
ISRAEL JOURNAL OF MATHEMATICS 93 (1996), 125-144 

ON GALOIS GROUPS AND THEIR MAXIMAL 2-SUBGROUPS 

BY 

L E I L A  S C H N E P S  

URA 741 du CNRS, Laboratoire de Mathdmatiques 

Facultg des Sciences de Besan~on, 25030 Besan~on Cedex, France 

e-mail: schneps@dmi.ens.fr 

ABSTRACT 

Let  G be a finite group of even order, hav ing  a central  e lement  of  order  2 

which we denote  by - 1 .  If G is a 2-group, let G be a m a x i m a l  subgroup  

of G conta in ing  - 1 ,  otherwise let G be  a 2-Sylow subgroup  of G. Let  

7-I -= ~/{-t-1} and  H -- G/{=[=I}. Suppose  there  exists  a regular  ex tens ion  

L1 of Q(T) wi th  Galois group 7-/. Let  L be the  subfield of L1 fixed by H.  

We make  the  hypothes i s  t ha t  L1 admi t s  a quadra t i c  ex tens ion  L2 which 

is Galois over L of Galois group G. If G is not  a 2-group we show tha t  

L1 t h e n  admi t s  a quadra t ic  ex tens ion  which is Galois over Q(T)  of Galois 

group ~ and  which can  be given explicitly in t e rms  of L2. If G is a 2- 

group,  we show t ha t  the re  exists  an  e lement  a E Q(T) such  t h a t  L1 admi t s  

a quadra t ic  ex tens ion  which is Galois over Q(T) of Galois group G if and  

only if the  cyclic a lgebra  (L/Q(T), a) splits. As an  appl icat ion of these  

resul ts  we explicitly cons t ruc t  several  2-groups as Galois groups  of regular  

ex tens ions  of Q(T) .  

Let G be a finite group and let K be the field Q(T).  A r e g u l a r  extension of 

Q(T) is an extension containing no algebraic extension of Q larger than Q itself. 

The inverse Galois problem for G over K is the question of whether G occurs 

as the Galois group of a regular extension of K.  If this is the case, then by 

Hilbert 's  Irreducibility Theorem, G occurs as a Galois group over every number 

field: we say that  G has the property GalT. In certain cases, it is known that  

has the property GalT, for instance whenever G is an abelian group or when G is 

a semi-direct product A)~ H where A is abelian and H is a smaller group which 

itself has GalT, or when G is a quotient of such a semi-direct product. Whenever 
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is the quotient of a semi-direct product with abelian kernel A~ 7-/, then the 

question of whether G has GalT is reduced to the same question for/-/. 

Any group having a normal abelian subgroup not lying in its Frattini subgroup 

can be written as such a quotient. Therefore, in order to prove that  all finite 

groups have GalT, it would suffice to prove it for irreducible groups, i.e. groups 

all of whose abelian normal subgroups lie in their Frattini subgroup. The smallest 

such group is SL(2, 3), of order 24: it is known to have GaiT (cf. [F] or [S1]). 

The smallest such 2-groups are ten of the 267 groups of order 64. Seven of these 

groups have descending central 2-series of length 3 and three of them have series 

of length 4. The smallest irreducible p-groups have order p5 when p r 2 (cf. [D]). 

When it is not known how to prove that  a group is a Galois group by considering 

its intrinsic structure, one can at tempt  to consider the group as an extension of 

a smaller group and study the embedding problem. We restrict ourselves to the 

case where G has a central element of order 2, which we call -1 .  Let 7-I = G/{+I} .  

Then 6 is an extension of the group 7-/by {+1}, i.e. 

1 --* { •  --~ G --* 75 - *  1. 

Suppose we have a Galois extension L1 of a field L having Galois group 7-/. 

Then we may ask the following question: does there exist a quadratic extension 

L2 of L1 which is Galois over L of Galois group G ? It is well known that  this 

is the case if and only if a certain algebra is split: this algebra is known as the 

obstruction to the embedding problem of G over 7-/relative to the fields L and 

L1. We call it TL,LI,n,G: the precise definition is given in w In this article we 

prove the following theorem: 

THEOREM 1: Let G be a finite group having a central element -1  of order 2, and 

let 7-/= G/{+I} .  I fG is a 2-group let G be a maximal subgroup o f f  containing 

-1.  If ~ is not a 2-group let G be a 2-Sylow subgroup ofF. Suppose ~ has the 

property GAIT, and let L1 be a regular extension of K of Galois group ~.  Let 

H = G / { + I }  and let L be the fixed field of H in L1. Suppose that TL,L1,H,C 

is split, i.e. that L1 admits a quadratic extension L2 which is Galois over L of 

Galois group G. Then 

(i) I f  G is not a 2-group, L1 admits a quadratic extension L' 2 which is Ga]ois 

over K of Galois group ~. The field L~ can be given explicitly in terms of 

L2. 
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(ii) / / G  is a 2-group, there exists an element a E K* which can be given 

explicitly in terms of L2, such that L1 admits a quadratic extension L~ 

which is Galois over K of Galois group ~ if and only if the cyclic algebra 

(L/K, a) is split. 

In w167 and 3 we prove a more detailed version of the theorem. In w we calculate 

the element a of part (ii) of the theorem in some small examples. In w we give 

some examples of applications of the theorem, and in w we use the theorem 

to prove that the seven irreducible groups of order 64 with descending central 

2-series of length 3 have the property GalT and to construct explicit regular 

extensions of K having these groups as Galois groups. 

ACKNOWLEDGEMENT: I would like to thank the ETH in Ziirich for its hospital- 

ity and financial support during the preparation of this article, and Ralf Dentzer 

for communicating his list of irreducible 2-groups to me. Special thanks are also 

due to Jack Sonn whose suggestions gave rise to numerous improvements. 

1. The embedding problem 

Let G, 7-/, K and L1 be as above and suppose that G is not isomorphic to 7-/• {4-1}. 

