ON AUTOMORPHISMS OF THE DEGREES THAT PRESERVE JUMPS⁺

BY

LINDA JEAN RICHTER

ABSTRACT

If F is an automorphism of the degrees of unsolvability that preserves the jump operator, then F leaves fixed all the degrees c that satisfy $c \ge 0^{(3)}$.

1. Let D be the set of all degrees of unsolvability, let \leq be the usual partial ordering on D, let \bigoplus be the binary join operator on D (least upper bound), and finally let ' be the jump operator on D. No nontrivial automorphisms of the structure $\mathcal{D}_i = \langle D, \leq, \cdot \rangle$ are known. Indeed no nontrivial automorphisms of $\mathcal{D} = \langle D, \leq \rangle$ are known. It is conceivable that the identity is the only automorphism of \mathcal{D} , and thus that the automorphisms of \mathcal{D} fix all the degrees. However, so far θ is the only degree known to be fixed by all the automorphisms of \mathcal{D} .

More is known about the fixed points of the jump-preserving automorphisms of \mathscr{D} (that is, automorphisms of \mathscr{D}_i). The main theorem of this paper, Theorem 3.1, states that for all degrees $c \ge 0^{(3)}$ and all automorphisms F of \mathcal{D}_i , $F(c) = c$. This theorem is proved independently in Epstein [1, p. 82] using distributive lattices rather than the nondistributive ones that will be used here.

This main theorem follows from Theorem 1.1, an immediate generalization of Jockusch and Solovay [2, theorem 2]. In Jockusch and Solovay [2] the theorem is stated and proved for $n = 4$, and it is used to prove that the degrees $c \ge 0^{(4)}$ are fixed under the automorphisms of \mathcal{D}_i .

THEOREM 1.1. If for all degrees **a** and all automorphisms F of \mathcal{D}_i , $a \leq (F(a))^{(n)}$, *then for all degrees* $c \ge 0^{(n)}$ *and all automorphisms F of* \mathcal{D}_i *, F(c) = c.*

In Section 2 we will construct some nondistributive upper semilattices and embed them onto segments of the degrees of unsolvability. The embedding will

Received March 16, 1978

^tThe results of this paper were part of the author's PhD thesis (Illinois 1977), supervised by Carl G. Jockusch, Jr.

28 L. J. RICHTER Israel J. Math.

lead to Lemma 3.1: for all degrees a and automorphisms F of \mathcal{D}_i , $a^{(2)} \leq (F(a))^{(3)}$. Theorem 3.1 will then be immediate from Theorem 1.1.

2. Consider for each natural number *i* the finite upper semilattice \mathcal{L}_i = $\langle L_{i} \leq i, V_{i} \rangle$ pictured graphically in Fig. 1. For $a, b \in L_{i}$, define $a \leq i b$ if and only if there is a path in the graph which can be traced from a to b by moving only in the directions indicated by the arrows, and define aV_ib in the usual way as the least upper bound of a and b relative to \leq_{i} . Note that because of the arrangement of incomparable elements \mathcal{L}_i is embeddable in \mathcal{L}_j if and only if $i = j$.

Any countable collection of these finite upper semilattices can be combined into a countable upper semilattice. When $S \subseteq \omega$ and s_i is the *i*th element of S listed in numerical order, we can combine the collection $\{\mathcal{L}_i : i \in S\}$ into the countable upper semilattice \mathcal{L}_s by identifying the greatest element of \mathcal{L}_{s_i} with the least element of \mathscr{L}_{s+1} .

Because (1) two elements from different components of \mathscr{L}_s will always be comparable, and (2) the embeddability of \mathcal{L}_i in any lattice depends on the arrangement of incomparable elements, L_i is embeddable in L_s if and only if $i \in S$.

Lemma 2.1 below will specify the property of \mathcal{L}_s which is important for the proof of Lemma 3.1, but some definitions are needed first. If A is a set, let \overline{A} be the complement of A. If A and B are subsets of ω , let $A \oplus B =$ $\{2i: i \in A\} \cup \{2i+1: i \in B\}$. If R is a relation on a set A, and $B \subseteq A$, let $R \upharpoonright B$ be the restriction of R to B. Finally, if A is a set or relation, let deg (A) be the degree of unsolvability containing A.

