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ABSTRACT 

The main motivation of this paper is to introduce a problem of some combi- 

natorial flavor about finite groups which seems to be new in the literature. 

Let k > 1 be a fixed positive integer and denote by f(k, G) the number of 

elements of order k in the group G. We examine the set F(k) -= {f(k, G)[ G 

a finite group} \{0}.  We give a complete characterization of F(k) if 4[k 

or k =- 6 and show some modest partial results for certain other values of 

k. It seems to us that the question is surprisingly difficult even in such 

simple cases as k ---- 3, which we investigate in detail. 
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1. I n t r o d u c t o r y  r e m a r k s  

Notation: As it was introduced in the Abstract, f (k ,  G) denotes the number of 

elements of order k in the group G, and we will investigate the set F(k) of all 

possible (positive) values of f (k ,  G). 

Let s(k, G) denote the number of cyclic subgroups of order k in G and r(k, G) 

the number of solutions of the equation gk _ 1 in G. Obviously, we have 

(1.1) 

and 

(1.2) 

f(k, c)  = s(k, G) 

r(k, C) = G). 
dlk 

In a group G the identity element will be denoted by 1, the order of the element 

g by o(g) and we use the standard notation for the center, the centralizer, the 

normalizer and the commutator. The cyclic group of order r generated by c will 

be denoted by Cr = (c), while Dr stands for the dihedral group of order 2r. 

The greatest common divisor of a and b will be denoted by (a, b) and their 

least common multiple by [a, b]. We will let p and q~ stand for prime numbers, q 

for prime powers. 

THE CASE k -~ 2. 

PROPOSITION 1.1: F(2) is the set of all odd numbers. 

Proofi I f G  has an element of order 2 then [G[ is even, and the matching g ~-* g-1 

forms pairs for o(g) > 2, g = 1 remains alone and so do the elements of order 2, 

hence the total number of the latter ones must be odd. 

On the other hand the dihedral group D2r or D2r+l contains 2r + 1 elements 

of order 2 (and the cyclic group C2 has one element of order 2). | 

NECESSARY CONDITIONS. 

PROPOSITION 1.2: Assume that m C F(k). Then 

(i) qo(k)lm , and 

(ii) / fk  = p is prime then also m -= p - 1 (mod p(p - 1)). 

Proof." (i) follows from (1.1). (ii) is a combination of (i) and of m - - 1  

(mod p), which is a direct consequence of a famous theorem of Frobenius (see 

e.g. [Frob] or [Hall, page 137]): r(n, G) =- 0 (mod n) if n[ [G[. | 
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INFINITE GROUPS. We show that allowing infinite groups will leave (the finite 

values in) F(k)  unchanged: 

PROPOSITION 1.3: Assume that G is an infinite group and f ( k ,  G) is finite. Let 

H denote the subgroup of G generated by MI elements of order k. Then H is 

finite. 

Proof: Obviously, f ( k ,  H)  = f ( k ,  G). Let x l , . . . , x m  be the elements of order 

k in G. Since [H: CH(x~)[ is the number of the conjugates of x~, and all these 

conjugates have order k, therefore [H: CH(Xi) ] ~ m, and thus also N CH(Xi) has 

finite index in H. Since x l , . . . ,  Xm generate H, we have [7 CH(xi) = Z(H) .  It is 

well known (see [nupp, page 417]) that [H/Z(H)[ < oe implies [H' I < c~. Now 

H / H  I is an abelian group generated by x l H ' , . . . ,  xmH' ,  hence [H/H'  I < k TM, 
thus H is finite, as well. | 

2. T h e  case 4[k 

THEOREM 2.1: I f  4lk, then F(k)  consists of all multiples of ~(k).  

Proof'. In view of Proposition 1.2 we only have to show that  the condition is 

sufficient. Consider the semidirect product G of the normal subgroup N by the 

subgroup H = Ck = (c / where N is the direct product of cyclic groups of prime 

order and the homomorphism Pc: N ~ N is defined by pc(n) = n -1. This means 

the identity nc = cn -1 and implies 

f C 2i, if i is odd; 
(2.1) (ein)2 ---= [ c21n 2, if i is even. 