We begin by recalling the exact statement of the embedding problem and the 

definition of its obstruction. Let E(K, L1, 7-l, G) be the set of fields L2 which are 

quadratic extensions of L1, Galois over K with Galois group isomorphic to G 

such that  the diagram 

Gal(L2/K) . Gal(L1/K) 

1 1 
commutes. The set E(K, L1,7-l, G) is the set of fields L(v/-~ ) which are Galois 

over K of Galois group isomorphic to G, and such that  the action of the element 

- 1  E G on L1 fixes L1 and sends v ~  to - v ~ "  It is known that if for some ~, E L1 

we have LI(x/~) e E(K, L1,7-I,~), then E(K, LI ,~ ,G)  = {LI(x{C~)I r 6 g*} .  

Let {vo I a E 7-/} be a set of representatives for G/{•  Define a cocycle 

4: ~ • ~ -* {• by vov~ = ~o,~vo~ (we write 4o,~ rather than 4(a, T) ). Let 

(L1/K, 4) be the crossed-product algebra associated to the cocycle 4: this algebra 

is the obstruction to the embedding problem. We recall that  it is an algebra of 

dimension 17-/] 2. We can define it explicitly as follows: (L1/K, 4) = Y~oeH Llvo, 
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where multiplication is given by the rules vav~. = ~,,,.~vo,~- and v~a = a(c~)vr for 

all c~ E L1. 

Let us denote by TK,L~,~,~ the equivalence class of (L1/K, ~) in the group 

Br2(K), the kernel of multiplication by 2 in the Brauer group of K. In general, 

we write this group additively and use the notation (a, b) both for the quaternion 

algebra (a, b) and its equivalence class in Br2(K). We have the classical result, 

proved via Hilbert's 90th Theorem (see for example [S1] for the proof): 

E(K, L1, 7-l, G) ~ ~ ~ TK,L1,7-I,g = 0 in Br2(K). 

2. T h e  non-2 -g roup  case 

Suppose ~ is not a 2-group, and let G be a 2-Sylow subgroup of ~. We suppose 

as before that ~ has a central element - 1  of order 2 and we set 7-/ = g / { •  

and H -- G/{•  Let L1 be a regular extension of K having Galois group 7-/. 

We make part (i) of the main theorem more explicit in the following lemma: 

LEMMA 2: Suppose TL,LI,H,G = O, SO there exists an element "y E L1 such 

that L,(v/~ ) E E(L, L1, H,G). Let T be a set of representatives for the right 

cosets for H in ~ and set ~ = YLeT r('y). Then T K , L I , n , g  = 0 and LI(v~) E 
E(K, LI,I-I,G). 

Proof." We first show that Ll(v/~) is Galois over K. To see this, it suffices to 

verify that  ~a(~) is a square in L1 for all a E 7"/. Now, multiplication by an 

element of ~ induces a permutation on the classes rH ,  so 

~ET rET r 

where the h~ are in H. But for each h~, "yh~('y) is a square in L1 since by 

assumption, Ll(vf~) is Galois over L, the fixed field of H. So ~(r(~) is a square 

for all a E 7-l. 

Set L2 -- Ll(x/~). We now show that the Galois group of the extension 

L I ( v / ~ / K  is really the desired group G. It suffices to show that  LI(q~-~) E 

E(L, L1, H, G), since any quadratic extension L2 of L1 which is Galois over K 

and such that L2 E E(L, L1, H, G) must have Gal(L2/K) ~- G. We see this 

because Gal(L2/K) must have the two properties that its quotient by the central 

element fixing L1 is isomorphic to 7 / a n d  its 2-Sylow subgroups are isomorphic 

to G. But all such groups are isomorphic. For consider the map 

H2(7-/, • R__~s H2(H, • 
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The group H2(7/, i l )  classifies the central extensions of 7/-/by +1 and H2(H, +1) 

classifies the central extensions of H by +1. The restriction arrow is injective 

since [7t : H] is odd. Therefore, the preimage of the element of H2(H, +1) 

corresponding to the central extension G of H is unique and corresponds to the 

unique central extension of 7 /by  +1 having 2-Sylow isomorphic to G. 

To conclude the proof, we only need to show that LI(V~) E E(L, L1, H, G). 

Recall that Br2(L~/K) ~- H2(7/, L~), and consider the commutative diagram 

H2(7/,:k1) Res H2(H,:kl) 

l 1 
H2(7/,L,1) Rr H2(H,L~). 

Let @ be a 2-cocycle in the class of H2(H, • corresponding to the central 

extension G of H by • and @ a 2-cocycle in the class of H2(7/, • which 

is the (unique) preimage of the class of ~a under Res (so ~a corresponds as 

explained above to the extension G of 7-/). Then TK,LI,~,~ is the equivalence 

class in Br2(L1/K) of the crossed-product algebra (L1/K, @), and TL,L1,H,G is 

the class of the crossed-product algebra (L1/L, r In other words, TK,LI,7-I,9 
corresponds to the class of @ in H2(7/, L~) under the identification Br2(L1/K) ~- 
H2(7-/, L~') and the same is true when 7/and G are replaced by H and G, and K by 

L. By assumption, TL,LI,H,G is trivial; therefore, since both restriction arrows 

are injective on elements of order 2, TK,LI,n,g is also be trivial. Therefore, if 

LI(x/~) E E(L, L1, H, G), there exists 5 E L1 such that Ll(x/5) E E(K, L1, 7/, G). 
Then (as in w we must have ? = 5rA2 for some r E L and A E L1. Now, since 

Ll(x/~) is Galois over K, we must have T(5) = ~A~: for all 7 E T, where each 

Av E L1. Thus we see that 

SO 

, :  1-I II  (r)II 
vET vET vET vET 

Since [7/: H] is odd and 1-IrET T(l') E 
tiplication by a square and an element 

by assumption, we obtain 

vET vET 

K*, we see that ~ differs from 5 by mul- 

of K*, so since Ll(x/5) E E(K, LI,7/,g) 

L2 = LI(X/~) E E(K, L1,7/,~). I 
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It is clear from the proof that this method, i.e. assuming the two hypotheses 

that  T/ has GalT and that  TL,L1,H,G : 0 has the advantage of considerably 

simplifying the obstruction to the embedding problem, reducing it to a much 

smaller one, and even more important reducing the explicit construction of the 

field having Galois group G to that of a field having a smaller group G. However, 

it has the disadvantage of obliging us to construct fields and obstructions to 

embedding problems over extensions of Q(T), which may be more difficult. The 

group SL(2,  3) is a good example (see w 

3. T h e  2-g roup  case  

Let G now be a 2-group. Then G can always be written as a product GC2~ for 

some n, where G is a non-trivial normal subgroup of G (one can always take G 

to be a maximal subgroup, for instance), and C ~  denotes a cyclic subgroup of 

order 2'L Such a product is called a partial semi-direct product: G is a semi-direct 

product Gn  C2~ if G A C2- = 1, otherwise it is a quotient of such a semi-direct 

product. We make part (ii) of theorem 1 more explicit in the following theorem. 

