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ABSTRACT 

In the Osserman conjecture and in the isopaxametric conjecture it is stated 

that two-point homogeneous spaces may be characterized via the constancy 

of the eigenvalues of the Jacobi operator or the shape operator of geodesic 

spheres, respectively. These conjectures remain open, but in this paper we 

give complete positive results for similar statements about other symmetric 

endomorphism fields on small geodesic spheres. In addition, we derive more 

characteristic properties for this class of spaces by using other properties 

of small geodesic spheres. In particular, we study Riemannian manifolds 

with (curvature) homogeneous geodesic spheres. 
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1. I n t r o d u c t i o n  

Let M be a connected, smooth Riemannian manifold and V its Levi Civita 

connection. R denotes the associated Riemannian curvature tensor (with the 

convention R(X, Y) = [Vx, ~7y] -- ~'[X,Y]). For a unit tangent vector v the 

associated Jacob i  o p e r a t o r  R.  is the self-adjoint endomorphism R, := R(., v)v. 

These operators play a fundamental role in Riemannian geometry because, as can 

be seen by replacing v by the unit tangent vector field ~/of a geodesic 7 in M, 

they determine the Jacobi vector fields along geodesics which are important in 

curvature theory. For some classes of Riemannian manifolds these operators have 

particularly nice properties. For example, let M be a two-point homogeneous 

space. Since the isometry group acts transitively on the unit tangent sphere 

bundle, R.  has eigenvalues which are independent of v, that is, the eigenvalues 

are globally constant. This leads to the following 

OSSERMAN CONJECTURE ([Os]):  A Riemannian manifold with globally constant 

eigenvalues for the Jacobi operators is locally isometric to a two-point 

homogeneous space. 

A space with globally constant eigenvalues for the Jacobi operators is called a 

global ly  O s s e r m a n  space and it is said to be a poin twise  O s s e r m a n  space 

if the eigenvalues of R.  are independent of v E TmM but may vary with m E M. 

Chi proved in [Chl], [Ch2] and [Ch3] that this conjecture holds in a lot of special 

cases (see below). We refer also to [GSV] where it is shown, by using self-dual 

four-dimensional Einstein spaces, that not every pointwise Osserman space is 

a globally Osserman space. Despite the effort made, the Osserman conjecture 

remains open. 

Next, we note that the Jacobi operators are immediately related to the shape  

o p e r a t o r s  Sm of the geodesic spheres G,~(r) with radius r and centered at 

m (see for example [Be], [CV] and IV2]). The consideration of the eigenvalues 

of these operators led to a well-known definition of a very interesting class of 

manifolds, namely the harmonic spaces: M is said to be h a r m o n i c  if for each 

m E M all sufficiently small geodesic spheres are hypersurfaces with constant 

mean curvature, that is, tr Sm =: hm is a radial function for each m c M (see [Be], 

[RWW], [V1] and IV2]). Two-point homogeneous spaces provide nice examples 

of harmonic spaces but, since the surprising discovery of the DR-spaces  [DR] 

(see also [Sz3], [TV2]) we know that in contrast to the Lichnerowicz conjecture, 
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they are not the only examples. Moreover, in [TV2] it is shown that  for the 

non-symmetric DR-spaces, not all the eigenvalues of the shape operators (that 

is, the principal curvatures) are radial functions. This led to the 

ISOPARAMETRIC CONJECTURE ([TV2]): A Riemannian manifold is locally iso- 

metric to a two-point homogeneous space if and only if all sufficiently small 

geodesic spheres are isoparametric hypersurfaces (that is, the eigenvalues of the 

shape operators S,~ are radial functions). 

Via the Gauss equation the shape operators S,~ yield the Ricci operators 

(~m of the geodesic spheres Gm and it can be seen from several properties (see 

for example [CV], [DV] and [V2]) that (~m and Sm play a very parallel role in 

local differential geometry. This leads to the 

INTRINSIC VERSION OF THE ISOPARAMETRIC CONJECTURE ([GSV]): Let M, 

dim M > 2, be a Riemannian manifold such that the eigenvalues of the Ricci 

operators of small geodesic spheres are radial functions. Then M is locally iso- 

metric to a two-point homogeneous space. 

It is proved in [GSV] that in the last two conjectures the spaces are necessarily 

globally Osserman spaces. Even this result and the fact that the spaces are also 

harmonic spaces did not enable us to give a full positive answer. 