(A) Let i be odd and determine the order of cin. By (2.1), this order cannot 

be odd (since 41k ). On the other hand 

k 12s. (c'n) 2s = c 2'8 = 1 ~ kl2is .: :- [2S (k, i  ) .z----5. ( k, i----~ 

Here (k, i) is odd, and therefore k/(k ,  i) is even, which means that  o(c~n) = 

k/ (k ,  i). We infer that 

o(cin) = k ~ (k,i)  = 1. 

(B) Let now i be even. Then 

o(cln) = [o(cl), o(n)] = [k/(k, i), o(n)] r k 
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since the exponent of 2 is smaller both in k/(k, i) and in o(n) than in k 

(the latter one comes from 4 ~ o(n)). 

Summarizing (A) and (B) we see that f (k ,  G) = ~o(k)iN]. Since we have no 

restriction on INI, any multiple m of ~(k) belongs to F(k). I 

3.  T h e  c a s e  k = 3 

Now we consider the case when k = p > 2 is a prime number. We shall obtain 

some general results, but we can get close to the determination of F(p) only for 

p = 3. We take finite groups with PiiG I. Our analysis will differ heavily if the 

Sylow p-subgroups of G are cyclic or non-cyclic. 

In the case p -- 3 we shall see that the groups with cyclic Sylow 3-subgroups 

make a contribution to F(3) only with a set of density zero (Corollary 3.3 and 

Lemma 3.4). On the other hand F(3) has positive density, in fact we show 

(Theorem 3.10) that 54j + 44 E F(3) for every j = 0, 1, 2 , . . .  

As usual, let Op, (G) denote the largest normal subgroup of G with order not 

divisible by p, and O # (G) the smallest normal subgroup with a factor group of 

order coprime to p. 

pl 
LEMMA 3.1: Let G have cyclic Sylow p-subgroups. Then O# (G)/OB,(O (G)) 

is either simple or a cyclic p-group. 

Proof We may assume that OP'(G) = G and Op,(G) = 1. Take a minimal 

normal subgroup M ,~ G. By assumption, pilMI. A minimal normal subgroup 

is the direct product of isomorphic simple subgroups. As also the Sylow p- 

subgroups of M are cyclic, M must be simple. We shall distinguish two cases: 

M is nonabelian or M is cyclic of order p. Let P = (c) be a cyclic Sylow p- 

subgroup of G. If P _< M, then M = G follows from OP'(G) -- G. So assume 

P ~ M .  

In the first case consider the subgroup H --- MP.  Let h = xy E NH(P) 

w i t h x  E M, y E P.  Then [h,c] = [x,c] E M A P ,  hence h acts trivially on 

P/ (MMP) .  Therefore h acts trivially on P,  as well [Asch, 24.1], i.e. h E CH(P). 

Now NH(P) = CHIP), hence by Burnside's theorem [Asch, 39.1] there exists a 

normal p-complement K in H. Since K is also a normal p-complement in M, we 

get a contradiction with the simplicity of M. 

In the second case ]M] = p. Now G/CG(M) is cyclic of order dividing p - 1, 

hence our assumption implies M <_ Z(G). Let g E Na(P),  then g acts trivially 
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on M, and since M = ~tl(P) (i.e. the subgroup generated by the elements of 

order p), g acts trivially also on P [Asch, 24.3]. Thus Na(P) = Ca(P) and 

Burnside's theorem again yields a normal p-complement K in G. As Op, (G) = 1, 

we have K = 1 and G = P. | 

As f(p,G) = f(p, OV'(G)), we may assume without loss of generality that 

0 p'(G) = G, i.e. G has no proper p'-factor groups. Now G/O v,(G) is either 

simple or cyclic of order pk, k _> 2. In the latter case let P be a subgroup of 

order p. Then f(p,G) = f(p, Op,(G). P), hence we may also assume without 

loss of generality that G/Op,(G) is simple, including the case IG/Op,(G)I = p. 

Now we should analyse the action of G on the chief factors of Op, (G). Instead, 

we shall take into account the action of NG(P) only, thereby obtaining necessary 

conditions for f(p, G). 

