ON THE POSSIBLE NUMBER OF ELEMENTS OF GIVEN ORDER IN A FINITE GROUP

BY

RÓBERT FREUD^{*}

 $E\ddot{o}$ *tv* \ddot{o} *s University, Department of Algebra and Number Theory 11-1088 Budapest, Mdzeum krt. 6-8, Hungary e-mail: freudrobert@ludens.elte.hu*

AND

PÉTER PÁL PÁLFY**

Mathematical Institute of the Hungarian Academy of Sciences H-136~ Budapest, Pf. 127, Hungary e-mail: ppp@math-inst.hu

ABSTRACT

The main motivation of this paper is to introduce a problem of some combinatorial flavor about finite groups which seems to be new in the literature. Let $k > 1$ be a fixed positive integer and denote by $f(k, G)$ the number of elements of order k in the group G. We examine the set $F(k) = \{f(k, G) | G$ a finite group} \{0}. We give a complete characterization of $F(k)$ if $4|k$ or $k = 6$ and show some modest partial results for certain other values of k . It seems to us that the question is surprisingly difficult even in such simple cases as $k = 3$, which we investigate in detail.

^{*} Research (partially) supported by Hungarian National Foundation for Scientific Research (OTKA), Grant No. 1901.

^{**} Research (partially) supported by Hungarian National Foundation for Scientific Research (OTKA), Grant No. 1903. Received September 12, 1994

1. Introductory remarks

Notation: As it was introduced in the Abstract, *f(k, G)* denotes the number of elements of order k in the group G, and we will investigate the set $F(k)$ of all possible (positive) values of *f(k, G).*

Let $s(k, G)$ denote the number of cyclic subgroups of order k in G and $r(k, G)$ the number of solutions of the equation $g^k = 1$ in G. Obviously, we have

$$
(1.1) \t\t f(k, G) = \varphi(k) \cdot s(k, G)
$$

and

(1.2)
$$
r(k, G) = \sum_{d|k} f(d, G).
$$

In a group G the identity element will be denoted by 1, the order of the element g by $o(g)$ and we use the standard notation for the center, the centralizer, the normalizer and the commutator. The cyclic group of order r generated by c will be denoted by $C_r = \langle c \rangle$, while D_r stands for the dihedral group of order $2r$.

The greatest common divisor of a and b will be denoted by (a, b) and their least common multiple by $[a, b]$. We will let p and q_i stand for prime numbers, q for prime powers.

THE CASE $k = 2$.

PROPOSITION 1.1: F(2) *is* the *set of all odd numbers.*

Proof: If G has an element of order 2 then $|G|$ is even, and the matching $g \mapsto g^{-1}$ forms pairs for $o(g) > 2$, $g = 1$ remains alone and so do the elements of order 2, hence the total number of the latter ones must be odd.

On the other hand the dihedral group D_{2r} or D_{2r+1} contains $2r+1$ elements of order 2 (and the cyclic group C_2 has one element of order 2).

NECESSARY CONDITIONS.

PROPOSITION 1.2: Assume that $m \in F(k)$. Then

- (i) $\varphi(k)|m$, and
- (ii) if $k = p$ is prime then also $m \equiv p 1 \pmod{p(p-1)}$.

Proof: (i) follows from (1.1). (ii) is a combination of (i) and of $m \equiv -1$ $(mod p)$, which is a direct consequence of a famous theorem of Frobenius (see e.g. [Frob] or [Hall, page 137]): $r(n, G) \equiv 0 \pmod{n}$ if n| |G|.

INFINITE GROUPS. We show that allowing infinite groups will leave (the finite values in) $F(k)$ unchanged:

PROPOSITION 1.3: Assume that G is an infinite group and $f(k, G)$ is finite. Let *H* denote the subgroup of G generated by all elements of order k. Then H is *finite.*

Proof: Obviously, $f(k, H) = f(k, G)$. Let x_1, \ldots, x_m be the elements of order k in G. Since $|H: C_H(x_i)|$ is the number of the conjugates of x_i , and all these conjugates have order k, therefore $|H: C_H(x_i)| \leq m$, and thus also $\bigcap C_H(x_i)$ has finite index in H. Since x_1, \ldots, x_m generate H, we have $\bigcap C_H(x_i) = Z(H)$. It is well known (see [Hupp, page 417]) that $|H/Z(H)| < \infty$ implies $|H'| < \infty$. Now H/H' is an abelian group generated by x_1H',\ldots,x_mH' , hence $|H/H'| \leq k^m$, thus H is finite, as well.

2. The case $4|k|$

THEOREM 2.1: If 4|k, then $F(k)$ consists of all multiples of $\varphi(k)$.