The first main purpose of the paper is to show that one may indeed charac- 

terize locally the two-point homogeneous spaces by the radial character of the 

eigenvalues of some other special symmetric endomorphisms related to geodesic 

spheres. In the second part of the paper we will provide several other characteri- 

zations by concentrating on other properties of geodesic spheres. More precisely, 

we shall use on the one hand a characterization by the Killing character of the 

Ricci tensor ~ of type (0,2) or the second fundamental form ~ of geodesic spheres 

given in [CV] and on the other hand the theory of ~- and ~3-spaces introduced 

in [BV]. In particular we discuss the manifolds with (curvature) homogeneous 

geodesic spheres. 

2. Two-point homogeneous spaces and radial eigenvalues 

Let M be an n-dimensional connected Riemannian manifold and let g, Q, p 

and T denote the Riemannian metric, Ricci operator, Ricci tensor and scalar 

curvature of M, respectively. Further, for a unit tangent vector v of M, put 
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R~ := (V,R)( . ,  v)v and R~ := (Vv2vR)(., v)v. Next, let "7 be a unit speed geodesic 

in M and put R7 := R(.,;r);r, m := '7(0), u := ~/(0) and p := expm(ru) for 

sufficiently small r E R+. Let Sin(p) and hm(p) = tr Sin(p) denote the shape 

operator and mean curvature of the geodesic sphere Gin(r) at p. Similarly, (~m(p) 

and ~(p) = tr Qm(p) denote the Ricci operator and scalar curvature of Gin(r) at 

p. Finally, let I denote the identity transformation of TraM. 
In what follows we will always identify the tangent spaces TpM and TmM 

via parallel translation along % Sometimes we restrict the appearing operators 

to the orthogonal complement of Ru, but we shall use the same notation for 

the restricted operators as it becomes clear from the context when we actually 

restrict. 

LEMMA 1 ([CV]): We have 

1 1R, 1 
+ r [ V ~ Q -  (V~p)(u, . )u-  ~(V~p)(u ,u) I -  4 ~J 

+ O(r2), 
nR - n - 2 I  [Q(m) p(u,.)u 1 

(2) Qm(p) + 5 "y(p) - r 2 + - - 5p(u ,u)I] 
n - 3R~ ] 

+ r [VuQ - ( V u p ) ( u , . ) u -  ~(Vup)(u,u)I + 12 uj 

+ O(r2), 

r R 1 1 ~ - ~ r 2 R : - ~ r  3 " 1R2]+O(r4), 
(3) Sin(p)+5 "r(P) =r + + [R~ - 3 

_ n h 2 ( n - 1 )  n~__22p(u,u) ] 
(4) ?re(p) r r e ( p ) -  r~ + [r(m) +O(r). 

In [Sz2] Szab6 proved a nice property which played a key role in his proof of 

the fact that two-point homogeneous spaces are locally symmetric. This property 

will also be important in our proofs. For that reason we state it here explicitly. 

LEMMA 2 ([Sz2]): Let M be a Riemannian manifold. Then M is locally sym- 

metric if and only if at each point m C M the eigenvalues of R~ are independent 
of v for all unit vectors v E TraM. 

See [Gi] for an extension of this result. 

Now we state and prove the main result of this section. 
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THEOREM 1 : Let M be an n-dimensional connected Riemannian manifold. Then 

the following statements are equivalent: 

(i) M is locally isometric to a two-point homogeneous space; 

(ii) the operators Q,m - a S  have radial eigenvalues for all m E M; d m 

(iii) the operators Q,m + ~R~ have radial eigenvalues for all m E M; 

-~R have radial eigenvalues for all m E M.  (iv) the operators S,~ + 3 

Here d denotes the distance to the center m. 

Proo~ First, we note that it is well-known and easy to prove that (i) implies 

(ii), (iii) and (iv). (See for example [V2].) 

Next, we prove the converse and note first that Q = 0 for n = 2. In this case 

(iii) yields (i) at once since the sectional curvature is constant. Also (ii) yields (i) 

because for n = 2 (ii) means that M is harmonic and hence has constant scalar 

curvature [Be], [V2]. 

Now we prove that for n >_ 3 (ii) and (iii) imply that M is a harmonic manifold. 