LEMMA 3.2: Let G be a finite group with cyclic Sylow p-subgroups and let P 

denote a subgroup of order p. Assume that G/Op, (G) is simple. Write 

f(p,G) q~l ... ~ 
f(p, G/Op, (G)) 

Then 

(i) p divides each q~ - 1, and 

(ii) [NG(P): CG(P)[ divides each ai. 

Proof'. Let us denote N = Op, (G). Grouping the elements of order p in G which 

generate the same subgroup modulo N we obtain 

f(p, G) = f(p' G/N) . f(p, NP), 
p - 1  

since any subgroup of order p is conjugate to P in G. Furthermore, we have 

f(p, NP)  = ( p -  1). [NP: NNp(P)I = (P-- 1). IN: CN(P)[, 

as NNp(P) = P • CN(P). Now let qi be an arbitrary prime divisor of IN[. Let 

us choose a Sylow qi-subgroup Qi of CN(P). By well-known results on coprime 

action [Asch, 18.7] Q~ is contained in a P-invariant Sylow qi-subgroup Ri of N. 

So we have 

IN: CN(P)[ = 1-I IR~: Q~I, 
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where [Ri: Q~I = q~.  Now Qi = Ri n CN(P), So P permutes the elements of 

Ri \ Qi in cycles of length p, hence pl(IR~l - IQiI) -- IQ~l(q~ ~ - 1), and so (i) 

follows. 

Furthermore, notice that NG(P)/Ca(P), being isomorphic to a group of au- 

tomorphisms of the p-element cyclic group P, is cyclic, and choose an element x 

such that NG(P) = (x, CG(P)). Now R~ is also P-invariant, as P~ = P. Hence 

another part of the Coprime Action Theorem [Asch, 18.7.2] yields an element 

y E CN(P) such that R~ y = R~. We have that Q~Y is centralized by P~Y = P,  

so Q~Y <_ R~ ~ CN(P) = Q~, hence we have equality here. As (xy, Ca(P)) = 

(x, Ca(P)) we can replace x by xy and assume that Q~ = Qi and R~ = Ri. Now 

let us take a maximal chain of subgroups Q~ = X0 ~ X1 < . . .  ,~ Xk-1 ,~ Xk = R~, 

such that each Xj is both P- and x-invariant. Then each factor X j / X j _ I  is 

an elementary abelian q~-group, (P, x) acts irreducibly on X j / X j _ I  and the ac- 

tion of P is fixed-point-free on X j / X j _ I  [Asch, 18.7.4]. Let g be a generator 

of P. Consider the characteristic polynomial ~(x) of the linear transformation 

induced by g on Xj /X j -1 .  Its zeroes are some primitive p-th roots of unity. 

Since g~ = g m  (for some 1 _< m < p - 1) has the same characteristic polynomial 

as g, it follows that  ([,~m,~m2,... Occur with the same multiplicities as zeroes 

of ~(x). Since their number is INa(P): Ca(P)l we get that INa(P):  CG(P)I 

divides deg~(x) = d imXj /X j_ l ,  hence it divides ai = ~ = 1  d imXj /X j_ l ,  as 

well. II 

Now we specialize Lemma 3.2 for p = 3. 

COROLLARY 3.3: Let G be a finite group with cyclic Sylow 3-subgroups. Then 

either y(3, a )  = 2q 1... q~ , where q~' -= 1 (mod 3) are prime powers, or 

f(3,  G) = n2f(3,  S), where S is a nonabelian simple group with cyclic Sylow 

3-subgroups and 3 ~ n. 

