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ON AUTOMORPHISMS OF THE DEGREES
THAT PRESERVE JUMPS'

BY
LINDA JEAN RICHTER

ABSTRACT

If F is an automorphism of the degrees of unsolvability that preserves the jump
operator, then F leaves fixed all the degrees ¢ that satisfy ¢ =0®.

1. Let D be the set of all degrees of unsolvability, let = be the usual partial
ordering on D, let P be the binary join operator on D (least upper bound), and
finally let ' be the jump operator on D. No nontrivial automorphisms of the
structure &, = (D, =,') are known. Indeed no nontrivial automorphisms of
@ = (D, =) are known. It is conceivable that the identity is the only automor-
phism of @, and thus that the automorphisms of & fix all the degrees. However,
so far 0 is the only degree known to be fixed by all the automorphisms of &.

More is known about the fixed points of the jump-preserving automorphisms
of & (that is, automorphisms of %;). The main theorem of this paper, Theorem
3.1, states that for all degrees ¢ = 0 and all automorphisms F of 9, F(¢)=c.
This theorem is proved independently in Epstein [1, p. 82] using distributive
lattices rather than the nondistributive ones that will be used here.

This main theorem follows from Theorem 1.1, an immediate generalization of
Jockusch and Solovay [2, theorem 2]. In Jockusch and Solovay (2] the theorem is
stated and proved for n = 4, and it is used to prove that the degrees ¢ = 0“ are
fixed under the automorphisms of ;.

TueoREM 1.1. If for all degrees a and all automorphisms F of @, a = (F(a))"™,
then for all degrees ¢ = 0 and all automorphisms F of @, F(c)=c.

In Section 2 we will construct some nondistributive upper semilattices and
embed them onto segments of the degrees of unsolvability. The embedding will
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lead to Lemma 3.1: for all degrees a and automorphisms F of 9, a® = (F(a))®.
Theorem 3.1 will then be immediate from Theorem 1.1.

2. Consider for each natural number i the finite upper semilattice ¥, =
(L,=,, V;) pictured graphically in Fig. 1. For a, b € L, define a <, b if and only if
there is a path in the graph which can be traced from a to b by moving only in
the directions indicated by the arrows, and define aV:b in the usual way as the
least upper bound of a and b relative to =, Note that because of the
arrangement of incomparable elements £, is embeddable in % if and only if
i=j.

L]
1+3 elements
L]

1+ 2 elements

Any countable collection of these finite upper semilattices can be combined
into a countable upper semilattice. When $ C w and s; is the ith element of S
listed in numerical order, we can combine the collection {&¥ :i € S} into the
countable upper semilattice ¥£s by identifying the greatest element of ¥, with
the least element of £,.,;.

Because (1) two elements from different components of ¥ will always be
comparable, and (2) the embeddability of £ in any lattice depends on the
arrangement of incomparable elements, £, is embeddable in % if and only if
i€S.

Lemma 2.1 below will specify the property of s which is important for the
proof of Lemma 3.1, but some definitions are needed first. If A is a set,vlet A be
the complement of A. If A and B are subsets of w, let APB=
{2i:i€ A}U{2i+1: i€ B}.If R is arelation on aset A,and BC A,let R|B
be the restriction of R to B. Finally, if A is a set or relation, let deg (A) be the
degree of unsolvability containing A.

LemMMA 2.1. Let B be a subset of w with deg (B)=b; let M = (M, =4, V) be a
countable upper semilattice. If S = B B and M = &, then deg(=4)Z b.

ProOF. We see by the definitions of  and % that i € B if and only if £, is
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embeddable in &s = M, and i & B if and only if £, is embeddable in £ = M.
Also, the pattern of incomparable elements in &5 = # insures that & is
embeddable in A if and only if the partial ordering (L,=;) which is the
reduction of % is embeddable in (M,=,), the reduction of . Thus we can
effectively determine whether i € B or i € B by searching all finite subsets F of
M for one such that the partial ordering { F,=<, | F) is isomorphic to (L,,=,, ) or
(L2i41,=2i+1). Hence b = deg(B)=deg(M)@ deg(=4). But if r is the least
element of the upper semilattice .#, then x € M if and only if r=,4x. Thus
deg (M) =deg(=.), and we can conclude that b = deg (=.4). |

Define the degree of a presentation of a structure %, written deg (£), as the
join of the degrees of the universe, functions and relations. Define the degree of
the isomorphism class of £ to be the least degree among the degrees of
presentations isomorphic to .%, if such a least degree exists. With this terminol-
ogy Lemma 2.1 can be modified to the Corollary below.