THEOREM 3: Let G be a 2-group, and write G as a partial semi-direct product 

GO2, for some non-trivial normal subgroup G C ~. Let e be a generator of the 

C2, factor; we suppose that n is minimal, i.e. that e has order n in G. Let let - 1  

be a central element of  order 2 in ~ which is contained in G. Set 7-I --- G/{:kl} 

and H = G/{:t:I}. Then TI satisfies an exact sequence 

1 ---~ H -* 7-/--~ C2-, -* 1 

for some m <_ n (if m = n then ~ is a semi-direct product G ~ C2,). Suppose that 

7-l has the property GAIT, so there exists a regular extension L1 of K having Galois 

group ?-l. Let L be the fixed field of H in L1 and suppose that TL,L1,H,O = O. 

Then there exists an element a E K* such that 

(i) TK,LI,~,6 = 0 i f  and only i f  the cyclic algebra ( L / K ,  a) is split, i.e. i f  and 

only i f  a is a norm from L to K.  

(ii) For any "r E L1 such that LI (V~)  E E(L ,  L1, H, G), there exists r E L* 

and A E L1 such that 

a = 

Pro@ (i) Consider the following exact sequence of cohomology groups: 

1 I~ H2(C2,~, L*) a~s H2(7_/, L~) --* g 2 ( g ,  L~). 
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The hypothesis that  TL,L1 ,H,G splits is equivalent to supposing that  if ~: 7-I x 7-/--~ 

L~ is a 2-cocycle associated to G as in w then Res(~) is Ll-equivalent to the 

trivial cocycle. Then by the exact sequence, r is L1-equivalent to the inflation 

of a cocycle in H2(C2 ~ , L*), which means that  TK,L,~,g is equivalent to a cyclic 

algebra of the form (L/K, a) in Br2(K) for some element a E K*. Such an 

algebra is given by (L/K, a) = "--'~=2m-~-1 "~i ?--~i=o Le where ~2" = a, and ~ acts on L 

as a generator of Gal(L/K). I t  is well-known that  a cyclic algebra splits if and 

only if a is a norm from L to K (see for example [R]). 

(ii) The element of H2(C2~,L*) associated to the algebra (L/K,a) can be 

given by a cocycle ~: C2m x C2~ ~ L* defined by ~,,,~ = 1 i f i + j  < 2 m, 

~d,~# = a otherwise. Since TK,L,~,6 is Ll-equivalent to (L/K,a), there is a 

1-cochain {Co E L~ia E 7t} such that  

{ 1  a i + j < 2 m  
coa(c~-)c~o,~- = ~,~ = i + j > 2 m, 

where ~ and ~ are a and 7 (mod H),  and i and j are such that  ~ = e i, f = e j. 

Now, set 

-~o -- a E c~<~)+ E ~ - 'oS ' - I~ (~ )  
oEH oEH 

for some w 6 L1 such that  "Yo # 0 (such a w exists by Artin 's  theorem on the 

linear independence of characters). Then 

2 'n-z ~- 2 2 m-1 2 m-1 2 2 "n 

(~0) = a Z ~ ~(co) ~ ~(w) + ~ (~-1o) ~ ~(~). 
~ ~ 

Now, using the two identities, 

2 '~-1 2 (Ca) --2 2 C2m_ 1 C~2~v~-I O. 

and 

~2~- I (C  2 ~ _ i o ) 2  ---- C 2~_i--2 C2me 2 oa 2 

which follow from the definition of the 1-cochain {co}, we obtain 

~_1 (~o)= (c ~_1 )-~[a E c~m-~o~-' ~(w) + aS E e~m~ o ~(w)]. 
aEH aEH 

Since m is precisely the smallest integer such that  e 2~ E H,  multiplication of the 

elements of H by e 2~ only permutes them, so this expression can be rewritten as 

rr-., 2 2 m-~ 1 s "-~ Uo): a ( ~ - ~ ) - ~ / ~  ~-'-'o~ ~(") + a E ~ ( ~ ) j ,  
La6H a6H 
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so in fact 
2m--1 

( 7 0 )  = 

Now, LI(x/-~) �9 E(L,  L1, H, G) since, as is easily checked, 7o = c~T(70) for all 

r �9 H. So any 3' �9 L1 such that LI(v/~) �9 E(L,  L1, H, G) satisfies 70 = rA27 

for some r �9 L, Ao �9 L1. Set A = c2~-~r-17-1Aole2~-~(Ao).  Then as in the 

statement of the theorem, we have 

a = A2re2m-l(r)ve2m-l(V ). | 

In general, it is easier to work with semi-direct products than with partial ones. 

Moreover if a semi-direct product G~ C2- has the property GalT, then so do its 

quotients and in particular the partial semi-direct products GC2,. 

If 6 = G ~ C2- and the C2- factor acts on G via an automorphism of order 2 m 

strictly smaller than 2 n, we can simplify the construction of a field having Galois 

group 6 via the following Lemma. 

LEMMA 4: Suppose G = G>4 C2~ where the automorphism of  G given bye induces 

an automorphism of  order 2 m on G with m < n. Suppose there exists a field L2 

such that Gal (L2/K)  = G;~ C2 m under the same action as that of  C2~. Let L be 

the fixed field of  G in L2. Suppose that L can be embedded into a Galois cyclic 

C2~ extension L ~ of  K with L2 N L ~ = L. Then Gal(L2L~/K) = G>~ C2~. 

Proof: This is a direct consequence of the structure of the group 6 = G>~ C2~. 

Indeed g is isomorphic to the subgroup of G >q C2~ x C2n given by elements 

{(a,x) �9 (G~ C2~) x C2-I a (mod G) -=x (mod C2.-m)}. 

