
ISRAI 'L  JOI. IRNAI.  ()['I M A [ I I E M A T I C S ,  Vol. 48. No'.. 2.-3, It,IX4 

EXISTENCE OF SEPARABLE 
UNIFORMLY HOMEOMORPHIC 

NONISOMORPHIC BANACH SPACES 

BY 

M. RIBE 

ABS l R A ( q  

An example is given prm,'ing that there exist two separable Banach spaces which 
arc unil~rmly homc~m)orphic but nt~l isomorphic. 

Uniform homeomorphism and Lipschitz homeomorphism are natural equival- 

ence relations among Banach spaces. Aharoni and l.indenstruuss [1] have given 

an example of two Banach spaces which arc not isomorphic but which are 

l.ipschitz homeomorphic,  and thus also uniformly homeomorphic.  The spaces of 

that example arc non-separable and non-reflexive. Results have also been given 

in the opposite direction, i.e., showing how uniformly or Lipschitz homcomor- 

phic Banach spaces must bc related; see Enflo [31, Heinrich and Mankiewicz [4], 

and Ribc [7, 8]. Further references to previous work can also be found in those 

papers. 

In this paper the following result is proved. 

THFORt;M I. Let q > 1, and let (p,),.~ be a .sequence of numbers such that 

p~ > 1 and p, ~ 1. Let S = lq(Lp,) denote the L~-sum of the spaces Lp,(0, 1). Then 

the spaces S and S ~ L, are uni[ormly homeomorphic. 

REMARKS. So in particular rcflcxivity is not generally invariant under uniform 

homeomorphism, in contrast to supcrreflcxivity [71. The spaces S and S ~ L~ 

are not Lipschitz homcomorphic.  For if L~ were Lipschitz imbeddable into S, 

then it would also be isomorphically imbeddablc into S, by a result of 

Mankicwicz [5]. Further, Theorem 2 of Ribe [7] gives some indications about 

what a uniform homcomorphism cannot look like when the two spaces are 

non-isomorphic and separable, and at leasl one of them is a dual space. 
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The idea of the proof of Theorem 1 is that uniform homeomorphisms between 

larger and larger balls in Lp-spaces can be pasted together in a certain way. 

These homeomorphisms uniform on balls were defined by Mazur [6] and 

considered by Day [2]. 

LEMMA I. (Mazur [6[.) For 1 <-_ p, q < % let me, q : Lp --~ Lq be the mapping 
defined by mp.q(x(. )) = x( ,  )1 x( .  )]P'q-~. Then the class of these mappings mp.q is 
equi-uniformly homeomorphic on the sets of x such that ]] x lie =< e 'j'P q' 

By the last sentence is of course meant that for every s > 0 there is a fi > 0 

such that whatever p and q, for x and y in Lp with length =< e ~z:P-qf we have that 

l[ x - Y lip < s implies II me.q(x)- mp.q(y)]]q < e, 

and 

II mp.~ (x) - m~.~ (y)ll,  < a implies t[ x - y 1[. < e .  

PROOt:. Since mp.q = mq. e. we only have to prove the first of the last- 

mentioned implications. We consider the case of real scalars. Let us write 

x - y  = ( x - x , ) + ( x , - z ) + ( z - y ) ,  

where x ~ ( . ) = ] x ( . ) [ s i g n ( y ( . ) )  and z(.)=max([x(.)[. ]y ( . ) l ) s ign (y ( . ) ) .  

Then we have 

Ilm..~(x)-mo.~(x,)ll, =<2t[x- y It.. 

I I x , -  z lip _-<llx - y lip, 

II z - y lip --< II x - y lip. 

It now remains to show that ]]mp.q(z)-mp.,(y)]]o becomes small for I I z -y l l~  

small; for the treatment of ]]mp.,(x,)-mp.q(z)ll~ is similar. Write y ( . ) =  

k ( . ) z ( . ) ,  so that 0=< k(.)=< 1, and for a fixed number d >0 ,  let D be the set of 

those t in [0,11 for which l - k ( t ) < d .  Now, 

l[ me.q(z)- mp.q(y)]],~ = j I z(t)]P(1 k ( t )P/q )q dt ; 

for p-<_ q this is clearly dominated by ]]z-y 1]~, so let p > q. Then, with 

E = [0, 1] \ D, the last integral is dominated by 

(P/q)q~,,' [ z ( t ) [ e ( 1 - k ( t ) ) q d t = ( p / q ) q ( L  + [E ) 

<-_ (p/q)~ I z II~d q + II z - y II~,dq-P). 
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By assumption II z lip =< 2e'/'p-q~, and taking d = [I z - y ]l p/c2'p q~), we then obtain 

that the last expression becomes small whenever  II z - y I[p is small. 