Proof'. In view of Proposition 1.2 we only have to show that the condition is sufficient. Consider the semidirect product G of the normal subgroup N by the subgroup $H = C_k = \langle c \rangle$ where N is the direct product of cyclic groups of prime order and the homomorphism $\rho_c: N \to N$ is defined by $\rho_c(n) = n^{-1}$. This means the identity $nc = cn^{-1}$ and implies

(2.1)
$$
(c^i n)^2 = \begin{cases} c^{2i}, & \text{if } i \text{ is odd}; \\ c^{2i} n^2, & \text{if } i \text{ is even}. \end{cases}
$$

(A) Let i be odd and determine the order of $cⁱn$. By (2.1), this order cannot be odd (since $4|k$). On the other hand

$$
(c^i n)^{2s} = c^{2is} = 1 \Longleftrightarrow k|2is \Longleftrightarrow \frac{k}{(k,i)}|2s\frac{i}{(k,i)} \Longleftrightarrow \frac{k}{(k,i)}|2s.
$$

Here (k, i) is odd, and therefore $k/(k, i)$ is even, which means that $o(cⁱn)$ = $k/(k, i)$. We infer that

$$
o(c^i n) = k \Longleftrightarrow (k, i) = 1.
$$

(B) Let now i be even. Then

$$
o(c^in) = [o(c^i), o(n)] = [k/(k, i), o(n)] \neq k
$$

since the exponent of 2 is smaller both in $k/(k, i)$ and in $o(n)$ than in k (the latter one comes from $4 \nmid o(n)$).

Summarizing (A) and (B) we see that $f(k, G) = \varphi(k)|N|$. Since we have no restriction on |N|, any multiple m of $\varphi(k)$ belongs to $F(k)$.

3. The case $k = 3$

Now we consider the case when $k = p > 2$ is a prime number. We shall obtain some general results, but we can get close to the determination of $F(p)$ only for $p = 3$. We take finite groups with $p||G|$. Our analysis will differ heavily if the Sylow *p*-subgroups of G are cyclic or non-cyclic.

In the case $p = 3$ we shall see that the groups with cyclic Sylow 3-subgroups make a contribution to $F(3)$ only with a set of density zero (Corollary 3.3 and Lemma 3.4). On the other hand $F(3)$ has positive density, in fact we show (Theorem 3.10) that $54j + 44 \in F(3)$ for every $j = 0, 1, 2, ...$

As usual, let $O_{p'}(G)$ denote the largest normal subgroup of G with order not divisible by p, and $O^{p'}(G)$ the smallest normal subgroup with a factor group of order coprime to p.

LEMMA 3.1: Let G have cyclic Sylow p-subgroups. Then $O^{p'}(G)/O_{p'}(O^{p'}(G))$ *is either simple or a cyclic p-group.*

Proof: We may assume that $O^{p'}(G) = G$ and $O_{p'}(G) = 1$. Take a minimal normal subgroup $M \triangleleft G$. By assumption, $p||M|$. A minimal normal subgroup is the direct product of isomorphic simple subgroups. As also the Sylow psubgroups of M are cyclic, M must be simple. We shall distinguish two cases: M is nonabelian or M is cyclic of order p. Let $P = \langle c \rangle$ be a cyclic Sylow psubgroup of G. If $P \leq M$, then $M = G$ follows from $O^{p'}(G) = G$. So assume $P \nleq M$.

In the first case consider the subgroup $H = MP$. Let $h = xy \in N_H(P)$ with $x \in M$, $y \in P$. Then $[h, c] = [x, c] \in M \cap P$, hence h acts trivially on $P/(M \cap P)$. Therefore h acts trivially on P, as well [Asch, 24.1], i.e. $h \in C_H(P)$. Now $N_H(P) = C_H(P)$, hence by Burnside's theorem [Asch, 39.1] there exists a normal p-complement K in H. Since K is also a normal p-complement in M , we get a contradiction with the simplicity of M .

In the second case $|M| = p$. Now $G/C_G(M)$ is cyclic of order dividing $p-1$, hence our assumption implies $M \leq Z(G)$. Let $g \in N_G(P)$, then g acts trivially

on M, and since $M = \Omega_1(P)$ (i.e. the subgroup generated by the elements of order p), g acts trivially also on P [Asch, 24.3]. Thus $N_G(P) = C_G(P)$ and Burnside's theorem again yields a normal *p*-complement K in G. As $O_{p'}(G) = 1$, we have $K = 1$ and $G = P$.

As $f(p, G) = f(p, O^{p'}(G))$, we may assume without loss of generality that $O^{p'}(G) = G$, i.e. G has no proper p'-factor groups. Now $G/O_{p'}(G)$ is either simple or cyclic of order p^k , $k \geq 2$. In the latter case let P be a subgroup of order p. Then $f(p, G) = f(p, O_{p'}(G) \cdot P)$, hence we may also assume without loss of generality that $G/O_{p'}(G)$ is simple, including the case $|G/O_{p'}(G)| = p$. Now we should analyse the action of G on the chief factors of $O_{p'}(G)$. Instead, we shall take into account the action of $N_G(P)$ only, thereby obtaining necessary conditions for $f(p, G)$.