This is the Galois group of an extension obtained by identifying the isomorphic 

quotient fields of G>~ C2 m (mod G) and C2~ (mod C2~-m). II 

4 .  T h e  e l e m e n t  a 

Let G be a 2-group and fix a choice of -1 .  As before, we write 6 = GC2, 

for some normal subgroup G of 6 containing -1 .  As in the previous section, 

we set 7-I = 6/{4-1} and H = G/{+I} .  Suppose L1 is a Galois extension of 

K = Q(T) having Galois group 7"/. Let L be the fixed field of H, so L is a cyclic 

2 m extension of K for some m _< n. As in Theorem 3, we make the hypothesis 

that TL,L1 ,H,G ~- 0 in Br2(L). 
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Then by Theorem 3, there exists a E K such that  TK,LI,n,g = ( L / K ,  a) in 

Br2(K).  We compute the element a explicitly in two examples. 

Example 1: G = Cs, G = C4, H = C2, 7-I = C4 (somewhat inelegantly, we write 

= GCs, i.e. Ca = C4Cs). It  is of course already well-known that  the cyclic 

group of order 8 has GalT, cf. [M], [$4]; nevertheless it is a good illustration of 

the methods described above. Let d C K (not a square) be such that  ( - 1 ,  d) = 0 

in Br2(K).  Then d is the sum of two squares, say d =- x 2 + y2. Set L = K ( v ~ )  

and for all r �9 K*, set Lr = K ( ~ / r d +  ryvfd). Let w generate Gal(L/K) ,  

so w(v~)  = -v/-d. Then Gal(L~/K) = 7-l = C4. Indeed L ~ / K  is a Galois 

extension since (rd + ryv/-d)w(rd + ryV~) = r2x2d which is a square in L. But 

NL~/K(~/rd + ryv/-d) = r2x2d, which is not a square in K,  so Gal(La/K)  ~- Ca 

and the action of a generator e of it is given by 

~ r d  + r y v ~  H ~ r d  - ryx/~ ~-* - I r d  + ryv/-d ~-~ - ~ r d  - ryv/-d. 

By w we know the obstruction to the embedding problem TK,L.,C4,Cs. It  is 

the crossed-product algebra 
3 

~-~ Lrc i, 
i=0 

where e is a generator of Cs, so e 4 = - 1 ,  and multiplication is given by the action 

of e on Lr as a generator of Gal(Lr /K) .  This algebra has dimension 16. We write 

it as the tensor product of two quaternion algebras, precisely 

(2, d) | ( - 1 ,  2rd), 

generated as follows: se t  a = e - ~ 3  a n d  /~ -- ~/rd--~ ryv~ -~- ~/rd- r y v ~ 2 ;  

then (2, d) is generated by a and V~, and ( - 1 , 2 r d )  is generated by c 2 and 

A = ~ / r d -  ryv/-de 2 + ~/rd + ryyrd. It  is easy to check that  the two pairs of 

generators anticommute, and that  the elements of each pair commute with those 

of the other. Since ( - 1 ,  d) is assumed to be trivial in Br2(K) and ( - 1 ,  2) is also 

trivial, we see that  

TK,L.,C.,C8 = (2, d) + (-1, r) 

in Br2(K).  

We now assume that  TL,L~,C2,C4 is trivial and show that  TK,L~,C4,C8 becomes 

equal to a symbol of the form (a, d). Indeed, TL,L~,C2,C4 = (--1, rd + ryv/d) in 
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Br2(L). We easily show that  if ( -1 ,  rd + ryv~)  = 0 in Br2(L), then ( -1 ,  rd) = 0 

in Br2(L) and vice versa, for these two algebras are in fact equivalent in Br2(L): 

if e is a generator of C8, we can let ( -1 ,  rd + ryv~)  be generated by e 2 and 

~/rd + ryv~ ,  and ( - 1 , r d ) b y  e 2 and ~/rd + r y y ~ +  ~ / r d -  ryv/-de2: clearly over 

L each of these algebras contains the other. So the hypothesis that  TL,L~,C2,C4 = 

0 actually implies that  ( -1 ,  rd) = 0 in Br2(L), and therefore ( -1 ,  r) = 0 since 

( -1 ,d )  = 0. So TK,L~,C4,C8 = (2,4) + (--1, r) = (2, d) in Br2(g) ,  so we can take 

a = 2 .  

Example 2: G = Ds, G = D4, H = C22, 7-/= 04. 

Let L = g(~/'d), L1 = L(x/b + cv~,  v/b - cv/d) where 52 - d c  2 = 6 with 

K(v/6) r K(v~) .  Then Gal(L1/K) = D4. By a calculation of generators 

similar to that  in example 1 we compute TK,LI,D4,Ds : (2, d) + (2b, -d6).  NOW, 

TL,LI,H,G = TL,LI,C~,D4 = (b + cv/-d, b - cv/-d) in Br2(L). Let us show that  

(b + cv/-d, b - cv~) = (2b, -6)  in Br2(L). Let e, w be generators of Ds such that  

cs = ~2 = 1 and the commutator [e, ~] = - e  2. The first algebra is generated 

by x/b + cv/-dca and v/b - cv~ew, and the second by the sum and the product of 

these two elements. 

Now suppose that T L , L 1 , H , G  : (2b,-6) = 0 in Br2(L). Then T K , L I , D 4 , D s  ~" 

(2, d) + (2b, -46) = (2, d) + (2b, d) + (2b, -6)  = (b, d) so we can take the element 

a equal to b. 

5. Two  examples  of  applications of  the theorem 

We keep the preceding notation, so G is a 2-Sylow subgroup or a maximal sub- 

group of G, 7 / =  ~/{+1},  and H = G/{+I} .  

Example 1: G = SL(2, 3) (see IF]). 

This group of order 24 actually has a unique and therefore normal 2-Sylow 

subgroup G isomorphic to the quaternion group of order 8. The group 7-/ is 

isomorphic to A4, and H = C22, which can be considered as the subgroup of 

A4 given by the permutations (1)(2)(3)(4), (12)(34), (13)(24) and (14)(23). Let 

P(x) be a polynomial having Galois group A4 over K,  and let r l ,  r2, r3 and r4 

be its roots, A4 acting on them via its permutations. Let L be the fixed field 

of H, so [L: g ]  = 3: we have L = K((r l  + r3) 2) since it is easily seen that  H 

fixes L and that  [L : K] = 3. Let L1 be the splitting field of P(x) ,  so L1 is a 

biquadratic extension of L, say L1 = L(rl  + r2, r l  + r4). The obstruction to the 
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embedding problem TL,LI ,C~,Qs is given by 

TL,LI,C~,Q. = (--1,--1) + (--(r l  + r2) 2, - - (r l  + r4)2). 

