
ISR.AEL JOURNAL OF MATHEMATICS 05 (1996), 169-210 

ORBIT EQUIVALENCE, FLOW EQUIVALENCE 
AND ORDERED COHOMOLOGY 

BY 

M I K E  B O Y L E  

Department of Mathematics, University of Maryland 

College Park, MD 20742, USA 

e-mail: mmb@math, umd.edu 

AND 

DAVID H A N D E L M A N  

Mathematics Department 
University of Ottawa, Ottawa, Ontario KIN 6N5, Canada 

e-mail: dehsg@acadvml.uottawa.ca 

ABSTRACT 

We s tudy  se l f -homeomorph i sms  of zero d imens ional  metr izable  compac t  

Hausdorff  spaces by means  of the  ordered first cohomology group,  

par t icular ly  in the  light of  the  recent  work of Giordano,  P u t n a m ,  and  Skau 

on min imal  homeomorph i sms .  We show t ha t  flow equivalence of sy s t ems  

is analogous to Mori ta  equivalence be tween algebras,  and  this  is reflected 

in the  ordered cohomology group. We show tha t  the  ordered cohomology 

group is a comple te  invariant  for flow equivalence be tween irreducible shif ts  

of  finite type;  it follows tha t  orbit  equivalence implies flow equivalence for 

this  class of sys tems .  T he  cohomology group is the  (pre-ordered) Gro then-  

dieck group of the  C*-a lgebra  crossed product ,  and  we can  decide when  

the  pre-order ing is an  ordering,  in t e rms  of dynamica l  propert ies.  

Let T be a homeomorphism of a compact metrizable zero-dimensional space X. 

Let C(X,  Z) denote the continuous integer-valued functions on X. Denote the 

subgroup of coboundaries by cobdy (T) = { f - ( f  o T) I f E C ( X , Z )  }.  The 

quotient group C(X,  Z)/cobdy (T) will be abbreviated G w. Define 

G T = { If] E G T I there exists nonnegative f0:  X --* Z such that [f0] = If]} . 
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Let ~T denote the unital preordered group (G T, GT+, [1]). 

Building on earlier work [V, P, HPS], Giordano, Putnam, and Skau [GPS] 

recently proved that the groups G T modulo their infinitesimals classify the 

minimal homeomorphisms of the Cantor set up to orbit equivalence. The possi- 

ble G T in this case are precisely the unital simple dimension groups [HPS] that 

are not cyclic. This remarkable classification in the minimal case provides more 

than ample justification for a general investigation of G T. This paper is devoted 

to laying down some early foundations for this investigation. 

Systems with a unique minimal set were studied in [HPS]. Pooh [Po] showed 

G T is an unperforated ordered group when T is topologically transitive (but not 

in general), pointed out that there one can recover the zeta function of T as an 

invariant of the abstract unital group G T, and began a study of G T when T is an 

irreducible shift of finite type. It should be emphasized that the order structure 

is crucial in all of this. 

This paper has five sections. In the first, we review some basics of preordered 

groups and suspensions, show the isomorphism class of (G T, G T) is determined by 

the flow equivalence class of T, and in a refinement of Poon's result, show that  

the set Z(T) of zeta functions of homeomorphisms flow equivalent to T is an 

invariant of the abstract unital preordered group G T modulo its infinitesimals. 

The latter is an invariant of orbit equivalence and therefore so is Z(T). In 

the second section we show that when T is an irreducible shift of finite type, 

Z(T) is a complete invariant of flow equivalence. This implies our main result 

(Theorem 1.12), which asserts that for irreducible shifts of finite type, orbit 

equivalence implies flow equivalence, and the isomorphism class of the ordered 

group (G T, G T) is a complete invariant of flow equivalence. (In particular, the 

ordered group structure of G T already yields new, computable invariants of orbit 

equivalence for shifts of finite type.) 