LEMMA 3.2: *Let G be a finite group with cyclic Sylow p-subgroups and let P denote a subgroup of order p. Assume that* $G/O_{p'}(G)$ *is simple. Write*

$$
\frac{f(p, G)}{f(p, G/O_{p'}(G))} = q_1^{\alpha_1} \dots q_r^{\alpha_r}.
$$

Then

- (i) *p* divides each $q_i^{\alpha_i} 1$, and
- (ii) $|N_G(P): C_G(P)|$ divides each α_i .

Proof: Let us denote $N = O_{p'}(G)$. Grouping the elements of order p in G which generate the same subgroup modulo N we obtain

$$
f(p,G)=\frac{f(p,G/N)}{p-1}\cdot f(p,NP),
$$

since any subgroup of order p is conjugate to P in G . Furthermore, we have

$$
f(p, NP) = (p - 1) \cdot |NP: N_{NP}(P)| = (p - 1) \cdot |N: C_N(P)|,
$$

as $N_{NP}(P) = P \times C_N(P)$ *.* Now let q_i be an arbitrary prime divisor of |N|. Let us choose a Sylow q_i -subgroup Q_i of $C_N(P)$. By well-known results on coprime action [Asch, 18.7] Q_i is contained in a P-invariant Sylow q_i -subgroup R_i of N. So we have

$$
|N: C_N(P)| = \prod |R_i: Q_i|,
$$

where $|R_i: Q_i| = q_i^{\alpha_i}$. Now $Q_i = R_i \cap C_N(P)$, so P permutes the elements of $R_i \setminus Q_i$ in cycles of length p, hence $p|(|R_i| - |Q_i|) = |Q_i|(q_i^{\alpha_i} - 1)$, and so (i) follows.

Furthermore, notice that $N_G(P)/C_G(P)$, being isomorphic to a group of automorphisms of the *p*-element cyclic group P , is cyclic, and choose an element x such that $N_G(P) = \langle x, C_G(P) \rangle$. Now R_i^x is also P-invariant, as $P^x = P$. Hence another part of the Coprime Action Theorem [Asch, 18.7.2] yields an element $y \in C_N(P)$ such that $R_i^{xy} = R_i$. We have that Q_i^{xy} is centralized by $P^{xy} = P$, so $Q_i^{xy} \leq R_i \cap C_N(P) = Q_i$, hence we have equality here. As $\langle xy, C_G(P) \rangle =$ $\langle x, C_G(P) \rangle$ we can replace x by xy and assume that $Q_i^x = Q_i$ and $R_i^x = R_i$. Now let us take a maximal chain of subgroups $Q_i = X_0 \triangleleft X_1 \triangleleft \cdots \triangleleft X_{k-1} \triangleleft X_k = R_i$, such that each X_j is both P- and x-invariant. Then each factor X_j/X_{j-1} is an elementary abelian q_i -group, $\langle P, x \rangle$ acts irreducibly on X_j/X_{j-1} and the action of P is fixed-point-free on X_j/X_{j-1} [Asch, 18.7.4]. Let g be a generator of P. Consider the characteristic polynomial $\kappa(x)$ of the linear transformation induced by g on X_j/X_{j-1} . Its zeroes are some primitive p-th roots of unity. Since $g^x = g^m$ (for some $1 \le m \le p-1$) has the same characteristic polynomial as g, it follows that $\epsilon, \epsilon^m, \epsilon^{m^2}, \ldots$ occur with the same multiplicities as zeroes of $\kappa(x)$. Since their number is $|N_G(P): C_G(P)|$ we get that $|N_G(P): C_G(P)|$ divides deg $\kappa(x) = \dim X_j/X_{j-1}$, hence it divides $\alpha_i = \sum_{j=1}^k \dim X_j/X_{j-1}$, as well.

Now we specialize Lemma 3.2 for $p = 3$.