The next lemma is the main step in the ment ioned pasting of the Mazur 

homeomorphisms  mp.q. 

LEMMA 2. For 1 < p, q, r < 2 and 0 <= t < 1 there are bijective mappings 

fe,q : Le ~D Lq-~ Lq and 

Fp,q,,,, : Lp ~ Lq ~ L,----~ Lq ~ L,, 

which for B = e ,/tc 1), where C = max (p, q, r), enjoy the properties : 

(i) Fp.q,r,o = fp.q 0 id, where id is the identity mapping on L ,  

(ii) Fp, q,r,1 = zFp,,,q.oCr, where cr and ~ are the mappings interchanging Lq and L, in 
Lp ~ Lq (~ L, and in Lq ~ Lr, resp. 

(iii) The class of mappings Fp, q,,,, is equi-uniformly homeomorphic on the sets of 

points x with II x II < B. 
(iv) Denote by pro, pr~, and pr2 the natural projections from Lp G Lq (~ L, onto 

Lp, Lq, and L,, resp. With 

~( .  ) =- II pro(. )lip p + II pr, (.)11 q + tl pr2(. )11; 

defined on Lp �9 Lq @ L, we have 

v(Fp.q.,.,(x )) = v(x ). 

(v) The class of mappings t---~ Fe.q.r.,/b(x ), where b <= B and ]1 x 11 <= b, is equi- 
uniformly continuous on the sets [0, b]. 

Paoov. We shall consider Lq as lq (Lq), i.e., as the lq-sum of countably many 

copies of itself. And  L, will be considered similarly. According to this view, a 

point x in Le �9 Lq �9 L, is described as 

x = ( x o ( . )  i x , . , ( . ) ,  x , . 2 ( . )  . . . .  ), (x2. , ( . ) ,  x2.2( . )  . . . .  )). 

Here  xo(. ) is a function on [0, 1] which is in Lp, the x~.i(. ) are in the Lq-copies in 

lq(Lq), and the x2.i(. ) are in the L,-copies in l , (L).  Likewise a point x in Lq O L, 

is described as 

x = ( (Xl . , ( . ) ,  x , . ~ ( . )  . . . .  ), (x~. ,( . ) ,  x~ .~ ( . ) , . . .  )). 

For x i n L p Q L q O L ,  and 0=< u _- v =< l,  write 

fuv 1,,( x, u, v)  = I xo( s ) IP ds. 
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And for x in Lp O L q  O L ,  or in Lq @Lr, put 

fu I i ( x ,u , v )=  ~ Ixi.j(s)lq'ds, 

where i = 1,2, and where q' = q for i = 1 and q' = r for i = 2. Now write 

I(x, u, v) = I,, + I, + 12, 

J(x, u, v) = I, + 12. 

We shall now define the mapping Fp, q,,., by defining the image point s = Fp,q,,.t(x) 
of a given point x. Let a(x)  ( 0 = < a ( x ) < l )  be the least number such that 

I (x ,O,a(x ) )= tI(x,O, 1). Then, with mp.q as in Lemma 1, we define ~ by 

~, , , (s )  = m,,,~(xo)(s) 

~,,, ( s )  = x , , ,_ , (s )  

= x , , , ( s )  

y , 2 . , ( s ) = x 2 . , ( s )  

~2,,(s ) = m,,,,(Xo)(s ) 

.~2.,(s) =x~ , ,_ , ( s )  

for s > a (x) 

for s > a ( x ) ,  i>=2 

for s =< a (x) 

for s > a (x) 

for s =< a (x) 

for s <=a(x), i>=2. 

From this definition of Fp.q,,., it is clear that also the mappings fp.q fulfilling (i) 

are well-defined; and likewise (ii) follows. For (iv) notice that u ( . ) =  I ( . ,0 ,  1) 

resp. J(  .,0, 1) on Lp �9 Lq @ L, resp. Lq @ L,. Further, (v) is a rather straightfor- 

ward consequence of the definition made of Fp.q ..... 
It remains to verify (iii). First notice that 

I(x, u, v) = J(~, u, v) 

always holds. It follows Jthat the number a (x) is determined by the point ~ as the 

least number such that J(s163 1). This shows that Fp.q .... is a 

bijective mapping, since it clearly is so on every set of points x such that a (x) = s 

for some s. 