In Section 3, we study the group G T in the light of chain recurrence, graph- 

ical groups and some elementary zero-dimensional dynamics. In Section 4, we 

measure the failure of the preordered group (G T, G T) to be ordered by the first 

cohomology of the gradient-like flow space Conley associated to the suspension 

flow of T, and consider the relation of the order G T to the natural "winding 

order" arising from the identification of G T with the first cohomology of the sus- 

pension space of T. In Section 5 we discuss the identification of ~T as K0 of the 

crossed-product C*-algebra arising from T. 
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1. T h e  g e n e r a l  f r a m e w o r k  

1.1 SUSPENSIONS. Throughout this paper, T represents a homeomorphism of 

a compact metrizable zero-dimensional space X ,  and a flow means a continuous 

action of the reals on a compact metrizable space. If f is a continuous strictly 

positive function from X to R, then a Z-action on the product space X • 

is generated by the map ( x , t )  H ( T x ,  t - f ( x ) ) .  The s u s p e n s i o n  of T by f 

is the quotient space Y under the map ~r which collapses the orbits of this Z 

action to points. The natural  action of the reals on X • ]~ given by translation 

in the ~[ coordinate pushes down to a real flow on the suspension space. We 

denote this real action by a f 'T  or a T or a,  suppressing notation as permit ted by 

context; so, t in R acts by [(x, s)] = y ~ a t ( y )  = [(x, s + t)]. The flow a y'T is 

also called the flow under the function f with base map T. If f is the constant 

function 1, then the suspension space is called the s t a n d a r d  s u s p e n s i o n  of T, 

and wc denote it YT.  For concreteness, we will identify YT with the quotient of 

{ (x, s) I z e X, 0 < s < 1 } under the identifications [(x, 1)] = [(Tx ,  0)]. 

A cross  s ec t i on  to a flow a is a closed set C such that  (~: C x R --. Y is a 

local homeomorphism onto Y [Sch]. It  follows that  if C is a cross section, then 

every orbit hits C in forward time and in backward time, the return time r c  is 

continuous and strictly positive on C, and the return map R e  is a homeomor- 

phism from C to C. We say that a homeomorphism T is a section to a flow if T 

is isomorphic (i.e., topologically conjugate) to R e  for some cross section C. For 

example, T is a section to its standard suspension flow. An e q u i v a l e n c e  between 

two flows is a homeomorphism whose restriction to any orbit is an orientation- 

preserving homeomorphism onto some orbit of the range flow. For example, all 

the suspensions of T are equivalent. A s e m i e q u i v a l e n c e  of flows is a continuous 

surjection whose restriction to any domain orbit is an orientation preserving local 

homeomorphism onto some orbit of the range flow. If ~ is a flow on Y, then a 

subset C of Y is a cross section if and only if there exists a semiequivalence r 

onto the unit speed counterclockwise flow on the circle such that  C = r  

[Sch; 7]. I t  follows by considering compositions that  under any semiequivalence, 
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the inverse image of a cross section is a cross section. Two homeomorphisms are 

f low e q u i v a l e n t  if they are sections to a common flow (equivalently, if one is a 

section to a suspension of the other). If S and T are flow equivalent, then S is a 

section to every flow to which T is a section. 

1.2 PREORDERED GROUPS. A p r e o r d e r e d  g r o u p  is a pair (G ,G+) ,  where 

G is an abelian group and the p o s i t i v e  cone  G+ is a submonoid of G which 

generates G (i.e., G+ is a subsemigroup containing 0, and every element of G is 

a difference of elements in G+). All groups G in this paper will be countable. 

The preordered group is an o r d e r e d  g r o u p  if in addition G+ N - G +  = {0}. If 

(G, G+) is a preordered group, we set J - J(G) := (G+ N - G + ) ;  then J is a 

subgroup and (G/J, G+ + J) is an ordered group; by abuse of notation, we often 

denote this (G, G+)/J. An o r d e r  un i t  in a preordered group is an element u 

of G+ such that  for all g in G, there exists n in N such that  (nu - g) �9 G+. A 

u n i t a l  p r e o r d e r e d  g r o u p  is a triple (G, G+, u) where (G, G+) is a preordered 

group and u is an order unit. An isomorphism of preordered unital groups is 

an isomorphism of groups under which the positive sets and distinguished order 

units correspond. 