LEMMA 2.1. Let B be a subset of ω with $\deg(B) = b$; let $M = \langle M, \leq_{\kappa}, V_{\kappa} \rangle$ be a *countable upper semilattice. If* $S = B \bigoplus \overline{B}$ *and* $M \simeq \mathscr{L}_s$ *, then* $\deg(\leq_{\mathscr{M}}) \geq b$ *.*

PROOF. We see by the definitions of \oplus and \mathscr{L}_s that $i \in B$ if and only if \mathscr{L}_{2i} is

embeddable in $\mathcal{L}_s \simeq \mathcal{M}$, and $i \notin B$ if and only if \mathcal{L}_{2i+1} is embeddable in $\mathcal{L}_s \simeq \mathcal{M}$. Also, the pattern of incomparable elements in $\mathcal{L}_s \simeq M$ insures that \mathcal{L}_i is embeddable in M if and only if the partial ordering $\langle L_n \leq \frac{1}{n} \rangle$ which is the reduction of \mathcal{L}_i is embeddable in $(M, \leq_{\mathcal{M}})$, the reduction of M. Thus we can effectively determine whether $i \in B$ or $i \notin B$ by searching all finite subsets F of M for one such that the partial ordering $\langle F,\leq_{\kappa} |F\rangle$ is isomorphic to $\langle L_{2i},\leq_{2i}\rangle$ or $\langle L_{2i+1}, \leq 2i+1 \rangle$. Hence $\mathbf{b} = \deg(B) \leq \deg(M) \bigoplus \deg(\leq_{\mathcal{M}})$. But if r is the least element of the upper semilattice \mathcal{M} , then $x \in M$ if and only if $r \leq \mu x$. Thus $deg(M) \leq deg(\leq_{\mathcal{M}})$, and we can conclude that $b \leq deg(\leq_{\mathcal{M}})$.

Define the degree of a presentation of a structure \mathscr{L} , written deg (\mathscr{L}), as the join of the degrees of the universe, functions and relations. Define the degree of the isomorphism class of $\mathscr L$ to be the least degree among the degrees of presentations isomorphic to \mathcal{L} , if such a least degree exists. With this terminology Lemma 2.1 can be modified to the Corollary below.

COROLLARY 2.1. *For any degree b, if B is a set such that* $deg(B) = b$ *and if* $S = B \bigoplus \overline{B}$, then the degree of the isomorphism class of \mathscr{L}_s exists and is **b**.

PROOF. If $M = \langle M, \leq_{\kappa}, V_{\kappa} \rangle \simeq \mathcal{L}_{s}$ then in the proof of Lemma 2.1 we showed that $\mathbf{b} \leq \deg(M) \bigoplus \deg(\leq_{\mathcal{M}})$. Thus $\deg(\mathcal{M}) = \deg(M) \bigoplus \deg(\leq_{\mathcal{M}}) \bigoplus$ $deg(V_{\mu}) \geq b$. Since $deg(\mathcal{L}_s) = b$ we see that **b** is the least degree among the degrees of presentations isomorphic to \mathscr{L}_{s} .

The following theorem is a strengthening of the relativized form of the main theorem from Lachlan and Lebeuf [3]. The theorem involves an embedding of an upper semilattice onto a segment of $\mathscr D$ with universe $\{c \in D : a \leq c \leq b\}$. This substructure will be denoted $\mathscr{D}(a, b)$.

LEMMA 2.2. *Given* $\mathcal{L} = \langle L, \leq, V \rangle$ a countable upper semilattice with least and *greatest elements such that* $deg(\mathcal{L}) \leq a^{(2)}$, *then there is a degree b such that* $\mathbf{b}^{(2)} \leq \mathbf{a}^{(2)}$ and $\mathcal{D}(\mathbf{a}, \mathbf{b}) \simeq \mathcal{L}$.

PROOF. The main theorem of Lachlan and Lebeuf [3] constructs embeddings of countable upper semilattices with least and greatest elements as initial segments of \mathcal{D} . Let \mathcal{L} be embedded onto $\mathcal{D}(a, b)$ by the relativized form of the Lachlan-Lebeuf method. Let B be a set of degree b , and fix some indexing of the functions recursive in B. At a recursively determined stage of the construction of the embedding it is decided whether the e th function recursive in B is total or not total. (See Lemma 3.3 of Lachlan and Lebeuf [3].) Thus $B^{(2)}$ is recursive in the construction since $b^{(2)} = \text{deg}(B^{(2)})$ is the degree of {e: the eth function recursive in B is total}. (For a proof, see Rogers [4, p. 264].) An examination of 30 L. J. RICHTER Israel J. Math.

the construction shows that its relativization can be completed recursively in $a^{(2)} \bigoplus \text{deg}(\mathscr{L})$. Thus $b^{(2)} \leq a^{(2)}$ as desired.