We start with (ii). The hypothesis yields that 

_ n  S ~ n (5) t r [ ~ m  ~ m) = ' r m -  ~h,~ 

is a radial function. Then (4) implies easily that M is an Einstein space. (Note 

that in this case M is analytic in normal coordinates [DK].) Next, the contracted 

Gauss equation for Gin(r) becomes, taking into account the Einstein property 

and hence the constancy of ~-, 

n - 2  
(6) Tm ---- T + h 2 - tr S 2.  

71 

So, (5) and (6) yield that  

n tr S2m (7) h~ - ~hm - 

is a radial function. Moreover, the well-known Riccati equation 

S~ + S 2 + R~ = 0 

for the shape operator Sm (see [Be], [CV], [Gr], [V2]) gives, by taking the trace 

and using (7), that  

( s )  h "  + - 71 
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is a radial function. Finally, because of the analyticity, we may use the power 

series expansion 

O0 

(9) h,~(p) - n - 1 + E / ~ k ( m , u ) r  k 
T 

k = l  

for the mean curvature function. Then the condition on (8) and (9) imply that 

/ - 2 ( n  - 1) + ~--~.(n - 2 + k)Zk(m, u)r k+l + Zk(m, u)r k+l 
k = l  \ k = l  / 

must be independent of u. So 

(n-- 1-}-l)~l+l(m,u )-~- E ~)~(m'~t)~tL(m'tt) 
. k + / ~ : l  
~ , t t > l  

must be independent of u for l C N. Induction shows that all ilk(m, u) are 

independent of u and hence hm is a radial function. This means that M is 

harmonic. 

To prove the same result for (iii) we note that in this case tr(~)m + ~R~) must 

be radial and so, from (2), T(m) -- ~32P(U, U) must be independent of u for all 

m C M. Hence, M is again an Einstein space. Then (iii) yields that ~,~ = tr ~),~ 

is radial and since n > 2, this means that the manifold is harmonic [CV]. 

Next, we prove that (ii), (iii) and (iv) imply that M is locally symmetric. We 

start with (ii). Since M is an Einstein space we get from (1) 

n ( 2 2 r ) I = l R ,  . (10) 0,,~ - -~S.~ + ~2 3n - ~ d  ~ + O(d 2) 

By taking the traces of the kth powers, k = 1 . . . .  , n - 1, of both members in (10) 

we see at once that tr  (R~) k is independent of u. So the result follows by using 

Lemma 2. A similar reasoning gives the same result for (iii) when n r 3. But 

for n = 3 M is also locally symmetric since a three-dimensional Einstein space 

has constant curvature. Finally, (iv) implies also the result but now it follows 

directly from (3). 

We may conclude that this proves the equivalence of (ii), (iii) and (i) since a 

locally symmetric harmonic space is locally isometric to a two-point homogeneous 

space (see [Be], [V2], also for further references). 
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Now we finish the proof by showing that (iv) implies (i) and note that  we 

know already that M is locally symmetric. So we may suppose n _ 3. Then (3) 

becomes 

d R 1 l d 3 R 2  q- O(d4). 
(11) S i n + 5  ~ =  ~ I -  45 

The hypothesis now implies that tr R~ must be independent of u. This is the 

second harmonicity condition (see [Be], [CV], [RWW], [V1], [V2]). In this case 

we have 

(a) if M is (locally) reducible, it is fiat [CV]; 

(b) if M is (locally) irreducible, it is an Einstein space (as M is locally sym- 

metric) and then (iv) means that tr Sm = hm is radial, that  is, M is a 

harmonic space. This again yields the result and the proof is completed. 

m 

3. F u r t h e r  c h a r a c t e r i z a t i o n s  

In this second part we always suppose that M is connected and of dimension 

n > 2. We shall give other local characterizations of two-point homogeneous 

spaces using special geometric properties of geodesic spheres. To do this let/5, as 

before, denote the Ricci tensor and ~ the real-valued second fundamental form 

of a small geodesic sphere. Both tensors are symmetric and we have the useful 

LEMMA 3 ([CV]): A Riemannian manifold M is locally isometric to a two-point 

homogeneous space if  and only if  

(i) ~ is a Killing tensor for all small geodesic spheres in M,  or 

(ii) (for n > 2) ~ is a Killing tensor for ali small geodesic spheres in M.  