1.3 ORDERED COHOMOLOGY. Let C(X, Z) denote the continuous maps from 

X into the integers. Let cobdy (T) denote { f - f o T I f �9 C(X, Z) }, the group 

of coboundaries of T in the group C(X, Z); it is the range of the operator i d - T  : 

C(X,Z)  --+ C(X, Z). Let G T denote the quotient group C(X,Z) /cobdy(T) ,  

which we make a preordered group by setting 

GT = { [f] �9 GT I there exists nonnegative fo :  X --~ Z such that  [fo] --- [f] } �9 

Let •T denote the unital preordered group (G T, G T, [1]), where 1 denotes the 

function on X that  is identically 1. 

1.4 A THEOREM OF PARRY AND SULLIVAN. Suppose S is a self-homeo- 

morphism of a zero dimensional compact metric space W. By a discrete sus- 

pension of S (or a finite tower over S) we will mean a homeomorphism S I con- 

structed as follows from a continuous map f from W into the positive integers. 

Let Cj = {w I f ( w )  = j}. Let W I = U0<i<j (Cj x {i}). Let SI: (x,i) ~ ( x , i + l )  

if (i + 1) < f(x) ,  otherwise let SI: (x , f (x)  - 1) ~-* (Sx, O). The b a s e  of the dis- 

crete suspension is the set W >c {0}. A clopen set C is a d i s c r e t e  c ross  s e c t i o n  

for the homeomorphism T if there is an isomorphism (topological conjugacy) of 
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T to a discrete suspension under which the image of C is the base. Equivalently, 

C is a clopen set finitely many iterates of which cover the entire domain X. 

Equivalently, a set C is a discrete cross section for T i f f  there exists an order unit 

If] in G T, with f > 0, for which C = {x I f ( x )  > 0}. 

In [PS], Parry and Sullivan proved among other things the following result. 

(For an alternative approach, see [PT].) 

THEOREM ([PS]): Suppose C1 and C2 are cross sections to some suspension flow 

of a homeomorphism on a zero dimensional compact metrizable space. Let T1 

and T2 denote their respective return map homeomorphisms. Then there exists 

a third cross section C3, with return map homeomorphism T3, such that T1 and 

T2 are isomorphic to discrete suspensions of 7~. 

THEOREM 1.5: The isomorphism cla.ss of the preordered group (G T, G T) is an 

invariant of the flow equivalence class of T. 

Proof'. By the Parry Sullivan result, if T1 and T2 are flow equivalent, then 

we can realize them as discrete suspensions over a common base map B. So it 

suffices to check that  when (X, T) is a discrete suspension over a base system 

(B, S), there is an isomorphism (G "~, G~) --* (G T, GT). Here B is a subset of X 

and S is the return map to B under T. Given a function f in C(B, Z), let f '  

be the function in C(X, Z) which agrees with f on B and is zero elsewhere. We 

claim that  h: [f] ~-+ [1'] defines the desired isomorphism of preordered groups. 

To see this, given g on B let g" in C(X, Z) be defined by g"(x) = g(T~x), 

where i = i(x) is the least nonnegative integer such that  Tix belongs to B. It is 

easy to check that a coboundary g - gS is sent by h to the coboundary g" - g"T. 