CoroLLARY 2.1. For any degree b, if B is a set such that deg(B)= b and if
S = B @ B, then the degree of the isomorphism class of %s exists and is b.

ProoF. If M = (M,=4, V4 )= %s then in the proof of Lemma 2.1 we showed
that b=deg(M)Pdeg(=4). Thus deg(M)=deg(M)PDdeg(=4)P
deg (V)= b. Since deg (¥;) = b we see that b is the least degree among the
degrees of presentations isomorphic to . [ |

The following theorem is a strengthening of the relativized form of the main
theorem from Lachlan and Lebeuf [3]. The theorem involves an embedding of
an upper semilattice onto a segment of @ with universe {¢ € D: a = ¢ = b}. This
substructure will be denoted % (a, b).

LemMA 2.2. Given £ =(L,=, V) a countable upper semilattice with least and
greatest elements such that deg (&)= a®, then there is a degree b such that
bP=a® and D(a,b)= %

Proof. The main theorem of Lachlan and Lebeuf [3] constructs embeddings
of countable upper semilattices with least and greatest elements as initial
segments of 9. Let £ be embedded onto 2 (a, b) by the relativized form of the
Lachlan-Lebeuf method. Let B be a set of degree b, and fix some indexing of the
functions recursive in B. At a recursively determined stage of the construction of
the embedding it is decided whether the eth function recursive in B is total or
not total. (See Lemma 3.3 of Lachlan and Lebeuf [3].) Thus B® is recursive in
the construction since b® =deg(B®) is the degree of {e: the eth function
recursive in B is total}. (For a proof, see Rogers [4, p. 264].) An examination of
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the construction shows that its relativization can be completed recursively in
a® @ deg (¥). Thus b® =a® as desired. [ |

3. The last preliminary lemma is a modification of Jockusch and Solovay [2,
corollary 2].

Lemma 3.1. If F is a jump-preserving automorphism of the degrees of unsolv-
ability and F(a)=b, then a® = b®.

PrOOF. Let A be any set of degree a, let S= APPA® and let L =L =
(L,=,V). Corollary 2.1 showed that deg (¥)=<a®. Thus Lemma 2.2 applies
and a degree a, can be found such that % is isomorphic to 9 (a, a,) and a?® = a®.
Let b, = F(ao), and note that since F preserves jumps, b§’ = b®. The image of
2(a, as) under F must be D (b, b;). Since D (b, b,) is isomorphic to &, by Lemma
2.1 a®=deg(Samen) AlsO =g, is relative recursiveness restricted to the
degrees between b and bo. Since relative recursiveness is determined by three
quantifiers, deg (Za.5p) = b$. Combining these last two facts yields the result
that a® = by’ = p®. |

Now the main theorem follows easily.

THEOREM 3.1. If F is a jump-preserving automorphism of the degrees of
unsolvability, then F(c)= ¢ for all ¢ Z0%.

Proor. The theorem follows immediately from Theorem 1.1 and
Lemma 3.1. ]
The following Corollary strengthens Lemma 3.1.

CoroLLArY 3.1. If F is a jump-preserving automorphism of the degrees of
unsolvability, and F(a)= b, then a® = b®.

Proor. If a is any degree of unsolvability, then a® = 0. So by Theorem 3.1,
F(a®)=a®. But since F preserves jumps, F(a®)= F(a)® = b®. Thus a® =
b, |

For fixed n < 3 a further strengthening of Lemma 3.1 to show that @ = F(a)®
could be used with Theorem 1.1 to establish a strengthening of Theorem 3.1 to
degrees ¢ = 0. However the method of this paper, the embedding into @ of
partially ordered sets whose isomorphic presentations have well-behaved de-
grees, will not serve to strengthen the lemma to n less than 3 since the relative
recursiveness of degrees less than b, which is the partial ordering relation in 9, is
a relation of degree b®.
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