Proof" We assume O3'(G) = G. If G/O3,(G) is cyclic then f(3,  G) = f(3,  C3)" 

q~l ...q~aT , and Lemma 3.2(i) yields the desired result. If G/03, (G) "~= S is a non- 

abelian simple group, then f(3,  G) = f(3,  S)q~I.. .  ~ q~ , where INc(P):  CG(P)I 

divides each al by Lemma 3.2(ii). If ING(P): CG(P)I = 2, then we get the 

announced result. So suppose NG(P) = Ca(P). Let /5 be a (cyclic) Sylow 3- 

subgroup of G containing P. T h e n / 5  _< Ca(/~) < Na(P) <_ Na(P) = Ca(P), 

so each element of Na(/5) induces an automorphism of p'-order o n /5  that  acts 

trivially on P = ~h(/5). Then NG(P) acts trivially on P, as well [Asch, 24.3]. 
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Now Burnside 's  Normal  p -Complemen t  Theorem [Asch, 39.1] yields t ha t  G has 

a normal  3-complement ,  contradict ing to G/O3,(G) ~ S, a nonabel ian  simple 

group. II 

I t  is not hard  to determine all finite s imple groups with cyclic Sylow 3-sub- 

groups using the classification of finite simple groups. We can calculate f (3 ,  G), 

as well. 

LEMMA 3.4: The following is a complete list of nonabelian simple groups with 

nontrivial cyclic Sylow 3-subgroups: 

(a) G = PSL(2,  q), q - 2 (mod 3), with f (3 ,  G) = (q - 1)q; 

(b) G = PSL(2,  q), q = 1 (rood 3), with f (3 ,  G) = q(q + 1); 

(e) G = PSL(3,  q), q - 2 (rood 3), with f(3,  G) = (q3 _ 1)q3; 

(d) G = PSU(3,  q2), q -= 1 (rood 3), with f(3,G) = q3(q3 + 1); 

(e) G = J1, the/~rst  3anko group, with f(3,  G) = 5852 = 76 .77 .  

Proof." We should go through the list of finite simple groups. Among  the 

a l te rnat ing  groups A6 al ready has non-cyclic Sylow 3-subgroups,  and A5 

PSL(2 ,4)  ~ PSL(2 ,5)  need not be listed. For the sporadic groups we have 

consulted the [Atlas] and obta ined (e). For groups of Lie type  one is easily led to 

groups of low rank,  and a detailed s tudy  - -  which is not presented here - -  yields 

the groups (a) - (d). 

As far as f (3 ,  G) is concerned, we restrict  ourselves to show the c o m p u t a t i o n  

in the easier cases (a) and (b). Since, obviously, 1(3, PSL(2,  q)) = f (3 ,  SL(2, q)), 

we will work in the la t ter  group. 

(a) L e t A =  ( :  ~ )  C G a n d E b e t h e u n i t m a t r i x .  W e e l a i m t h a t o ( A ) = 3  

iff the characteris t ic  po lynomia l  aA (x) = x 2 + x + 1. 

I fgA(X) = x ~ + x + l ,  then  clearly A r E but  A a - E  = ( A ~ + A + E ) ( A - E )  = O, 

hence o(A) = 3. Conversely assume o(A) = 3. If A = vE with a scalar v E GF(q) ,  

then E = A 3 = v3E, i.e. v 3 = 1 which gives v = 1, since the order of the 

mult ipl icat ive group of GF(q)  is not divisible by 3, as q - 2 (mod  3). Hence 

A ~ vE, thus the min imal  polynomial  ~A(X) has degree 2 and s o  I~A(X ) --~ #A(X). 
Then  we have t~A(X)lX 3 -- 1 = (x -- 1)(x:  + x + 1). Here x 2 + x + 1 is irreducible 

over GF(q) ,  since otherwise it would have a root  v E GF(q)  sat isfying v 3 = 1 but  

v r 1. Therefore  only K; A (X)  = X 2 -I- X + 1 is possible. 

NoWtCA(X) = x 2 - ( a + d ) x + a d - b c =  x 2 + x + l  m e a n s a + d =  - 1  and 

ad - bc = 1. We have q ways to choose the value of a, and then  d is uniquely 
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de te rmined .  Now bc = a d -  1 ~ 0, since this  would yield a 2 + a +  1 = 0. Therefore  

we have q -  1 ways to  choose b r 0 and then  c is uniquely de te rmined .  This  means  

t ha t  f ( 3 ,  G) = q(q - 1). 