COROLLARY 3.3: *Let G be a finite group with cyclic Sylow 3-subgroups.* Then *either* $f(3, G) = 2q_1^{\alpha_1} \dots q_r^{\alpha_r}$, where $q_i^{\alpha_i} \equiv 1 \pmod{3}$ are prime powers, or $f(3, G) = n^2 f(3, S)$, where S is a nonabelian simple group with cyclic Sylow *3-subgroups and* $3 \nmid n$ *.*

Proof: We assume $O^{3'}(G) = G$. If $G/O_{3'}(G)$ is cyclic then $f(3, G) = f(3, C_3)$. $q_1^{\alpha_1} \ldots q_r^{\alpha_r}$, and Lemma 3.2(i) yields the desired result. If $G/O_{3'}(G) \cong S$ is a nonabelian simple group, then $f(3, G) = f(3, S)q_1^{\alpha_1} \dots q_r^{\alpha_r}$, where $|N_G(P): C_G(P)|$ divides each α_i by Lemma 3.2(ii). If $|N_G(P): C_G(P)| = 2$, then we get the announced result. So suppose $N_G(P) = C_G(P)$. Let \hat{P} be a (cyclic) Sylow 3subgroup of G containing P. Then $\hat{P} \leq C_G(\hat{P}) \leq N_G(\hat{P}) \leq N_G(P) = C_G(P)$, so each element of $N_G(\hat{P})$ induces an automorphism of p'-order on \hat{P} that acts trivially on $P = \Omega_1(\hat{P})$. Then $N_G(\hat{P})$ acts trivially on \hat{P} , as well [Asch, 24.3]. Now Burnside's Normal p-Complement Theorem [Asch, 39.1] yields that G has a normal 3-complement, contradicting to $G/O_{3'}(G) \cong S$, a nonabelian simple group.

It is not hard to determine all finite simple groups with cyclic Sylow 3-subgroups using the classification of finite simple groups. We can calculate $f(3, G)$, as well.

LEMMA 3.4: *The following is a complete list of nonabelian simple groups with nontrivial cyclic Sylow 3-subgroups:*

- (a) $G = \text{PSL}(2, q), q \equiv 2 \pmod{3}$, with $f(3, G) = (q 1)q$;
- (b) $G = \text{PSL}(2, q), q \equiv 1 \pmod{3}$, with $f(3, G) = q(q + 1)$;
- (c) $G = \text{PSL}(3, q)$, $q \equiv 2 \pmod{3}$, with $f(3, G) = (q^3 1)q^3$;
- (d) $G = \text{PSU}(3, q^2), q \equiv 1 \pmod{3}$, with $f(3, G) = q^3(q^3 + 1)$;
- (e) $G = J_1$, the first *Janko group, with* $f(3, G) = 5852 = 76.77$.

Proof: We should go through the list of finite simple groups. Among the alternating groups A_6 already has non-cyclic Sylow 3-subgroups, and $A_5 \cong$ $PSL(2,4) \cong PSL(2,5)$ need not be listed. For the sporadic groups we have consulted the [Atlas] and obtained (e). For groups of Lie type one is easily led to groups of low rank, and a detailed study $-$ which is not presented here $-$ yields the groups $(a) - (d)$.

As far as $f(3, G)$ is concerned, we restrict ourselves to show the computation in the easier cases (a) and (b). Since, obviously, $f(3, \text{PSL}(2, q)) = f(3, \text{SL}(2, q)),$ we will work in the latter group.

(a) Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ and E be the unit matrix. We claim that $o(A) = 3$ iff the characteristic polynomial $\kappa_A(x) = x^2 + x + 1$.

If $\kappa_A(x) = x^2 + x + 1$, then clearly $A \neq E$ but $A^3 - E = (A^2 + A + E)(A - E) = 0$, hence $o(A) = 3$. Conversely assume $o(A) = 3$. If $A = vE$ with a scalar $v \in GF(q)$, then $E = A^3 = v^3 E$, i.e. $v^3 = 1$ which gives $v = 1$, since the order of the multiplicative group of $GF(q)$ is not divisible by 3, as $q \equiv 2 \pmod{3}$. Hence $A \neq vE$, thus the minimal polynomial $\mu_A(x)$ has degree 2 and so $\kappa_A(x) = \mu_A(x)$. Then we have $\kappa_A(x)|x^3 - 1 = (x - 1)(x^2 + x + 1)$. Here $x^2 + x + 1$ is irreducible over $GF(q)$, since otherwise it would have a root $v \in GF(q)$ satisfying $v^3 = 1$ but $v \neq 1$. Therefore only $\kappa_A(x) = x^2 + x + 1$ is possible.

Now $\kappa_A(x) = x^2 - (a+d)x + ad - bc = x^2 + x + 1$ means $a+d=-1$ and $ad - bc = 1$. We have q ways to choose the value of a, and then d is uniquely determined. Now $bc = ad - 1 \neq 0$, since this would yield $a^2 + a + 1 = 0$. Therefore we have $q-1$ ways to choose $b \neq 0$ and then c is uniquely determined. This means that $f(3, G) = q(q - 1)$.