Let ( - 1 , - 1 )  be generated by Ul and u2 with u 2 = u22 = - 1 ,  u3 = ulu2 = -U2Ul, 

and ( - ( r l  + r2) 2, - ( r l  + r4) 2) be generated by Vl and v2 with Vl 2 = - ( r l  + r2) 2, 

v 2 = - ( r l  + r4) 2 and v3 = VlV2 = - v2v l .  If  TL,LI,C~,Q8 = 0 then there exists a 
3 3 x 3 matr ix  W = (w~j) defined over L such that  for i = 1, 2, 3, ~-~j=l wi jv j  = uj.  

By a theorem of Wit t  (see [W]), if we set ~ = 1 + (rl + r2)Wll + (rl  + ra)w22 + 

1/(r l  + r2)(r l  + r4)w33, then L t ( v ~ )  is Galois over L with Galois group Qs. By 

Lemma 2, if ~ = ~ /~ / r2  where ~- = (234) E A4, then LI(X/~) is Galois over K of 

Galois group SL(2,  3). This calculation can be carried out numerically, at least 

if one can find the matr ix  W (see [S1]). 

Example  2: A family of 2-groups of nilpotency class 3. 

Let g be a 2-group which is a semi-direct product  of an extra-special 2-group 

G and C2 (generated by e of order 2). We recall that  an extra-special 2-group 

is an extension of C~ by C2 having center and commuta tor  subgroup of order 

2: there are no such groups for n odd and exactly two for n even, which take 

the forms of central products D~/2 and Q8DI n-2)/2. Let us show that  ~ can be 

realized as a Galois group over K.  Since G is extra-special, H = C~ and 7-/is a 

semi-direct product (C~)>~ C2: we suppose that  the action is not trivial. In order 

to show that  6 is a Galois group, we construct an explicit extension L1 of K 

such that  Gal (L1 /K)  = 7-/and TK,L1,7-1,g ~- O, and then give an explicit element 

~/E L1 such that  L l ( v ~ )  is Galois over K with Galois group G. 

Let us choose a particular set of n generators for C~. Since we suppose that  

does not act trivially, we can choose an (~1 such that  e does not fix it. Set 

a2 = e(al) .  If  there exist elements of C~ not in the subgroup generated by (~1 

and a2 on which e does not act trivially, choose one, call it c~3 and set ~4 --- e(a3). 

(Note that  c~4 cannot lie in the group generated by a t  and a2 since e is of order 

2). Continue this way until there are no more elements on which e does not act 

trivially; we have say a l , . . . , a 2 j .  Now for 2j < i _< n, we take generators ai  

such that  e(a~) = hi. 

We now construct the field L1. Let d C K be a sum of 2 squares such that  

L = K(v/d)  is a regular quadratic extension of K.  Choose d l , . . . , d ~  E L, 

independent in L*/(L*)  2, satisfying the following properties: 

(i) dl and d2 are sums of 2 squares in L; 
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(ii) For 1 < i < j ,  d2/-1 and d2/ are conjugates over K,  and for 2j < i _< n, 

di E K*, where d and d2j+l, . . . ,  dn are all independent in K*/(K*) 2, so that 

Ga l (K(v~ ,  V / - ~ + l , . . . ,  V/'-~)/K) ~_ (C2)~-2J+l; 

(iii) The symbols (d~, di+l) -- 0 in Br2(L) for all odd i with 1 _< i < n. 

Properties (i), (ii) and (iii) can be simultaneously satisfied by choosing each d~ 

successively of the right form and such that (di-1, di) = 0. 

Set L1 = L(vf~l, �9 �9 x / ~ ) .  Then L1 is Galois over K with Galois group ~/, and 

Tg,il,n,~ = 0. Indeed, the action of each ~i on L1 is given by ai(vf~i) = -x / -~  

and (~i fixes the other x / ~ ,  and the action of e is given by e(v~)  = -x /d ,  

~ ( ~ )  = x/~2/ for 1 < i < j ,  and ~(x/-dTi) = v/-dT/for 2j < i < n, so 51 

is Galois over K with Galois group 7-/. Moreover it is known (cf. [$3]) that  

the obstruction TL,L1,H,G is given by }-]~odd i(d/, di+l) if G has no quaternion 

part and ( -1 ,  did2) + }--~odd i(d/, d~+l) if it does, so conditions (i), (ii) and (iii) 

on the dl show that TL,L1,H,G ~-- 0; indeed they were created for that purpose. 

The point of the construction is to give an element 7 C L1 such that Ll(v/-~) 

is Galois over L of Galois group G. This is done as follows: for each odd i, 

the field E / =  L(grdT/, dvf~+l) is a biquadratic extension of L, and since we have 

TL,Ei,C~,D4 = (d~,d~+l) = 0, there exists an element 5~ E E i  for each odd i 

such that  Ei(x/~-/) is a D4 extension of L. If G has a quaternion part, replace 

51 by an element of E1 such that E l ( v / ~ )  is a Qs extension of L; such an 

element exists because the obstruction to the embedding problem TL,E~,C~,Q8 = 
(--1, did2) + (dl, d2) = 0. The 5~ can all be easily calculated explicitly: for the 

quaternion one see [W], and for the dihedral one, if (d~, d/+l) = 0 then there exist 

x/ and y/ E K such that dix2i + di+ly 2 = 1, and we can set 5/ = 1 - x/v/-dT//. Set 

~/ = 1-Iodd /5/: then by construction, L I ( v ~ )  is a Galois extension of L having 

Galois group the extra-special group G. We want to show how to modify this 

field, if necessary, for it to be Galois over K with Galois group G. 