(b) We cla im again  t ha t  o(A) = 3 iff the  charac ter i s t ic  po lynomia l  ~A(X) = 

x 2 + x + I ,  though  we have to modi fy  our a rguments .  Now the  order  of the  

mul t ip l i ca t ive  group in GF(q)  is divisible by 3, hence x 3 - 1 has three  different 

roo ts  in GF(q) ,  namely  1, Vl and vx, and  so x 2 + x + 1 = (x - Vl)(X - vx). Since 

A = v i e  has d e t e r m i n a n t  different from 1, and  also t~A (x) = ( x - - 1 ) ( x - - v i )  would 

yield d e t e r m i n a n t  vi ~ 1, hence only ~A(X) = x 2 + x + 1 is possible  indeed. The  

converse is the  same as in (a). 

Thus  we have again  a + d = - 1  and ad - bc = 1. There  are two possibi l i t ies  

for a + d =  - 1  and  a d - -  1, n a m e l y a  = v l , d  = v2 or vice versa. In  th is  case 

b = 0 and c is a rb i t ra ry ,  or c = 0 and b ~ 0 is a rb i t ra ry ,  which means  2(2q - 1) 

choices for A. In the  o ther  cases bc ~ O, and we can argue as in (a): we ob ta in  

(q - 2)(q - 1) fur ther  possibi l i t ies  for A. This  gives a t o t a l  of q(q § 1) as s ta ted .  

| 

Note t h a t  for larger  pr imes  p there  are many  more  types  of s imple  groups wi th  

cyclic Sylow p-subgroups  and [NG (P) :  CG (P)[  can assume several  values, as well. 

The  condi t ions  in L e m m a  3.2 and Corol la ry  3.3 are necessary, bu t  by  no means  

sufficient. Nevertheless ,  we can cons t ruc t  some examples .  

EXAMPLE 3.5: Let  p be a pr ime,  q~" (i = 1 , . . . , r )  p r i m e  powers such that 

q~' _-- 1 (mod  p). Then there  exists a group G with f (p ,  G) = ( p -  1)q~l . . .  ~ qr �9 

Proof." Let  N be  the  d i rec t  p roduc t  of the  addi t ive  groups of the  fields GF(q~  ~). 

Let  c~ be a p r imi t ive  p - th  roo t  of un i ty  in GF(qff ~), which exists  by p]q~" - 1. Let  

G be  the  semidi rec t  p roduc t  of N by a cyclic group (g) of order  p, where g acts  

on GF(q~ '  ) as a mul t ip l i ca t ion  by e~. Then  every e lement  in G \ N has  order  p, 

hence f (p ,  a )  = (p - 1)IN ]. | 

EXAMPLE 3.6: For each n not divisible by 3, there  exists a finite group G with 

e l 0 3 ,  (G) ~- A5 and f (3 ,  G) = nXf(3, As) = 20n 2. 

Proo~ Let  G = C~ ~ As.  This  wrea th  p roduc t  is a semidi rec t  p roduc t  of C 5 

by  A5 wi th  the  obvious act ion.  For  P = ((123)) and  N = C 5 we see t ha t  

CN(P)  = {(a,a,a,b,c)[  a,b,c  �9 Ca}, hence f (3 ,  G) = f (3 ,  G / Y ) .  ]g: CN(P)[ = 

f (3 ,  As)"  n 2 = 20n 2. II 
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REMARK 3.7: There is no finite group with f(3,  G) = 1760 = 42f(3, PSL(2, 11)). 

Proof." Later (Lemma 3.8) we shall see that  for groups with non-cyclic Sylow 3- 

subgroups we have ](3,  G) ~ - 1  (mod 9), hence any group with f(3,  G) = 1760 

must have cyclic Sylow 3-subgroups. As we have already observed, we may 

assume without loss of generality that  G/O3,(G) is simple. If IG/O3,(G)I = 3, 

then f(3,  G) = 2q~ 1 . . .  q~r with q~  - 1 (mod 3), which is not the case as 1760 = 

2.24.5.11. If G/03, (G) ~ S, a nonabelian cyclic group, then in virtue of Corollary 

3.3, ](3,  G) = n2f(3,  S) for some n > 1. Now n = 1,2, or 4 and f (3 ,  S) = 

1760, 440, or 110, correspondingly. Checking the list in Lemma 3.4 we see that  

only f(3,  S) = l l 0 , n  = 4 can occur and then S = PSL(2, 11). Using the notation 

of Lemma 3.2 we see that  IN: CN(P)I = 16. If Q is a Sylow 2-subgroup of CN(P) 

and R is a P-invariant Sylow 2-subgroup of N containing Q, then we obtain that  

I R: QI = 16. For H = NG(R) the Frattini argument [Asch, 6.2] yields G = NH.  