Therefore h is well defined. The map tt is surjective because f in C(X, Z) is 

cohomologous to the function f " ,  where f ' "  is zero off B and for x in /3 ,  f ' " ( x )  

is the sum of the f(TJx) as j varies from zero to one less than the first return time 

to the base. This correspondence also shows that  h maps Gs+ onto G~. Finally, 

if f belongs to C(B, Z) and f '  is a coboundary k - kT, then because f '  vanishes 

off the base, it must be that k = g" for some g in C(B, Z). Then f = g - gT and 

it follows that h is injective, and hence an isomorphism of preordcred groups. 

| 

Note that  the isomorphism above does not respect the distinguished order 

unit. In general, the u n i t a l  preordered group ~ r  is no t  an invariant of flow 

equivalence. 
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1.6 MEASURES AND TRACES. A p o s i t i v e  homomorphism of ordered groups is 

a homomorphism which sends the positive cone of the domain into the positive 

set of the range. For the additive groups R and Z we always use the usual 

positive cones. A t r a c e  (often called a s t a t e )  on a unital preordered group is a 

positive homomorphism into the reals which sends the distinguished order unit to 

1. For the unital preordered group (G T, G T, [1]), there is a well known bijection 

between the set of traces and the elements of MT, the compact metrizable space 

of T-invariant Borel probabilities on X ,  as follows. It  is easy to see that  an 

element of MT defines a trace by integration, since by T-invariance the integral 

of a coboundary is zero. Conversely, a trace ~- defines a nonnegative, additive 

functional on the algebra of clopen sets which sends X to 1, and on general 

principles [Roy] this functional extends to a measure if within that  algebra it is 

countably additive. This last is trivial here, because the only way a compact 

set can be a countable union of disjoint nonempty closed open sets is by being a 

finite union. (For more on traces on preordered groups (there called states), see 

the book [G].) If # is an invariant measure, then we can define a positive linear 

functional T : C(X) --* C in the usual way (T(f) : fX f d# where C(X) denotes 

the continuous complex valued functions on X),  as well as the corresponding 

trace, also called T, from C, T to the reals. 

By a d i s c r e t e  homomorphism, we will mean a homomorphism into the reals 

whose image is a discrete subgroup of the reals (cf. [GH]). An e x t r e m a l  trace 

(also known as a p u r e  trace) is a trace which is not a nontrivial convex combi- 

nation of other traces. Thus for (G T, G T, [1]), an extremal trace corresponds to 

an extreme point in the compact convex space of T-invariant Borel probabilities, 

i.e., to an ergodic measure. Thus the discrete extremal traces are in one-to-one 

correspondence with the finite orbits of T. The range of such a trace is (1/n)Z,  

where n is the cardinality of the orbit. From this observation, Poon [Po] recovered 

the zeta function of T as an invariant of G T. 

Instead of normalizing the discrete homomorphisms on (G T, G T) by requiring 

them to be 1 on a special order unit, we can get a unit-independent normal- 

ization by requiring the range to be Z. We let ET denote the set of extremal 

positive discrete homomorphisms from (GT, G T) into the reals whose image is 

the group Z. Now these are again in bijective correspondence with the finite 

orbits of T. Explicitly, the correspondence is that  a finite orbit O determines the 

homomorphism j3o: [f] ~ ~ e o  f(x). 
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1.7 ORDER UNITS AND MEASURES. Suppose that [f] belongs to G T. We show 

that the following are equivalent: 

(a) r([f])  > 0 for every trace T, i.e., f has strictly positive integral against 

every element of MT. 

(b) If] is an order unit. 

(c) For some positive integer N, the function SNf  := f + f o T + . . . + F o T  g-1 

is strictly positive. 

Proof: (a) ~ (c)Define 

k 

X'  = {x C Xlfor a l l / a n d  k w i t h / <  k, ~ f  (TJ(x)) <_ 0}. 
j~-i 

The set X ~ is closed and T-invariant. If no SNf  is strictly positive, then by 

compactness, X ~ is nonempty. Hence X ~ supports an invariant measure; this 

measure determines a trace ~- such that T([f]) _< 0, and therefore If] cannot be 

an order unit (if N is a positive integer and ( N f  - 1) �9 G~_, then T(f) >_ 1/N). 

(c) ~ (b) Suppose SNf  is strictly positive; as it is integer-valued, it follows 

that  S N f  _> t,  whence [1] _< [SNf] = N[f]. Thus [f] is an order unit. 

