. Let F denote the 

completion of ( '0,11 I1 ) and i:  I~---~F the canonical injection. 
Recall [2] that an operator T from a Banach space A to a Banach space A~ is 

said to have (BS) if any bounded sequence {x. }~=~ in A contains a subsequence 
' ~ n 7,,~ T x ,  converge in AI.  It is shown in {x.}.=, such that the Cesaro averages - 1  . , 

[2] that an operator T has (BS) iff the Lions-Peetre interpolation spaces 

(A/Ker  T,A~)q,,, I < p  < ~ ,  0 <  q < 1 (or equivalently the Davis-Figiel- 

Johnson-Pelczynski factorisation space [4]) have (BS). 

PROPOSITION 2. The m a p  i : l ~--~ F h a s  (BS). 

PROOF. Let {x.}:=~ be a bounded sequence in ! 1. We may suppose that x. is 

bounded in norm by 1 and converges coordinatewise to zero and by a standard 

perturbation argument we may assume that 

r:~ (n) 
X .  = A i e i  

i =r(n-I)+l 

where r(n)  is an increasing sequence. 

We now choose inductively a subsequence {nk}~-i and infinite subsets Mk of 

N. Let Mo = N and nl = 1 and suppose Mk-i and n~ are defined. Let p be such 

that 2P-I< r (n~ )<2  p and consider the partition of [0,1[ into [j/2 p, (j + 1)/2P[, 

j = 0 , . .  -,2" - 1. For n => nk define 

tz~ ") = max{[ Xl")[ : t(i) E [j/2", q + 1)/2~ [}. 

Note that, for every n, y.f.~l tt~.)_< 1 as the x. are bounded by 1 in the P-norm. 

Find a subsequence ~rk of M k - , N [ n k  + 1 , " - , ~ [  such that, for every p 

i = 0 , - . . ,  2 p-', the sequence {tt~")},¢x,~ converges, to ttj say. Clearly ~:~51/z~ _--- 1. 

Finally let Mk be the subset of/~rk consisting of those n for which, for every 

j = 0 , . . . ,  2 ~ - 1, tt~ ") _-< tt~ + 2 -~ and define n~÷, by picking an arbitrary member 

of Mr. This completes the induction. 

Note that for 3, E A  and k such that inI(3')=< r(n~) and for every ! E N  

(2) (r(x., ~, + . . .  + x.~÷,, 3') -< 2. 

Indeed, 3' may pick for every j = 0 , . . - , 2 ~ - I  at most one index i with 

t ( i )  E [j/2 ~, (j + 1)/2~ [ (p defined as above), hence the contribution of this index 

is at most gj + 2 -~. Summing over j we obtain (2). 

Hence for n , !  as above and 3' such that r(nk_~)<inf(3')<- r(nk) 

(r ( x , ,  + . . .  + x,~ ÷ , , 3" ) <- tr ( x . ,  3" ) + ~r ( x.~ . , + " ' "  + x,~÷,, 3')_---3. 
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It follows readily that for every K E N 

I IK- ' (x . ,  + " ' "  + x . , ) l b  <--3K - '  

from which the proposition follows. [] 
Let (E, ]l II ) be the Davis--Figiel-Johnson-Pelczynski factorisation space of 

the injection i:l'---~ F. As mentioned above, Proposition 2 implies that E has 

(BS). We may and do consider E as a space of sequences, containing l ~ and 

contained in F. 

PaoPosmoN 3. L2([O, 1]; E)  does not have (BS). 

PROOF. Let {J',}~=l be a sequence of independent random variables such that 

fu takes the value e2-+o (i.e. the 2"+ vth unit vector) with probability 2-" 

(v =0 , . . - , 2"  -1) .  
/du }7-1 is a bounded sequence in L*([0, 1]; I') hence in particular it is bounded 

in L2([0, 1];E). 

Also for almost every to ~ [0, 1], {/, (to)}~=, converges weakly to zero in F. 

(Indeed, it is shown in the proof of Proposition 2 that /or  any sequence of unit 

vectors there is a subsequence converging strongly to zero in Cesaro-mean.) It 
follows from [4], that {f, (to)}~=~ converges weakly to zero in E. By [5], theorem 

IV.I.1, we conclude that ~,}~=~ tends weakly to zero in L2([0, 1];E). 
Now fix any subsequence {fu, }~=~. As the norm of L2(E) is stronger than that 

of L~(F) the following assertion will prove Proposition 3: 

(3) K-ll l f . ,+ ""  +f.KllL,,v,>=l/32, K =2 ,4 , ' " , 2P ,  "'" 

Indeed, assume K = 2 p+~ and for k = 2 p + 1, ' .  -, 2 p÷~ define the random variables 

Xk with values in {0, . . . ,2  p -1} by 

Xk(to)=]  i [ / . , (oJ )=e ,  and t (n)E[ j /2" ,q+l)12"[ .  
p+l 

/ X ~  / 2 p The random variables x ktk=z +1 satisfy the assumptions of Lemma 1, hence on a 
0+1 

set B of probability _-__ 1/4 the sequence {Xk (to)}~-=p+, hits at least 2 ~-2 different 

]'s. Fix such an to and find a set 3' ={n , , . . . , n~}={u"~ ,+v , , . . . , 2%+ v~} such 

that 

(i) . , <  . . .  < n , ,  

(if) / = 2  "-2, 
(iii) l.,,(to) e2.,, + ~, for some k, E {2 ~ + 1,. 9P+q 

(iv) the vd2% lie in different [j/2 ", q + 1)/2P[. 

Then it is easy to check that y is admissible and therefore 
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K-lllf-,('°) + . . .  + I.~ (o,)U~ ~ 2 - 'p+ '~ ( I . ,  ( ,o)  + . . .  + I.~ (o,) ,  .y) 

> 2 -¢p+0 " 2 p-2 = 1/8. 

In tegra t ing over  B we obtain  (3). [ ]  

REMARK. The  proof  actually shows that  for 1 < p  <oo, L P ( E )  does not  have 

(BS) and that  L~(E)  does not  have the weak  Banach -Saks  proper ty  (called 

(BSR) in [2]). 
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