(b) We claim again that $o(A) = 3$ iff the characteristic polynomial $\kappa_A(x) =$ $x^2 + x + 1$, though we have to modify our arguments. Now the order of the multiplicative group in $GF(q)$ is divisible by 3, hence $x^3 - 1$ has three different roots in GF(q), namely 1, v_1 and v_2 , and so $x^2 + x + 1 = (x - v_1)(x - v_2)$. Since $A = v_i E$ has determinant different from 1, and also $\kappa_A(x) = (x-1)(x-v_i)$ would yield determinant $v_i \neq 1$, hence only $\kappa_A(x) = x^2 + x + 1$ is possible indeed. The converse is the same as in (a).

Thus we have again $a + d = -1$ and $ad - bc = 1$. There are two possibilities for $a + d = -1$ and $ad = 1$, namely $a = v_1, d = v_2$ or vice versa. In this case $b = 0$ and c is arbitrary, or $c = 0$ and $b \neq 0$ is arbitrary, which means $2(2q - 1)$ choices for A. In the other cases $bc \neq 0$, and we can argue as in (a): we obtain $(q-2)(q-1)$ further possibilities for A. This gives a total of $q(q+1)$ as stated. **|**

Note that for larger primes p there are many more types of simple groups with cyclic Sylow p-subgroups and $|N_G(P): C_G(P)|$ can assume several values, as well.

The conditions in Lemma 3.2 and Corollary 3.3 are necessary, but by no means sufficient. Nevertheless, we can construct some examples.

EXAMPLE 3.5: Let p be a prime, $q_i^{\alpha_i}$ (i = 1,...,r) prime powers such that $q_i^{\alpha_i} \equiv 1 \pmod{p}$. Then there exists a group G with $f(p, G) = (p-1)q_1^{\alpha_1} \dots q_r^{\alpha_r}$.

Proof: Let N be the direct product of the additive groups of the fields $GF(q_i^{\alpha_i})$. Let ϵ_i be a primitive p-th root of unity in GF($q_i^{\alpha_i}$), which exists by $p|q_i^{\alpha_i} - 1$. Let G be the semidirect product of N by a cyclic group $\langle g \rangle$ of order p, where g acts on $GF(q_i^{\alpha_i})$ as a multiplication by ϵ_i . Then every element in $G \setminus N$ has order p, hence $f(p, G) = (p-1)|N|$.

EXAMPLE 3.6: *For each n not divisible by* 3, there *exists a finite group G with* $G/O_{3'}(G) \cong A_5$ and $f(3, G) = n^2 f(3, A_5) = 20n^2$.

Proof: Let $G = C_n \wr A_5$. This wreath product is a semidirect product of C_n^5 by A_5 with the obvious action. For $P = \langle (123) \rangle$ and $N = C_n^5$ we see that $C_N(P) = \{(a, a, a, b, c) | a, b, c \in C_n\}, \text{ hence } f(3, G) = f(3, G/N) \cdot |N: C_N(P)| =$ $f(3, A_5) \cdot n^2 = 20n^2$.

REMARK 3.7: There is no finite group with $f(3, G) = 1760 = 4^2 f(3, \text{PSL}(2, 11)).$

Proof. Later (Lemma 3.8) we shall see that for groups with non-cyclic Sylow 3subgroups we have $f(3, G) \equiv -1 \pmod{9}$, hence any group with $f(3, G) = 1760$ must have cyclic Sylow 3-subgroups. As we have already observed, we may assume without loss of generality that $G/O_{3'}(G)$ is simple. If $|G/O_{3'}(G)| = 3$, then $f(3, G) = 2q_1^{\alpha_1} \dots q_r^{\alpha_r}$ with $q_i^{\alpha_i} \equiv 1 \pmod{3}$, which is not the case as 1760 = $2.2⁴ \cdot 5.11$. If $G/O_{3'}(G) \cong S$, a nonabelian cyclic group, then in virtue of Corollary 3.3, $f(3, G) = n^2 f(3, S)$ for some $n > 1$. Now $n = 1, 2$, or 4 and $f(3, S) =$ 1760, 440, or 110, correspondingly. Checking the list in Lemma 3.4 we see that only $f(3, S) = 110, n = 4$ can occur and then $S \cong \text{PSL}(2, 11)$. Using the notation of Lemma 3.2 we see that $|N: C_N(P)| = 16$. If Q is a Sylow 2-subgroup of $C_N(P)$ and R is a P-invariant Sylow 2-subgroup of N containing Q , then we obtain that $|R: Q| = 16$. For $H = N_G(R)$ the Frattini argument [Asch, 6.2] yields $G = NH$. Since $f(3, H) = |(N \cap H): C_{N \cap H}(P)| \cdot f(3, H/(N \cap H)) = f(3, G)$, as $R \leq$ $N \cap H$, $P \leq H$ and $H/(N \cap H) \cong NH/N = G/N$, we get $H \geq O^{3'}(G) = G$, i.e. $H = G$, so $R \triangleleft G$. Take a chief series $1 = X_0 \triangleleft X_1 \triangleleft \cdots \triangleleft X_{k-1} \triangleleft X_k = R \triangleleft \cdots$ of G. Since P does not act trivially on R , there must be at least one chief factor $V = X_j/X_{j-1}$ such that P does not act trivially on V. Then $|V: C_V(P)| \le$ $|R: C_R(P)| = |R: Q| = 16$. Now $C_G(V)$ does not contain P, hence $C_G(V) \le$ $O_{3'}(G) = N$. Observe that PSL(2, 11) can be generated by two elements of order 3, and choose a $P_1 \leq G$ of order 3 such that $\langle P, P_1 \rangle N = G$. Then