(b) ~ (a) If n[f] > [1], then for any trace v, T([f]) > 1/n. | 

(More generally, in any unperforated unital partially ordered group, an element 

which is strictly positive at every trace is an order unit [GH1; Theorem 4.1].) 

1.8 ZETA FUNCTIONS. The (Artin-Mazur) zeta function of a homeomorphism 

T can be defined by ~T(Z) = I-Io[1 - zl~ -1, where the product is over the 

finite orbits O, and IO I is the cardinality of O. This makes sense as a formal 

power series if for every positive integer n, T has only finitely many orbits of 

length (cardinality) n. If the growth rate of the periodic orbits is no larger than 

exponential, then this zeta function may also be regarded as an analytic function 

on some neighborhood of the origin. It is easy to see that if T has a well defined 

zeta function, then so does every homeomorphism flow equivalent to T. In this 

case we define Z(T) as the set of all zeta functions of homeomorphisms flow 

equivalent to T; otherwise Z(T)  is the empty set. 

THEOREM 1.8: The set Z(T) is an invariant of the abstract preordered group 
(G T, 

To prove this theorem, we define the zeta function of an order unit u in a 

preordered group G with E the set of discrete extremal positive homomorphisms 
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onto Z by means of (~(z) := 1-I~eE[1 - z~(~)] -1. As u is an order unit, fl(u) > 1; 

so the formula has a chance of making sense. This zeta function is well defined 

for u provided that  for every n E N, there exist only finitely many ~ in E such 

that  ~(u) < n. For our groups, as we have seen each fl = ~o for some finite orbit 

O for T, where ~o([f])  is the sum of the values of f over the points of O. We 

have also seen that  for any order unit u, there exists a positive integer N such 

that  the image under any trace on (G T, G T, [1]) is at least 1IN. This implies 

~o(u) >_ (lOt/N). Thus if T has a well defined zeta function, then every order 

unit in G T has a well defined zeta function. 

Now note that  if f is the constant function 1, then (if] = (T. 

More generally, given an order unit If] in G T with f _> 0, consider the discrete 

cross section to T, W = {x I f(x) > 0}. Let S be the return map homeomorphism 

of W. Build the discrete suspension S l of S using the function f on W. Then 

the zeta function of If] (as an order unit in G T) equals the zeta function of 

the homeomorphism Sf.  Conversely, the Parry-Sullivan result shows that  if we 

begin with the return map R to a cross section of the suspension flow, then we 

can find a discrete cross section W in X,  with return homeomorphism S, and 

a positive function f on W, such that  R is isomorphic to Sf. If we extend this 

f to X by declaring it to be zero off of W, then ~R - ([f]. This shows that  

the zeta functions of flow equivalent homeomorphisms are the same as the zeta 

functions of order units in the abstract  preordered group (G T, G~).  So we can 

write Z(T) -- Z((G T, G'I+)). 

1.9 INFINITESIMALS AND ORBIT EQUIVALENCE. Let ~ = ( G , G + , u )  be a pre- 

ordered unital group. An in f in i t e s ima l  in (G, G+) is an element g of G such 

that  for every integer n, ng <_ u. Note that  g satisfies this condition for one order 

unit iff g satisfies this condition for every order unit. If  g is an infinitesimal, then 

u + g is still an order unit. The infinitesimals form a subgroup Inf _= Inf(~), and 

the quotient 6 / I n f  is a well defined unital group. (The subgroup J = (G+ n - G + )  

is contained in the infinitesimals.) 

An element g is an infinitesimal if and only if it is annihilated by every trace. 