We are now in a position to apply the methods of theorem 3. By this theorem, 

we know that there exists a E K,  depending on L1, such that TK,L~,n,~ = (a, d) 

and that  a can be calculated via the equation "y'y~ = a~ 2 for some A C L1. We 

will arrange the field L1, i.e. choose the elements di, in such a way as to make 

77 ~ into a square, so a = 1. It will suffice if each Ei(x/~)  is Galois over K of 

Galois group Ds (except for EI(x/~I), which must have Galois group i)4 if G 

has a quaternion part: here /)4 is the central extension of D4 by {-4-1} having 
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generators x and y with relations x 4 = (xy) 2 = - 1  and y2 = 1). This is satisfied 

if in addition to properties (i), (ii) and (iii), the di satisfy 

(iv) T K , E i , D t , D 8  = (2,4) + (di+ di+l,-dd~di+l)) = 0 for i odd, 1 < i < n, 

unless G has a quaternion part,  in which case we ask that  

TK,E,,D,,D, = ( - - 2 , - d )  + ( - d l  - d2 , -dd ld2)  = 0 

in Br2(K).  

These two obstructions are well-known; the Ds one was given in example 2 of 

w for the/94 one, see [$2]. 

When the d~ satisfy (iv), then the 6i can be chosen such that  Ei(6~) is Galois 

over K of Galois group Ds (resp. D4). This implies that  6 ~  is a square in 

E~ for each odd i, so of course 3'7' is a square, a = 1, TK,L,,~.~ = 0 and 

Gal(LI(v~) /K)  = O. Thus we have 

LEMMA 5: Semi-direct products of extra-special 2-groups with C2 have the prop- 

erty GalT. 

We remark that  it is easy to generalize this result to any extension of C~' by 

C2 in the place of the extra-special group. 

Remark: We note that  we could have given condition (iv) together with the 

other conditions directly, and then proved that  LI(Vr#) was the right extension 

without mentioning the element a. This would have had the disadvantage of 

giving no indication as to how the extension was found. In the following section, 

however, we do give the extension directly and then prove it is the right one 

without ever mentioning the element a. We point out here that  the procedure 

used to find the extension in each case was analogous to the one used in this 

example: choose a maximal  subgroup G C G, build an extension L1 having 

7-/ = G / { •  as Galois group, let L be the fixed field of the image H of G in 

7/ = ~ /{+1} ,  and build an extension L2 of L1 having Galois group G over L 

( that  you can do this is a strong assumption on L1 which must be realized). Then 

calculate the element a such that  (a, d) gives the obstruction to L2 being Galois 

over K,  and arrange L 2 so that  this obstruction becomes trivial. 

6. T h e  s m a l l e s t  i r r e d u c i b l e  2 - g r o u p s  

The smallest irreducible 2-groups are 10 of the 267 groups of order 64, which were 

calculated by Ralf Dentzer using the SOGOS system for calculations in solvable 
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groups developed by R. Laue, J. Neubueser and U. Schoenwalder in Aachen (cf. 

[LNS]). As mentioned earlier, seven of these groups have descending central 2- 

series of length 3. In this section we prove that  these seven groups all have the 

property GalT and construct explicit regular extensions of K having them as 

Galois groups. The three groups of length 4 are technically more difficult to 

obtain but should also give way to similar techniques. 

Let GI , . . . ,  G7 denote the seven groups of order 64 having no abelian normal 

subgroup not lying in the Frattini subgroup and descending central 2-series of 

length 3. In general, we use the following strategy to prove that  the groups 

Gi have the property GalT. We write G~ as a quotient of a group of the form 

G ~ C2- where G is a normal subgroup of ~ :  in each case we can take a group G 

of order 16. Let e be a generator of the C2~ factor: if the action of e induces an 

automorphism of G having order 2 m for m < n, we explicitly construct a field 

having Galois group G>~ C2 m, in such a way that  we can then apply Lemma 4 to 

extend the field to one having Galois group G~  C2~. 

We use the following notation. A fixed central element of order 2 of G~, con- 

tained in G, will be denoted by - 1 .  We set 7-/~ = Gi/{=t=l} and H = G / { + I }  

We write L1 for a Galois extension of K having Galois group 7-/~ and L for the 

fixed field of H,  so L is a cyclic Galois 2~-extension of K.  We always write c 

for a generator of the C2~ factor in G~ and ~ and also for the automorphisms 

which it induces on G, on L1 and on TL,L1,H,G. We use the notation [a, b] for 

the commutator  of two elements of a group, and (a,/3) for a quaternion algebra 

or an element of the Brauer group. 

We will need the following result on cyclic extensions of degree 8. 

LEMMA 6: Let d E K be such that K(x/-d) is a regular quadratic extension of K.  

Then K ( v ~ )  can be embedded in a cyclic Galois K-extension of order 8 i f  and 

only if  ( -1 ,  d) = 0 in Br2(K) and there exists c E K such that (2, d) -- ( - 1 , c ) .  

Proo~ Suppose that  K(v/d)  can be embedded in a Galois 8 extension L. Let L r 

be the cyclic 4 subextension of L. Then L' -- K ( x / a  + bv/'d). As explained in w 

example 1, the obstruction to the embedding problem is given by TK,L',C4,C8 = 

(2, d) + ( - 1 ,  a), so since this embedding problem is trivial by hypothesis, we may 

take c to be a. Now suppose that  we have an element c such that  (2, d) = ( - 1 ,  c). 

~/ c~ d If ( - 1 ,  d) = 0 then d = x2+y2 for some x, y E K .  S e t L ' - - K ( c + ~ - v ~ ) .  Then 

it is immediate that  Gal(L' /K)  = C4, and moreover TK,L',C4,C, = (2, d ) +  ( - 1 ,  c) 
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which is zero by hypothesis,  so L t can be embedded into a cyclic 8 extension L. 

| 

CASE 1: THE GROUPS 61, 62 AND 63: The first three groups on our list all 

have a normal  subgroup G of the form D4 x C2, where D4 is the dihedral group 

of order 8. Let a, b and c be generators of G such tha t  a 2 -- b 2 -- c 2 -- 1 and 

[a,b] = - 1 ,  [a,c] = [b,c] = 1. The group H = G / { •  is isomorphic to (C2) 3. 

Let e be the following au tomorph ism of G: 

e(a)=-bc ,  e (b )=-a ,  e(c)=c. 