$$
|V: C_V(\langle P, P_1 \rangle)| = |V: (C_V(P) \cap C_V(P_1))| \le |V: C_V(P)| \cdot |V: C_V(P_1)| \le 16^2.
$$

Let $x \in \langle P, P_1 \rangle$ be an element such that xN has order 11 in $G/N \cong \mathrm{PSL}(2, 11)$. Then x acts nontrivially on V, hence 11 divides $|V| - |C_V(x)| > 0$, so it divides $|V: C_V(x)| - 1 > 0$, as well. Since $|V: C_V(x)| \leq |V: C_V(\langle P, P_1 \rangle)| \leq 2^8$, we get a $contradiction, as the order of 2 mod 11 is 10.$

From Corollary 3.3 and Lemma 3.4 we see that the values $f(3, G)$ for groups G with cyclic Sylow 3-subgroups constitute a sequence of density zero. We will see that groups with non-cyclic Sylow 3-subgroups provide examples for a sequence of positive density.

Now we turn to groups with non-cyclic Sylow p -subgroups, for which a necessary condition more restrictive than Proposition 1.2(ii) holds, see Herzog [Herz, Thm. 3(c)].

LEMMA 3.8: Let G be a finite group with non-cyclic Sylow p-subgroups, $p > 2$. *Then* $f(p, G) \equiv -1 \pmod{p^2}$.

Now we restrict our attention to $p = 3$. By Lemma 3.8 and Proposition 1.2(ii) we have that for groups G with non-cyclic Sylow 3-subgroups only $f(3, G) \equiv 8$ $(mod 18)$ is possible. We show that $(at least)$ one third of these numbers do occur in $F(3)$ indeed.

Let $\mathcal E$ denote the set of positive integers m such that each prime $\equiv 2 \pmod{3}$ occurs at an even exponent in the canonical form of m and 3 does not divide m . So $\mathcal{E} = \{1, 4, 7, 13, 16, 19, 25, 28, ...\}$. In virtue of Example 3.5 for each $u \in \mathcal{E}$ there exists a group G with $f(3, G) = 2u$.

LEMMA 3.9: Let $u, v \in \mathcal{E}$. Then there exists a group G with $f(3, G) =$ $18(u + v) + 8.$

Proof: As in the proof of Example 3.5, let U and V be abelian groups of order u and v, resp. with fixed-point-free automorphisms α and β of order 3. Let S be the Sylow 3-subgroup of S_9 generated by the permutations $a = (123)$ and $b = (147)(258)(369)$. Take the homomorphism $\rho: S \to \text{Aut}(U \times V)$ defined by $\rho_a(xy) = \alpha(x)y$, $\rho_b(xy) = x\beta(y)$ for $x \in U$, $y \in V$. Now let G be the semidirect product of $U \times V$ by S with respect to ρ .

Here S contains 44 elements of order 3, namely 8 elements in the commutator subgroup S', 18 elements in $\langle a, S' \rangle \setminus S'$ and another 18 elements in $\langle b, S' \rangle \setminus S'$. If $c \in S$ is an element of order 3, then the number of elements of order 3 in the coset $(U \times V)c$ is $|(U \times V): C_{U \times V}(c)|$, and this index is 1, u or v, according to the three cases listed above. Hence we have $f(3, G) = 8 + 18u + 18v$, as claimed. **|**

THEOREM 3.10: For all $j \ge 0$, $54j + 44 \in F(3)$.

Proof: The theorem will immediately follow from Lemma 3.9, if we can show that every number $r = 3j + 2$ $(j \ge 0)$ can be written as a sum $r = u + v$ with $u, v \in \mathcal{E}$. By a result of Liouville every positive integer can be represented in the form $x^2 + y^2 + 3z^2 + 3t^2$ (see [Liou] or [Kloo, p. 459]). Let $r = x^2 + y^2 + 3z^2 + 3t^2$ and write $u = x^2+3z^2$, $v = y^2+3t^2$. As $r \equiv 2 \pmod{3}$, it follows that $u \equiv 1 \pmod{3}$ 3) and $v \equiv 1 \pmod{3}$. Finally, we can check easily that $u, v \in \mathcal{E}$ by observing that -3 is a quadratic non-residue modulo any odd prime congruent to 2 mod 3.

|

Unfortunately, we were unable to prove a similar general result for the numbers of the form $54j + 8$, for example we do not know whether or not $f(3, G) = 1412$ can occur. If all these numbers belong to $F(3)$, then so do the numbers $54j + 26$, as well, since by $f(3, H \times C_3) = 3f(3, H) + 2$ we could get examples for these indeed.