Note that a symmetric tensor field on a manifold is said to be a Killing tensor (or 

also cyclic-parallel) if the cyclic sum over all entries in the covariant derivative 

of the tensor vanishes. The geometrical meaning of (i) is that  every geodesic in 

the sphere is a circle in the ambient space. 

To derive some applications we first recall the definition of a ~- and a M-space 

introduced in [BV]. A Riemannian manifold M is said to be a ~-space  if for 

every geodesic ~/ in M the eigenvalues of the Jacobi operator Rv are constant 

along 7; and M is called a M-space if for every geodesic ~/ in M the Jacobi 

operator R~ is diagonalizable by a parallel orthonormal frame field along % In 

[BV] it is proved that the intersection of the two classes of ~- and M-spaces is 
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precisely the class of locally symmetric spaces; moreover, several classes of E- and 

~-spaces consisting not only of locally symmetric spaces are provided there. In 

particular, any Riemannian homogeneous space M with the property that  each 

geodesic is an orbit of a one-parameter subgroup of the isometry group of M 

(that is, a R i e m a n n i a n  g.o. space  [KV2]) is a E-space. This class contains the 

naturally reductive Riemannian homogeneous spaces. Further, let G denote the 

connected component of the full isometry group of a Riemannian homogeneous 

space M and let D(G/H)  be the algebra of G-invariant differential operators 

on M = G/H.  Then M is said to be a c o m m u t a t i v e  or Ge l f a n d  space  if 

D(G/H)  is a commutative algebra. In [BV] it is proved that all commutative 

spaces are E-spaces. We also refer to [BV] for examples of ~-spaces and for 

further information. 

Now we have 

PROPOSITION 1: A Riemannian manifold M '~, n > 2, is locally isometric to 

a two-point homogeneous space if and only if each small geodesic sphere is a 

E-space. 

Proof'. First, let Gin(r) be a E-space. Then its Ricci tensor is a Killing tensor 

[BV] and so the result follows from Lemma 3. Conversely, let M be a two-point 

homogeneous space. Then, an unpublished result of S. Helgason and the third 

author states that each geodesic sphere in M is a commutative space, and hence 

a E-space. | 

Note that  in fact the geodesic spheres in two-point homogeneous spaces are natu- 

rally reductive Riemannian homogeneous spaces except for the Cayley plane and 

its non-compact dual (see IV2] for further references). 

As a related result we prove now 

PROPOSITION 2: A Riemannian manifold M '~, n > 2, is locally isometric to a 

two-point homogeneous space if and only if all small geodesic spheres in M are 

spaces with volume-preserving (local) geodesic symmetries (that is, D'Atri spaces 

[VW]). 

Proof: Let M be a two-point homogeneous space. Then the geodesic spheres 

have the required property since any commutative space is a space with volume- 

preserving (local) geodesic symmetries [KV1]. Conversely, suppose that  all geode- 

sic spheres in M are spaces with volume-preserving (local) geodesic symmetries. 
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Then the tensors ~ are Killing tensors (see for example [V2]) and the assertion 

follows from Lemma 3. | 

Next, we recall the notion of a curvature homogeneous Riemannian space. 

Following I.M. Singer [Si] a Riemannian manifold M is said to be c u r v a t u r e  

h o m o g e n e o u s  if for each pair of points p and q in M there exists a linear 

isometry F : TpM ~ TqM such that  F*Rq = Rp. Of course, any (locally) 

homogeneous space is curvature homogeneous, but the converse is not true. See 

[KTV1], [KTV2] and [TV1] for more details and information. It  is clear that  small 

geodesic spheres in two-point homogeneous spaces are curvature homogeneous. 

As concerns the possible converse we have the following result which gives only 

a partial answer. 

PROPOSITION 3: Let M n, n > 2, be a Riemannian manifold such that all its 

small geodesic spheres are curvature homogeneous. Then M is a harmonic 

globally Osserman space. 

Proo~ The hypothesis implies that  for each geodesic sphere in M the eigenvalues 

of its Rieci operator are radial functions. So ~ is constant on geodesic spheres 

and hence M is a harmonic space [CV]. The assertion then follows from the note 

made after the statement of the intrinsic version of the isoparametric conjecture 

given in the introduction. | 

COROLLARY 1: Let M ~, n > 2, be a Riemannian manifold ali of  whose small 

geodesic spheres are homogeneous. Then M is a harmonic globally Osserman 

space. 