Since f(3,  g )  = I ( g  n g ) :  CNnH(P)I" f(3, H / ( N  N H)) = f(3,  G), as R 

N N H, P <_ H and H / ( N  n H) ~- N H / N  = G/N,  we get H _> O3'(G) = G, i.e. 

H = G, so R ,~ G. Take a chief series 1 = X0 ,~ X1 ,~. - �9 ,~ Xk-1 ,~ Xk = R ,~ .- �9 of 

G. Since P does not act trivially on R, there must be at least one chief factor 

V = X j / X j - 1  such that  P does not act trivially on V. Then IV: Cv(P)I <_ 

IR: CR(P)I = IR: QI = 16. Now Co(V) does not contain P,  hence CG(V) ~ 

03, (G) = N. Observe that  PSL(2, 11) can be generated by two elements of order 

3, and choose a P1 ~_ G of order 3 such that  (P, P1)N = G. Then 

IV: Cv((P, P1))] = IV: (Cv(P) N Cy(P,))l ~_ IV: Cv(P)l" iV: Cv(P~)l <_ 162. 

Let x E (P, P~) be an element such that  xN  has order 11 in GIN ~- PSL(2, 11). 

Then x acts nontrivially on V, hence 11 divides IVI - ICy(x)l > 0, so it divides 

IV: C v ( x ) l -  1 > 0, as well. Since IV: Cv(x)I < IV: Cv((P, P1))I ~- 2s, we get a 

contradiction, as the order of 2 mod 11 is 10. | 

From Corollary 3.3 and Lemma 3.4 we see that  the values f (3 ,  G) for groups G 

with cyclic Sylow 3-subgroups constitute a sequence of density zero. We will see 

that  groups with non-cyclic Sylow 3-subgroups provide examples for a sequence 

of positive density. 

Now we turn to groups with non-cyclic Sylow p-subgroups, for which a neces- 

sary condition more restrictive than Proposition 1.2(ii) holds, see Herzog [Herz, 

Thm. 3(c)]. 
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LEMMA 3.8: Let G be a finite group with non-cyclic Sylow p-subgroups, p > 2. 

Then f(p,  G) = -1  (mod p2). 

Now we restrict our attention to p = 3. By Lemma 3.8 and Proposition 1.2(ii) 

we have that  for groups G with non-cyclic Sylow 3-subgroups only f(3,  G) - 8 

(rood 18) is possible. We show that  (at least) one third of these numbers do 

occur in F(3) indeed. 

Let s denote the set of positive integers m such that  each prime ---- 2 (mod 3) 

occurs at an even exponent in the canonical form of m and 3 does not divide m. 

So s = {1, 4, 7, 13, 16, 19, 25, 28,. . .}.  In virtue of Example 3.5 for each u E s 

there exists a group G with f(3,  G) = 2u. 

LEMMA 3.9: Let u,v  E s Then there exists a group G with f (3 ,  G) = 

18(u + v) + 8. 

Proof." As in the proof of Example 3.5, let U and V be abelian groups of order 

u and v, resp. with fixed-point-free automorphisms a and/3  of order 3. Let S 

be the Sylow 3-subgroup of $9 generated by the permutat ions a = (123) and 

b = (147)(258)(369). Take the homomorphism p: S ~ Aut(V • V) defined by 

p~(xy) = a(x)y,  pb(xy) = x/3(y) for x E U, y E V. Now let G be the semidirect 

product of U • V by S with respect to p. 

Here S contains 44 elements of order 3, namely 8 elements in the commutator  

subgroup S',  18 elements in (a, S') \ S' and another 18 elements in (b, S') \ S'. 