We can summarize our results about $F(3)$, as follows:

SUMMARY 3.11: *Apart from a set of density zero,* F(3) *can contain only numbers of the form* $18i + 8$. *Among these, all numbers of the form* $54j + 44$ *do belong to* F(3) *indeed, whereas we are uncertain about the other ones.*

Finally we make a few numerical remarks.

- I. A complete list of all elements in $F(3)$ less than 500 is the following: All numbers of the form 6t + 2, *except* 68, 92, 140, 164, 176, 212, 230, 236, 284, 290, 308, 356, 374, 410, 428, 452,464 and 470.
- II. We could extend the list up to 2000, except for the dubious behavior of 1412, already mentioned. In checking whether or not some $m \leq 2000$ belongs to $F(3)$, the discussed methods were generally sufficient, we had to use a slightly different technique only for the construction of groups G with $f(3, G) = 710, 1520$ and 1790.

4. The case $k = 6$

From Proposition 1.2(i) we know that only even numbers m can belong to $F(6)$. We give now several constructions which show that all even numbers except 4, 16 and 28 do belong to $F(6)$. Some of these constructions can be easily generalized for arbitrary $F(k)$ where $k = 2p$, or even more generally $k \equiv 2 \pmod{4}$.

EXAMPLE 4.1: $m = 4j + 2 \in F(6)$ for $j > 0$.

Proof: For $G = D_{2j+1} \times C_3$ we have $f(6, G) = 4j+2$ if $j > 0$ and $f(6, C_6) = 2$. **I**

EXAMPLE 4.2: $m = 12j \in F(6)$ for $j \ge 1$.

Proof: For $G = D_{6j-3} \times D_3$ we have $f(6, G) = (6j-3)2 + 3 \cdot 2 = 12j$ if $j > 0$. **I**

EXAMPLE 4.3: $m = 12j + 8 \in F(6)$ for $j \ge 0$.

Proof: For $G = D_{6j} \times C_3$ we have $f(6, G) = 12j + 8$ if $j > 0$. Also, $f(6, C_6 \times C_3) =$ **8. I**

This means that only the numbers $m = 12j + 4$ are left.

EXAMPLE 4.4: $m = 24j + 52 \in F(6)$ for $j \ge 0$.

Proof: Let S be the central product of D_4 and C_4

$$
S = \langle x, y, z | x^4 = y^2 = 1, z^2 = x^2, yxy = x^{-1}, xz = zx, yz = zy \rangle,
$$

take the semidirect product H of the normal subgroup $C_{6j+3} = \langle c \rangle$ by the subgroup S, where $c^x = c^y = c$, $c^z = c^{-1}$, and let $G = C_3 \times H$ with $C_3 = \langle d \rangle$.

Then each element of G has a unique representation

$$
uzkcidn, u \in D4 = \langle x, y \rangle, k = 0, 1, 0 \le i \le 6j + 2, 0 \le n \le 2.
$$

If $k = 0$, then we are in $K = D_4 \times C_{6j+3} \times C_3$ and $f(6, K) = 5 \cdot 8$.

If $k = 1$, then $(uzc^i)^2 = u^2z^2 = u^2x^2 \in D_4$, which shows that the order of uzc^i cannot be 3 or 6. Hence $o(uzc^id^n) = 6$ iff $o(uzc^i) = 2$ and $o(d^n) = 3$. This is equivalent to $u^2x^2 = 1$, i.e. $u = x$ or x^3 and i is arbitrary, $n \neq 0$. This yields $2 \cdot (6j + 3) \cdot 2$ elements.

Hence we have $f(6, G) = 5 \cdot 8 + 2 \cdot (6j + 3) \cdot 2 = 24j + 52$.

EXAMPLE 4.5: $m = 48j + 40 \in F(6)$ for $j \ge 0$.

Proof: For
$$
G = C_3 \times C_3 \times D_{6j+5}
$$
 we have $f(6, G) = 8(6j+5)$.

EXAMPLE 4.6: $m = 48j + 64 \in F(6)$ for $j \ge 0$.