Note that  we do not suppose here that  the geodesic spheres are homogeneous 

with respect to isometrics induced from those of the ambient space. If this 

would be the case then it would imply that  M is locally isometric to a two-point 

homogeneous space. (A proof of this follows at once from (3) and Lemma 2.) 

The difficulty in getting a complete result comes from the fact that  the Os- 

serman conjecture is still open even if we suppose the manifold is in addition a 

harmonic space. For up-to-date information about these two classes of spaces we 

include the next two propositions. 

PROPOSITION 4 ([Szl], [Sz3]): Let M be a compact harmonic manifold satisfying 

one of  the following conditions: 

(i) M has a finite fundamental group; 
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(ii) M has non-negative scalar curvature. 

Then M is locally isometric to a two-point homogeneous space. 

Note that (ii) follows by using the result for (i) and the Cheeger-Gromoll splitting 

theorem. 

PROPOSITION 5 ([Chl], [Ch2], [Ch3]): Let M be an n-dimensional Riemannian 

manifold. Then the Osserman conjecture is true in the following cases: 

(i) n --- l (mod2) ;  

(ii) n = 2(mod4); 

(iii) n = 4; 

(iv) n = 4k, k = 2, 3 , . . .  and M is a simply connected compact quaternionic 

K~hler manifold with vanishing second Betti number; 

(v) M satisfies the following axioms: 

(a) R, has precisely two different constant eigenvalues independent of 

v E SM (the unit tangent sphere bundle of M); 

(b) let A and # be the two eigenvalues and for v E SM denote by 

E~(v) the span of v and the eigenspace of Rv with eigenvalue #; 

then E.(w)  = E.(v)  whenever w �9 E,(v); 

(vi) M is a K~hler manifold of non-negative or non-positive sectional curvature. 

Note that (v)(b) is redundant when dim E,(v)  = 2. We refer to [Ch2] and [GSV] 

for more results in the quaternionic case. 

COROLLARY 2: Let M n, n > 2, be a Riemannian manifold with curvature homo- 

geneous geodesic spheres and satisfying one of the hypotheses given in Proposition 

4 (+ M compact) or Proposition 5. Then M is locally isometric to a two-point 

homogeneous space. 

Further we have 

COROLLARY 3: Not all the small geodesic spheres in a non-symmetric DR-space 

M are curvature homogeneous. More precisely, for each p E M and each suf- 

ficiently small normal neighborhood U v of p there exists an infinite number of 

geodesic spheres in Up centered at p which are not curvature homogeneous. 

Proof." The result follows from Proposition 3 and the fact that the non-symmet- 

ric DR-spaces are homogeneous and not globally Osserman spaces [Sz3], [TV2]. 

| 
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Before giving the next characterizations we recall that a hypersurface N in M 

is said to be c u r v a t u r e - a d a p t e d  if at each point of N the Jacobi operator of M 

and the shape operator of N with respect to a unit normal vector at that  point 

commute. Then we have 

PROPOSITION 6: A Riemannian manifold M n, n > 2, is locally isometric to a 

two-point homogeneous space if  and only i f  one of the following conditions is 

satisfied: 

(i) all small geodesic spheres in M are curvature-adapted and curvature 

homogeneous; 

(ii) all small geodesic spheres in M are curvature-adapted isoparametrie hyper- 

surfaces; 

(iii) M is a globally Osserman space with curvature-adapted geodesic spheres. 

Proo~ First, let M be a two-point homogeneous space. Then it is clear that 

(i), (ii) and (iii) are satisfied. To prove the converse we first note that in the 

real analytic case M is a ~3-space if and only if all small geodesic spheres in M 

are curvature-adapted hypersurfaees [BV]. Moreover, it is clear that any globally 

Osserman space is a ~-space. The results in [GSV] about the isoparametric 

conjecture and its intrinsic version imply that under the hypotheses in (ii) the 

space is a globally Osserman space. According to Proposition 3 M is also a 

globally Osserman space if (i) holds. So M is both a ~- and a ~-space and 

hence locally symmetric. This proves the assertion since any locally symmetric 

pointwise Osserman space is locally isometric to a two-point homogeneous space 

(see, for example, [GSV]). | 

Note that the isoparametric conjecture just says that one could drop "curva- 

ture-adapted" in (ii), and the Osserman conjecture says that the phrase "with 

curvature-adapted geodesic spheres" in (iii) is redundant. 
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