It  is clear that  an infinitesimal must be annihilated by every trace. Conversely, if 

Iv(g)l > 1/n for some trace T and positive integer n, then (u - n g )  and (u + ng) 

cannot both be in G+. Thus any trace v on G T determines a trace on G/Inf  by 

the rule [g] ~-* r(g), and this correspondence defines a natural  bijection of the 

trace spaces of G and G/Inf. I t  is also easy to check that  g is an order unit in 
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G if and only if [g] is an order unit in G/Inf. It follows that the zeta function 

of an order unit g in (G T, GT+) is equal to the zeta function of the order unit 

[g] in (G T, GT)/Inf. In particular the invariant Z(T) is actually an invariant of 

(c T, G~)/Inf. 
This discussion also describes natural correspondences for the trace and order 

unit structures of the ordered group (G, G+)/J which sits between (G, G+) and 

(G, G+)/Inf. On (G T, GT), a trace is given by integration, so that the infinitesi- 

mals are precisely the elements If] of G T that have zero integral with respect to 

every T-invariant Borel probability. 

Two homeomorphisms S and T are orb i t  equ iva len t  if there is some homeo- 

morphism h taking every S-orbit onto a T-orbit. The homeomorphism h is called 

an orbit equivalence from S to T. Obviously h induces an automorphism, also 

called h, of the ordered groups of continuous functions into Z. It need not, be the 

case that this automorphism sends cobdy (S) to cobdy (T), and it need not be 

the case that the ordered groups (G S, Gs+) and (G T, G T) are isomorphic [GPS]. 

However, it is easy to check that h does induce an affine homeomorphism between 

the spaces of invariant probability measures of S and T respectively. Thus h does 

send Inf(T) onto Inf(S), and therefore induces an isomorphism of unital ordered 

groups 

(G s, Gs+, [1])/Inf(G s) ~ (G "r, G+ v, [l])/Inf(GT). 

Therefore the isomorphism class of the unital group (G T, G T, [1])/Inf is an invari- 

ant of orbit equivalence for a homeomorphism T of a compact zero dimensional 

metrizable space. (The remarkable theorem of Giordano, Putnam and Skau 

[GPS] is that for minimal homeomorphisms of the Cantor set, this isomorphism 

class is a c omp le t e  invariant.) 

COROLLARY 1.9: Suppose S and T are orbit equivalent homeomorphisms of zero 
dimensional compact metric spaces. Then Z( S) = Z(T). 

1.10 SHIFTS OF FINITE TYPE. Suppose A is the adjacency matrix (over Z+) 

of a graph with edge set s Let XA be the subspace of s consisting of the x 

such that for all integers n, the terminal vertex of x(n) equals the initial vertex 

of x(n + 1). Then with the subspace topology from the product topology, XA is 

compact metrizable and the shift map SA defined by (SAX)(n) = x(n + 1) is a 

homeomorphism from XA onto XA. SA is the shift of finite type (SFT) defined 

by A. In general an SFT is any homeomorphism topologically conjugate to some 
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SA. 

An SFT is i r r educ ib l e  if it has a dense forward orbit; equivalently, it is 

topologically conjugate to an SFT SA defined by an irreducible matrix A over 

Z+. We will call an SFT trivial if it consists of a single periodic orbit. If A is 

irreducible, then SA is trivial if and only if A is a permutation matrix. It is not 

difficult to check from the Parry-Sullivan theorem (1.4) that a homeomorphism 

flow equivalent to an SFT must be an SFT. It is clear that if two SFT's are flow 

equivalent, either both are irreducible or neither is irreducible. See [B2] for a 

quick introduction to shifts of finite type and further references. Also see [DGS], 

[PT], and the forthcoming introductory text [LM]. For future reference, we note 

that the zeta function of the shift of finite type associated to the matrix A is 

~A = det(I - zA). 

1.11 FLOW EQUIVALENCE. We have seen that if two homeomorphisms are flow 

equivalent, then their ordered groups (GT, GT+) are isomorphic. The converse 

fails. First, the GPS classification shows that for minimal homeomorphisms of 

the Cantor set, it is not (G T, G T) but rather (G T, GT+)/Inf which is invariant 

under orbit equivalence. However the converse in general still fails grossly even 

when Inf = {0}. From the Parry-Sullivan theorem (1.4) we can deduce that  a 

given T can be flow equivalent to only countably many pairwise nonisomorphic 

systems, and also that the trichotomy of having zero, finite positive, or infinite 

entropy is respected by flow equivalence. However, there is an (uncountable) 

family of homeomorphisms of the Cantor set achieving all entropies in [0, +c~], 

all with (G T, G T) isomorphic to the dyadic rationals [BH2]. 