Proof: Let $D_8 = \langle x, y | x^8 = y^2 = 1, yxy = x^{-1} \rangle$, take the semidirect product H of the normal subgroup $C_{6j+3} = \langle c \rangle$ by the subgroup D_8 , where $c^x = c^{-1}, c^y = c$, and let $G = C_3 \times H$. Counting as in Example 4.4, we obtain $f(6, G) = 5 \cdot 8$ $+4\cdot (6j+3)\cdot 2=48j+64.$

Now we are going to show that the remaining values $k = 4, 16, 28$ cannot occur as $f(6, G)$. In order to do this we define a bipartite graph with vertices representing the 2- and 3-element subgroups of G , and G_2 of order 2 and G_3 of order 3 are joined by an edge iff they are contained in a 6-element cyclic subgroup, i.e. iff G_2 and G_3 commute. The number of vertices adjacent to a given G_2 is exactly the number of 3-element subgroups in $C_G(G_2)$, therefore it is either 0 (and G_2 is an isolated point in the graph), or it is congruent to 1 modulo 3. Similarly, the degree of a vertex G_3 ($|G_3| = 3$) is either 0, or an odd number. Moreover, if we take an element $g \in G_3$, then the conjugation

by g induces an automorphism of the graph. This automorphism fixes G_3 and all vertices adjacent to it, since these represent 2-element subgroups commuting with $G_3 = \langle g \rangle$. On the other hand, 2-element subgroups $\langle t \rangle$ not joined to $\langle g \rangle$ are not fixed by this automorphism, as $\langle g^{-1}tg \rangle \neq \langle t \rangle$. Thus the degree of $\langle g \rangle$ is congruent modulo 3 to the number of vertices representing 2-element subgroups.

Let us introduce some notation. Let the number of non-isolated vertices representing subgroups of order 2 and 3 be denoted by w and h , resp. and their degrees be $d^{(1)}, \ldots, d^{(w)}$, and $d_{(1)}, \ldots, d_{(h)}$. The total number of edges will be denoted by E . So we have

$$
\sum_{i=1}^w d^{(i)} = \sum_{j=1}^h d_{(j)} = E = \frac{1}{2}f(6, G),
$$

since each cyclic subgroup of order 6 contains exactly two elements of order 6.

Summarizing the above considerations, we have

$$
d^{(i)} \equiv 1 \pmod{3} \quad i = 1, ..., w,
$$

\n
$$
d_{(j)} \equiv 1 \pmod{2} \quad j = 1, ..., h,
$$

\n
$$
w - d_{(j)} \equiv 0 \pmod{3} \quad j = 1, ..., h.
$$

It follows that

$$
E = \sum_{i=1}^{w} d^{(i)} = w + \sum_{i=1}^{w} (d^{(i)} - 1) \equiv w \equiv d_{(j)} \pmod{3},
$$

therefore

$$
E = \sum_{j=1}^{h} d_{(j)} \equiv hE \pmod{3} \quad \text{and} \quad E \equiv h \pmod{2}.
$$

We want to consider cases $f(6, G) \equiv 4 \pmod{12}$, i.e. $E \equiv 2 \pmod{6}$. Then the previous congruences yield

$$
h \equiv 1(3), \quad h \equiv 0(2), \quad d_{(j)} \equiv 2(3), \quad d_{(j)} \equiv 1(2),
$$

so $h \equiv 4(6)$ and $d_{(j)} \equiv 5(6)$ for each $j = 1, \ldots, h$. Thus

$$
f(6, G) = 2E = 2\sum_{j=1}^{h} d_{(j)} \ge 2h \cdot 5 \ge 2 \cdot 4 \cdot 5 = 40.
$$

Therefore 4, 16, 28 \notin $F(6)$.

So we have proved:

THEOREM 4.7: $m \in F(6) \iff 2|m$ and $m \neq 4, 16, 28$.

ACKNOWLEDGEMENT: The authors are grateful to Antal Balog for calling their attention to some useful references.

References

- [Asch] M. Aschbacher, *Finite Group Theory,* Cambridge University Press, 1986.
- [Atlas] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, *Atlas* of *Finite Groups,* Oxford University Press, 1985.
- [Rob] G. Frobenius, ~)ber *einen Fundamentalsatz der Gruppentheorie,* Berliner Ber. 1903, 987-991.
- [Hall] M. Hall Jr., *The Theory of Groups,* 2nd ed., Chelsea, New York, 1976.
- $[{\rm Herz}]$ M. Herzog, *Counting group elements* of order *p modulo p2,* Proceedings of the American Mathematical Society 66 (1977), 247-250.
- [Hupp] B. Huppert, *Endliche Gruppen I,* Springer, Berlin, 1967.
- [Kloo] H. D. Kloosterman, *On the representation of numbers in the form* $ax^2 + by^2 +$ $cz^{2} + dt^{2}$, Acta Mathematica 49 (1926), 407-464.
- **[Liou]** J. Liouville, *Sur la représentation des nombres par la forme quadratique* $x^2 +$ $ay^2 + bz^2 + abt^2$, Journal de Mathématiques Pures et Appliquées (2) 1 (1856), 230.