If c E S is an element of order 3, then the number of elements of order 3 in the 

coset (U x V)c is [(U x V) : Cuxy(c)l ,  and this index is 1, u or v, according to 

the three cases listed above. Hence we have f(3,  G) = 8 + 18u + 18v, as claimed. 

| 

THEOREM 3.10: For a11j >_ 0, 54j + 44 E F(3). 

Proof" The theorem will immediately follow from Lemma 3.9, if we can show 

that  every number r = 3j + 2 (j _> 0) can be written as a sum r = u + v with 

u, v E $. By a result of Liouville every positive integer can be represented in the 

form x 2 + y2 + 3z 2 + 3t 2 (see [Liou] or [KIoo, p. 459]). Let r = x 2 + y2 + 3z 2 + 3t 2 

and write u = x2+3z  2, v = y2+3t2. As r -= 2 (mod 3), it follows that  u ~ 1 (rood 

3) and v = 1 (rood 3). Finally, we can check easily that  u, v E s by observing 

that  - 3  is a quadratic non-residue modulo any odd prime congruent to 2 mod 3. 

| 
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Unfortunately, we were unable to prove a similar general result for the numbers 

of the form 54j + 8, for example we do not know whether or not f (3 ,  G) = 1412 

can occur. If all these numbers belong to F(3),  then so do the numbers 54j + 26, 

as well, since by f (3 ,  H z C3) = 3f(3,  H)  + 2 we could get examples for these 

indeed. 

We can summarize our results about F(3),  as follows: 

SUMMARY 3.11: Apart from a set of density zero, F(3) can contain only numbers 

of the form 18i + 8. Among these, all numbers of the form 54j + 44 do belong to 

F(3) indeed, whereas we are uncertain about the other ones. 

Finally we make a few numerical remarks. 

I. A complete list of all elements in F(3) less than 500 is the following: All 

numbers of the form 6t + 2, except 68, 92, 140, 164, 176, 212, 230, 236, 284, 

290, 308, 356, 374, 410, 428, 452,464 and 470. 

II. We could extend the list up to 2000, except for the dubious behavior of 

1412, already mentioned. In checking whether or not some m <_ 2000 

belongs to F(3),  the discussed methods were generally sufficient, we had 

to use a slightly different technique only for the construction of groups G 

with f (3 ,  G) = 710, 1520 and 1790. 

4. T h e  case  k = 6 

From Proposition 1.2(i) we know that  only even numbers m can belong to F(6).  

We give now several constructions which show that  all even numbers except 4, 16 

and 28 do belong to F(6).  Some of these constructions can be easily generalized 

for arbi trary F(k) where k = 2p, or even more generally k = 2 (mod 4). 

EXAMPLE 4.1: m = 4j + 2 E F(6) for j >_ O. 

Proof F o r G = D 2 j + l x C 3 w e h a v e f ( 6 ,  G ) = 4 j + 2 i f j > 0 a n d f ( 6 ,  C 6 ) = 2 .  

I 

EXAMPLE 4.2: m = 123" E F(6)  for j >_ 1. 

Proof." For G = D6j-3 x D3 we have f (6 ,  G) = (6j - 3)2 + 3 . 2  = 12j if j > 0. 

I 

EXAMPLE 4.3: m = 12j + 8 E F(6)  for j > O. 

Proof." For G = D6j x C3 we have f (6, G) = 12j + 8 if j > 0. Also, f (6, C6 x C3) = 

8. I 
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This means tha t  only the numbers m = 12j + 4 are left. 

EXAMPLE 4.4: m = 24j + 52 e F(6)  for j >_ O. 

Proo~ Let S be the central product  of D4 and C4 

S =  ( x , y , z  I x  4 = y2 = l , z  2 = x 2 , yxy  = x - 1 , x z  = z x , y z  -- zy),  

take the semidirect product  H of the normal  subgroup C6j+3 = (c) by the sub- 

group S, where c ~ = c y = c ,c  ~ = c -1,  and let G = C3 x H with C3 = (d). 

Then  each element of G has a unique representation 

uzkcid  ~, u E D 4 =  (x ,y) ,  k = O ,  1, 0 < i < 6 j + 2 ,  0 < n < 2 .  

If  k = 0, then we are in K = D4 • C6j+3 • C3 and f (6 ,  K)  = 5 . 8 .  