The order of this au tomorph ism is 4, and the order of the au tomorph ism induced 

on H is also 4. We have: 

61 = (D4 • C~)>~C4, 

62 = ((D4 x C2)>~Cs)/(e' = c), 

63 = ( (04  • c2)  4 = - c ) ,  

where in each case the act ion of the C2n factor is given by the above automor-  

phism E, considered to be a generator  of C2~ acting by conjugation. 

Suppose we show tha t  61 has GalT. This gives a field L2 having Galois group 

61 over K.  Let L be the fixed field of G C g; then L is a cyclic 4 extension of 

K.  To show tha t  62 and 63 satisfy GalT, it suffices by L e m m a  4 to show tha t  61 

can be realized in such a way tha t  L can be embedded into a cyclic 8 extension 

L'  of K which is disjoint from L2 as extensions of L. We construct  an L2 with 

these properties. 

We want d c K,  not a square, such tha t  ( - 1 ,  d) -- (2, d) = 1. Then  d can be 

wri t ten as a sum of two squares in K,  say x 2 + y2, and also as z 2 + 2w 2. For 

example, set X = T 2 - 1 -  T 4, x = (2T 3 -  T 2 - 1 - T4)/X,  y = (2T 2 -  2T)/X,  
u = ( T 4 - 2 T 3 + T 2 - 1 ) / X  and v = (2T 2 - 2 T ) / X ,  and let d = x 2 + y  2 = u 2 + 2 v  2. 

Note tha t  d = r 2 - 2s 2 with r = (xu + d)/(x + u) and s = (yv)/(x + u). Let 

L = K(v/d + yv/d). Then by Lemma 6, Gal(L/K) ~- C4, and the obstruct ion to 

the embedding problem TK,L,C4,C8 is (2, d) + ( - 1 ,  d) which is trivial. 

Set z = 1/(r + ~/d + yv/-d) C L. Let z ' =  1/(r + ~ / d - y v ~ ) ,  z" = 1 / ( r -  

i d  + yv/-d) and zm= 1 / ( r -  ~ / d -  yv~). Then we have the following conditions 

which are necessary to ensure tha t  the extensions we construct  exist and do not 

%ollapse" : 
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( i )  K ( z )  = L; 

(ii) 1 / z z "  = 2s 2 - yv/-d; 

(iii) NL/K(Z)  is not a square nor d times a square in K (this can be checked 

by hand - or, better, by computer). 

Let a = 1 / z z " ,  13 = 1 / z ' z  m and ~ = z"z '" .  Let L1 = L(v~ ,  v~ ,  v~), and let 

7/1 = G I / { - ' I - 1 }  �9 

LEMMA 7 : L 1  is Galois over K with G a l ( L : / K )  = 7/1. 

Proof." The conditions (i) and (iii) imply that Gal (L1 /L)  ~- (C2) 3. The action 

of G (so that of H) on L1 is given by the following diagram: 

a b c 

/ -  / . . . . . ._  

Let e be the generator of Gal(L/K)  "~ C4 sending ~ d  -t- yv/-d to ~ / d -  yv/-d. We 

extend the action of e to L: by: e(v/~ ) = - v ~ ,  e(v~) = v/-~, e(x/~) = z v f ~ ,  

which shows that L1 is Galois over K. In order to show that the Galois group 

is 7t1, we must check that this action of e corresponds to the action of e on the 

generators a, b and c. This involves checking that e- ice ,  e-:be and e - i ce  act 

like ~(a) = -bc ,  e(b) = - a  and e(c) = c on v ~ ,  ~ and v~. Note that - 1  acts 

trivially on L1 and can therefore be ignored. It is immediate that e- :ce  acts 

like c on v ~ and v~- On v~, we have e(v~) = zv/-~, e2(v~) = - z z ' x / - ~ - ~  

and (~3(v/~) ~- Z tV/ -~ ,  SO e - l c e ( v ~ )  ---- e 3 c ( z v / ~ )  : e 3 ( - - z ~ / ~ ~ )  ---- - - Z z ' z ' U ~ / ~  ---- 

- v ~  = c(v~) since fl = 1 / z ' z  m. The other calculations are analogous. II 

Note that by construction, the field L0 := g(v~)(v/-~, v~)  is a Galois ex- 

tension of K of Galois group D4. The main point in the construction of the 

group ~1 is that given L: = L(vf~, vz-~, v~), we can  give an  e l e m e n t  7 E 

K(v/-d)(v ~ ,  vf~) such  t h a t  ad jo in ing  v ~  to  th is  subfie ld  gives a Ds- 

ex t ens ion  of  K,  a n d  ad jo in ing  it to  L: gives t h e  des i red  ~ l - ex t ens ion  

as in diagram 1. The left-hand column shows the construction of a Ds-extension 

of K.  The obstruction to the embedding problem of a D4 extension into a 

Ds extension was given in example 2 of w in this example it is equal to 

(2, d) + (2 .2s  2, -d(4s  4 - dy2)),  which is trivial since (2, d) is trivial and 2 . 2 s  2 

is a square. Therefore there exists 7 C L0 such that L0(v~) is Galois over K 
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with Galois group Ds. Then the field Ll(vf~) is the desired GFextension. In- 

deed, Gal(L2/L) is the normal subgroup D4 x C2, so it suffices to extend the 

action of the generator e of Gal(L/K) to L2 and check that it coincides with the 

presentation of ~1. We know the action of e on L1 by lemma 7. To extend it 

to Lz it suffices to define its action on v~" But Lo(v~)  N L = K(vfd), so to 

define e(v~) ,  it suffices to choose a lifting y of the automorphism v ~  ~-~ - v ~  

of g ( v ~ )  to Gal(Lo(v,~)/g) which restricted to Lo is equal to e, and define 

e(v/'~ ) = ~(vf~). Then by construction, e-lae, e-lbe and e-ice act on v ~  like 

-bc, -a  and c respectively. 

L2 = L ( v ~ ) ( v ~ )  

Lo(v/-7) L1 = L(v/-~, v ~ ,  v~)  

/// c; 
Lo = K(v~)(V'-~, v~) L = K(~/d § yvfd 

K(v ) 
C2 

K. 