To prove the required equi-uniform continuity of mappings Fp.q.,.,, let x and y 

be two points of norm at most B in Lp O Lq G L,. Let ~ and y denote their 

images under Fp.q ..... and assume that a(x)<= a(y) .  We must show that the 

number 

J()~ - -  ~,0,1) = J(g - )7,0, a (x ) )+  J(s - y , a ( x ) , a ( y ) )+  J(s - y, a (y) ,  1) 
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is small whenever x is close to y. By Lemma 1 and the definition of Fp.q.,., this is 

certainly true for the first and the third term. And the second term is at most 

2 c ' (J(s  

The two terms here are treated similarly. The first one can be rewritten and 

estimated as 

I(x, a(x),  a(y))  = (1 - t)I(x,O, 1 ) -  I(x, a(y) ,  1) 

= (1 - t)(I(x,O, 1 ) -  I(y,0,  1)) 

+ (l(y, a(y) ,  1 ) -  I(x, a(y) ,  1)) 

=< 2max(C,  Cllx It C ', C l l y  II c ' ) l lx - y  II 

= 4 e  II x - y II. 

By a corresponding argument the mappings F;lq,,., are equi-uniformly continu- 

ous, which completes the proof. 

We shall also need the following fact. 

LEMMA 3. Let f : X - o  y be a uniformly continuous mapping from a normed 

space onto another. Suppose that f is such that for some convex functionals 49 and qJ 
on X resp. Y and some set D of non-negative numbers, the following conditions are 

fulfilled: 
(i) 49(x), O(x)>=O forx inXresp. Y; with 49(x)=O, resp. q~(x) = 0, if andonly 

i f x  =0. 
(ii) max (49 (Xo + x), 0 (yo + y)) -< C min (4' (Xo), r whenever Xo, x in X and 

yo, y in Y are such that H Xo ]] = l] yo ]] = H x ]] = l] Y ]I, for some constant C > 1. 
(iii) The class of restrictions of f to sets 49-1(d), d _-> O, is equi-uniformly 

homeomorphic. 
(iv) The restriction of f to the set 49-1(D) is a uniform homeomorphism onto 

qJ-I(D ). 

(v) ~O(f(x)) = 49(x) whenever 49(x) is not in D. 
Then f is a uniform homeomorphism of X onto Y. 

First notice that if yl and y2 are any two points in Y we have the PROOF. 

estimate 

(E) II y, - y2 II e (1 /4c  2) dist (49-'(~b (y,)), 49-'(~b(y2)). 

To see this, first consider the case when yl and y2 are such that 
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2 II y, - y2 II II y, II and 

2 dist (4,-'(~b(y,)), 4,-I(~b(y2)) < dist (4, -'(O(Y,)), 0). 

Then let x, be a point in 4,-~(6(Y,)), and let s and )7 be any two points within 

distance 11 x, ]l/2 resp. 1] y~ II/2 from x, resp. y,. Let u and v be elements in the 

subgradient of 4, resp. ~ at .~ resp. )7 (i.e., u is a real linear functional of X such 

that u(x-.~)-_< 4 , (x ) -  4,(.~) for x in X). Then condition (ii) implies that 

4,(x,)/2c <-_llu II IIx, ll<=2c4,(x,) and 

4,(x,)/2C -<-II v l[ II x, tl <-- 2C4, (x,). 

The estimate (E) follows by the mean value theorem. And we can generalise (E) 

to an arbitrary pair of points y,, y2 in Y, by successively applying it to suitable 

pairs of points on the line segment between y~ and y2. 

Next, let 31 be a given positive number. By condition (iii) there is a number 

32 > 0 such that for any two points in X which lie at least distance 31/2 apart and 

which have the same 4,-value, their image points under [ lie at least distance 62 

apart. Then by the uniform continuity of [ there is a number 63 > 0 such that for 

any two points in X of distance apart less than 33, their image points under f are 

of distance apart less than 62/2. 

To prove the assertion of the lemma, we must show that for points x,, xz in X 

such that II x , -  x2 II--> 3, for a given number 3t > 0, the numbers II f i x , ) -  f(x2)II 
have a uniform lower bound. In view of condition (iv) it will do if we assume that 

x, and x2 are both outside 4,- '(D). Consider two cases: First if 

dist(4,-~(4,(x~)),x2)<63, then the choices of 6: and 33 imply that 

II[(x,)-f(x2)ll>-_32/2. Second, in the opposite case, condition (v) and the 

estimate (E) yield a lower bound for II [(x,)-f(x2)II, So in both cases the required 

uniform lower bound is obtained. 