If  k = 1, then (uzci) 2 = u2z 2 = u2x 2 E D4, which shows tha t  the order of uzc i 

cannot  be 3 or 6. Hence o(uzc~d n) = 6 iff o(uzc i) = 2 and o(d n) = 3. This is 

equivalent to u2x 2 = 1, i.e. u = x or x 3 and i is arbitrary, n ~ 0. This yields 

2 .  (6j + 3) �9 2 elements. 

Hence we have f (6 ,  G) -- 5 . 8  + 2 .  (6j + 3) .  2 = 24j + 52. | 

EXAMPLE 4.5: m = 48j + 40 E F(6)  for j > O. 

Proof: For G = C 3 X C 3 • D6j+5 we have f (6 ,  G) = 8(6j + 5). | 

EXAMPLE 4.6: m = 48j + 64 E F(6)  for j >_ O. 

Proo~ Let Ds = (x, Yl x8 = y2 = 1, yxy  -= x - t l ,  take the semidirect product  H 

of the normal  subgroup C6j+3 = (c) by the subgroup Ds, where c ~ = c -1,  c y = c, 

and let G = C3 • H.  Counting as in Example 4.4, we obtain f (6 ,  G) = 5 �9 8 

+ 4 .  (6j + 3 ) .  2 = 48j + 64. | 

Now we are going to show tha t  the remaining values k = 4, 16, 28 cannot  

occur as f (6 ,  G). In order to do this we define a bipart i te  graph with vertices 

representing the 2- and 3-element subgroups of G, and G2 of order 2 and G3 

of order 3 are joined by an edge iff they are contained in a 6-element cyclic 

subgroup, i.e. iff G2 and G3 commute.  The number  of vertices adjacent to a 

given G2 is exactly the number  of 3-element subgroups in CG(G2), therefore it 

is either 0 (and G2 is an isolated point in the graph),  or it is congruent  to 1 

modulo  3. Similarly, the degree of a vertex G3 (IG31 = 3) is either 0, or an 

odd number.  Moreover, if we take an element g E G3, then the conjugat ion 
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by g induces an automorphism of the graph. This automorphism fixes G3 and 

all vertices adjacent to it, since these represent 2-element subgroups commuting 

with G3 = (g). On the other hand, 2-element subgroups (t) not joined to (g) 

are not fixed by this automorphism, as ( g - l t g }  r (t I. Thus the degree of (g) is 

congruent modulo 3 to the number of vertices representing 2-element subgroups. 

Let us introduce some notation. Let the number of non-isolated vertices rep- 

resenting subgroups of order 2 and 3 be denoted by w and h, resp. and their 

degrees be d(1),.. .  ,d (~), and d(1), . . . ,  d(h). The total number of edges will be 

denoted by E. So we have 

w h 

i = 1  j = l  

since each cyclic subgroup of order 6 contains exactly two elements of order 6. 

Summarizing the above considerations, we have 

d ( i ) - 1  (mod3)  i = l , . . . , w ,  

d(j) - 1 (mod 2) j = 1 , . . . , h ,  

w - d ( j ) = - 0  (mod3)  j = l , . . . , h .  

It follows that 

therefore 

W W 

E = ~ d  ( ' ) = w + ~ ' ~ . ( d  ( ' ) - l ) - w - d ( j )  (mod3) ,  
i----1 i----1 

h 

E m ~ d ( j )  - h E  (mod 3) and E =- h (mod 2). 
j = l  

We want to consider cases f(6,  G) - 4 (mod 12), i.e. E _= 2 (mod 6). Then 

the previous congruences yield 

h ~ 1(3), h = 0(2), d(j) = 2(3), d(j) = 1(2), 

so h - 4(6) and d(j) - 5(6) for each j = 1 , . . . ,  h. Thus 

h 

f(6,  G) = 2E = 2 ~ d ( j )  >_ 2 h .  5 >_ 2 . 4 . 5  = 40. 
j = l  

Therefore 4, 16, 28 r F(6). 

So we have proved: 
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THEOREM 4.7: m E F(6)  ~ 2]m and m ~ 4, 16, 28. 
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