Diagram 1 

By the argument in the proof of Lemma 6, L can be embedded into a Galois 

cyclic 8 extension L' of K. This extension can be chosen disjoint from L2 as 

extensions of L. For L' being a quadratic extension of L, either L N L2 = L or 

L' C L~. But there are infinitely many Cs extensions L' containing L (recall 

from w that  if L(V~) is such an extension then the others are all of the form 

L(V~-A) for r 6 K*). The field L2 cannot contain them all, so some of them must 

be L-disjoint from L2. By lemma 4, this proves that  G2 and G3 have GalT. 

CASE 2: THE GROUPS Q4 AND Qh: These two groups have a normal subgroup 

G of the form Qs • 6'2, where Qs is the quaternion group. Let a, b and c be 

generators of G such that a 2 = b 2 = -1 ,  c 2 = 1, In, b] = -1 .  Let e be the 

following isomorphism of G: 

4c)=c. 
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Then  we have: 
64 = (O,s • c 2 ) ~ C 4 ,  

65 = ( ( Q s  • 4 = c).  

Thus  it suffices to construct  64, as in Case 1, in such a way tha t  the fixed field 

of G can be embedded  in a cyclic 8 extension. In fact, since H is the same  as for 

the group 61 and the act ion of e on H is identical, we m a y  take the same fields 

L, L ~ and L1 as in the const ruct ion of 61. In fact, Case 2 is identical to Case 

1 except  tha t  the role of Ds is replaced b y / 9 4 ,  the generalized dihedral  group. 

We need to find d and z as above, such t ha t  K ( z )  is a cyclic regular  Galois 

extension of g containing g ( v ~ ) ,  and such tha t  se t t ing a = 1 / z z " , / 3  = 1 / z ' z ' "  

and L0 = K(x/-d, v/-~), we have the following two conditions: 

(i) TK,LI,~4,~4 = TK,Lo,D4,b4 = ( - -a  -- ~3,--44j3) + ( - - 2 , - d )  = 0; 

(ii) TK,L,C4,Cs = O. 

If  condit ion (i) is satisfied, then  64 has GalT,  and condit ions (i) and  (ii) give 

the result  for 65 by L e m m a  4. We give an explicit example  of a choice of d and 

z such t ha t  condit ions (i) and (ii) are fulfilled. Let  

27r 2 + 12r + 3 12r 2 + 6r 
x = and a = 

24r 2 + 1 2 r  9r  2 - 1  ' 

for any r E K*.  Then  we take d = 1 + x  4 such tha t  K ( v ~ )  is a regular  extension 

of K .  Note  t ha t  ( - 1 ,  d) = 0 because d is a sum of two squares and  (2, d) = 0 

because 2x 2 + d = (1 + x2) 2. 

We set 

I t  is immed ia t e  t ha t  L = K ( z )  = K ( ~ / 5 ( d  + x/-d)) is a cyclic Galois 4 extension 

of g .  We set a = 1 / z z "  = d - 5v/-d and • = 1/Z 'Z '"  = d + 5x/-d. Then  since 
a Z  = d 2 25 

- ~ d ,  the field L ( v ~ ,  v ~ )  is a b iquadra t ic  extension of L. The  choice 

of d and z satisfies condit ions (i) and (ii) as follows. 

(i) We see tha t  

25 
( - a  - Z , - d a ~ 3 )  + ( - 2 , - 4 )  = ( - 2 4 , - 4 ( 4 2  - - ~ d ) )  + ( - 2 , - 1 )  

= ( - 2 , 4 -  2 5 )  = ( - 2 , x *  - _0) 
16 16 " 
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We obta in  a solution to the equat ion 

_ 2 X 2  Jr x4 9 = y 2  
16 

by sett ing X = (9 - 6a)/4a and Y = (9 - 12a)/4a 2 and expressing x, X and Y 

in terms of r. The second condit ion is immediate:  

(ii) TK,L,C4,Cs : (--i, 5d) + (2, d) = (-I, 5) + (-i ,  d) + (2, d) = 0. 

This concludes the proof that ~4 and G5 have the property GAIT. As the 

explicit construction of the field L2, it is reduced to the construction of a /)4, 

which is known (cf. [$21). 

CASE 3: THE GROUPS ~6 AND ~7: These groups have normal  subgroup G = 

C4>~ C4 generated by elements a and b such tha t  a 2 = - 1 ,  b 4 = 1 and [a, b] = - 1 .  

The  act ion of e is given by 

e ( a ) = - a b  2, e (b )=-ab .  

The groups are given by 

= 4 = b 2 ) ,  

= 4 = - b 2 ) .  

The action of e is of order 4 so our procedure will be to construct  the group 

G :=  G x C4 in such a way tha t  the C4 extension can be embedded into a Cs 

as usual, which will give the result for g6 and GT. The  group g is generated by 

elements a, b and e such tha t  a 2 = - 1 ,  b 4 = 1 and e 4 = 1, while [a,b] = - 1 ,  

[a, e] = - b  2 and [b, e] = a. 

Let d E K be such tha t  ( - 1 , d )  = 0. Let L '  = K ( v ~ + y v ~  ) be a c y c l i c  

4 extension of K.  Let a, b E K and let L0 = K(v /a  + bye,  V~a-  bv/-d), so 

Gal(Lo/K) = D4. Then  

(i) TK,Lo,D4,D, = ( 2 a , - d ( a  2 -db2)) ,  

(ii) TK,LoL,C~>~C4,(C~xC4)~C 4 = (d, 2a) + ( - x ,  a 2 - 452). 
Note tha t  the group (C2 x C4)~ C4 is precisely the group 7 - /=  G/{-t-1}. Set 

d = I + T  a, x = 1, y = 1/d, a = 2 and b = - 2 / ( 1  + d ) .  Then  the elements d, x, y, 

a and b are such tha t  L I can be embedded into a cyclic 8 extension L of K and 

the embedding problems (i) and (ii) split. This means tha t  we have obtained the 

group G>~ Ca for the following reason. Let L1 be the quadrat ic  extension of LoL' 



144 L. SCHNEPS Isr. J. Math. 

having Galois group 7-/. Let L2 = Ll(v/-~) where ~f is an element of Lo such that  

Lo(v~)  is Galois over K of Galois group D8 (the field Lo(v/-q) will be the fixed 

field of the subgroup of 0 generated by a 2, b 2 and e2). Then GaI(L2/K)  = O and 

L2L has Galois group G~ Cs over K. So ~6 and ~7 have the property GAIT. 
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