PROOF OF THEOREM 1. We shall construct a uniform homeomorphism 

h : L~ O S ~ S, by making use of the mappings Fp.q.,.s of Lemma 2. The number 

sequence (p,), defining the space S can be replaced with a subsequence without 

loss of generality, so we can assume that p, = 1 + 1/20i. For simplicity in notation 

we also assume that q -< 2. The proof can be carried over to the case of general 

q > 1 by changes of constants. 

Let n =>1 be an integer. We shall now define h(x) for  107"-"==_1tx I1_ <- 10 TM. 
First we need some auxiliary notions. 

Let 
prO: L t ( ~ S ~ L ,  

pr,:L~GS--*Lp, (i=>1) 
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be the natural projections. The norm on L~ �9 S is assumed to be 

[1 x 1[ = ([[ pr~ +[[x - pr~ TM. 

We introduce the convex functional 

\ 1/q 
Pn+l q U . ( x ) =  ([[pr~ • []pr,(x)[[~,) , 

i ;~n,n +1 

defined on L~ ~ S. In view of the conditions on pi and q it can be seen that 

(*) II x II/9 _-< g .  (x) _-< 9 II x II for 1 II x II 10 TM" 

Consider L1 (~ S as the direct sum of the two spaces L~ G Lp. (~ Lp.+, and 

@ ~  .... ,Lp,, and let P. and O. be the projections from L , O  S onto the first 

resp. second of those spaces, annihilating the other space. Then, considering S 

similarly as the direct sum of Lp. 0 Lp.+, and @~,.,.+~ Lp,, we define 

h(x ) = F,.p..p ..... c.~(P.(x ) ) ~  Q.(x ) 

for 107'"-" _- < ]1 x [1 _-< 10 TM, where 
0 if U.(x)_-<2 .107~-3, 

( U. (x) - 2- 10 TM-3)/(8 �9 10 TM-3) 
t(x) = 

if 2" 107"-~_- < U.(x)<= 10 ~"-2, 

1 if U. (x ) =>107" -2. 

The integer n => 1 being arbitrary, h (x) has thus been defined for all x with 

II x II--> 1. And for [[ x II--< 1, take 

h (x) = F,,p,,p~.o(P,(x)) ~ O,(x). 

For those x with II x If = 107" for some n =>0, the value h(x) has actually been 

defined twice, but the definition is indeed consistent, as is guaranteed by (i) and 
(ii) of Lemma 2. For in view of (*) we always have t(x) = 0 resp. 1 for those x. 

By its definition and Lemma 2, the mapping h is clearly uniformly continuous. 

We shall verify that Lemma 3 can be applied to prove that h is a uniform 

homeomorphism. First we shall construct the convex functionals ~b and ~0, 

defined on L1 ~ ) S  resp. S. Write 

{ max (0, N, (x ), lOOU~(x),lOOOON,+l(x)) for n ___> 1, 

V.(x) = IO000NI(x) for n = O, 
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where 

N.(x)=ltxll-9.10 7"-~, 

U-.(x) = U.(x)-9 .107"-~.  

Then in view of inequality (*) the following relations hold for n => 1: 

(t) 
N.(x) 

V.(x) = i00 U2(x) 
10000N.+l(x) 

for I1~11 = 10 ''~ 
for 10'" ~ ~ I1 x II ~ 107"-~, 
for I1 x ii => 10 TM" 

Now we define the desired convex functional 

~b (x) = sup (10 4" V. (x)). 
n ~fl 

And for ~ we take the restriction of $ to S, as a subspace of L, G S. 

Finally, for the number set D in Lemma 3 we take the union of all the 

intervals [0, 10 5] and [10 ~''-2, 10 ~'~§ (i >- 1). 
If x is a point in X outside ~b-'(D), then (*) and (t) imply that 

107i-4 ~ II X II ~ lO7'- ' ,  w h e n c e  4) (X) = 10 4'+2 U, (x),  

for some i -> 1. In view of (iv) of Lemma 2 it then follows that ~b(h(x)) = tk(x), so 

that condition (v) of Lemma 3 is fulfilled. For condition (iv) of Lemma 3, notice 

that the functionals t( .  ) used in the definition of h only assume the values 0 and 

1 on the set 4, I (D) .  And clearly h is onto. Lastly, conditions (i)-(iii) of Lemma 3 

are clearly fulfilled. 

REMARK. Maybe a little unexpectedly, the proof would apparently fail if one 

tried to replace L, in Theorem 1 with an Lp-space with p > 1, and the condition 

p~ -* 1 with p, --~ p. For in the estimation at the end of the proof of Lemma 2, the 

factor C I1 x II c-~ can remain uniformly bounded only if C is taken close to I when 

II x ]] is large. 
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