3. The last preliminary lemma is a modification of Jockusch and Solovay [2, corollary 2].

LEMMA 3.1. *If F is a jump-preserving automorphism of the degrees of unsolvability and* $F(a) = b$, then $a^{(2)} \leq b^{(3)}$.

PROOF. Let A be any set of degree a, let $S = A^{(2)} \oplus \overline{A^{(2)}}$, and let $\mathcal{L}_s = \mathcal{L} =$ (L, \leq, V) . Corollary 2.1 showed that deg $(\mathcal{L}) \leq a^{(2)}$. Thus Lemma 2.2 applies and a degree a_0 can be found such that $\mathscr L$ is isomorphic to $\mathscr D(a, a_0)$ and $a_0^{(2)} = a^{(2)}$. Let $b_0 = F(a_0)$, and note that since F preserves jumps, $b_0^{(2)} = b^{(2)}$. The image of $\mathscr{D}(a, a_0)$ under F must be $\mathscr{D}(b, b_0)$. Since $\mathscr{D}(b, b_0)$ is isomorphic to \mathscr{L} , by Lemma 2.1 $a^{(2)} \leq \text{deg}(\leq_{\mathfrak{D}(b, b_0)})$. Also $\leq_{\mathfrak{D}(b, b_0)}$ is relative recursiveness restricted to the degrees between \boldsymbol{b} and \boldsymbol{b}_0 . Since relative recursiveness is determined by three quantifiers, deg ($\leq_{\mathscr{D}(b, b_0)} \leq b_0^{(3)}$. Combining these last two facts yields the result that $a^{(2)} \leq b_0^{(3)} = b^{(3)}$.

Now the main theorem follows easily.

THEOREM 3.1. If F is a jump-preserving automorphism of the degrees of *unsolvability, then* $F(c) = c$ *for all* $c \ge 0^{(3)}$ *.*

PROOF. The theorem follows immediately from Theorem 1.1 and Lemma 3.1 .

The following Corollary strengthens Lemma 3.1.

COROLLARY 3.1. *If F is a jump-preserving automorphism of the degrees of unsolvability, and* $F(a) = b$, then $a^{(3)} = b^{(3)}$.

PROOF. If a is any degree of unsolvability, then $a^{(3)} \ge 0^{(3)}$. So by Theorem 3.1, $F(a^{(3)}) = a^{(3)}$. But since F preserves jumps, $F(a^{(3)}) = F(a)^{(3)} = b^{(3)}$. Thus $a^{(3)} = b^{(3)}$ **b** $^{(3)}$.

For fixed $n < 3$ a further strengthening of Lemma 3.1 to show that $a \leq F(a)^{(n)}$ could be used with Theorem 1.1 to establish a strengthening of Theorem 3.1 to degrees $c \ge 0^{(n)}$. However the method of this paper, the embedding into $\mathcal D$ of partially ordered sets whose isomorphic presentations have well-behaved degrees, will not serve to strengthen the lemma to n less than 3 since the relative recursiveness of degrees less than **, which is the partial ordering relation in** \mathcal{D} **, is** a relation of degree $b^{(3)}$.

REFERENCES

1. Dick Epstein, The Undecidability of Theories of Degrees of Unsolvability, Mathematics Department, Victoria University of Wellington, Wellington, New Zealand, 1977.

2. Carl G. Jockusch, Jr. and Robert W. Solovay, *Fixed points of jump preserving automorphisms o[degrees,* Israel J. Math. 2a (1977), 91-94.

3. A. H. Lachlan and R. Lebeuf, *Countable initial segments of the degrees of unsolvability, J.* Symbolic Logic 41 (1976), 289-300.

4. Hartley Rogers, Jr., *Theory of Recursive Functions and Effective Computability,* McGraw-Hill, New York, 1967.

MATHEMATICS DEPARTMENT WABASH COLLEGE CRAWFORDSVILLE, INDIANA 47933 USA