For shifts of finite type the situation is quite different. We have seen in general 

that Z(T) is an invariant of orbit equivalence and obviously it is an invariant of 

flow equivalence. Suppose Z(T) is a complete invariant of flow equivalence for 

homeomorphisms within some collection g. Then in g, orbit equivalence implies 

flow equivalence (FE), and we also have the implications 

flow equivalent ==~ isomorphic (G T, GT+) ==~ same Z(T) ==* flow equivalent. 

Thus in C, the preordered group information is equivalent to the flow equivalence 

information. For irreducible shifts of finite type, we will show in the next section 

that in fact Z(T) is a complete invariant of flow equivalence. This will yield our 

main theorem, which we record now. 
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THEOREM 1.12: Suppose S and T are irreducible shifts of finite type. Then the 

following are equivalent. 

(a) S and T are flow equivalent. 
(b) (as,  Gs+) = (GT, GT). 

(c) Z(S) = Z(T). 

If S and T are orbit equivMcnt, then they are flow equivalent. 

It should be noted that for an irreducible SFT, the unital ordered group •T is 

the same as the invariant of orbit equivalence ~T/Inf,  since an irreducible shift 

of finite type has no nonzero infinitesimals (Proposition 3.13). 

1.13 ORBIT EQUIVALENCE OF SHIFTS OF FINITE TYPE. We are especially 

interested in the orbit equivalence of shifts of finite type for two reasons. First, 

the SFT case is basic for relating gT and orbit equivalence for general T (see Sec- 

tion 3, for example). Second, the un i t a l  ordered group gr is a strong and still 

poorly understood invariant of conjugacy which possesses considerable structure 

and complexity, and which is not determined in any obvious way by the shift 

equivalence class. Thus it is not at all unreasonable to suspect that a deeper 

study might have significant implications for the classification problem. 

For irreducible shifts of finite type, there are complete and computable invari- 

ants for flow equivalence (which are recalled in Section 2); by Theorem 1.12, these 

are invariants of orbit equivalence. We are aware of just two other computable 

invariants of orbit equivalence of shifts of finite type. Obviously, an orbit equiva- 

lence induces a bijection of finite orbits, and the zeta function is an invariant. For 

irreducible SFT's, the atomic measures #n equidistributed on points in orbits of 

length n are well known to converge to the unique measure of maximal entropy; 

therefore an orbit equivalence must take one maximal measure to the other. (We 

thank B. Weiss for pointing out this easy argument.) In particular, the countable 

set of numbers which are the measures of closed open sets is an invariant. See 

[B1] for more information on orbit equivalence of SFT's. 

However, the zeta function and the range of the maximal measure on clopen 

subsets do not determine the flow equivalence class; so flow equivalence is a new 

invariant for orbit equivalence between irreducible shifts of finite type. We illus- 

trate this with an example, for which we need the following proposition (which 

is of independent interest). For an SFT S, we let Tr denote the range of the 

maximal measure on clopen sets. 
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PROPOSITION 1.13: Suppose A is an irreducible matrix over Z+, with spectral 

radius A a positive rational integer. Let l, r denote the positive left(row) and 

right(column) eigenvectors for A, each of whose entries are positive rational inte- 

gers with g.c.d. 1. Let M be the largest positive integer which is relatively prime 

to A and divides lr. 

Then 

7-r : [0, 1] N { (k /M)A -n I k E Z+ } . 

Proof: The rows and columns of A are indexed by the set of vertices of the edge 

set s used to define the SFT SA (see Section 1.10). Let p denote the measure of 

maximal  entropy for SA, and suppose ez �9 .. en is an allowed sequence of edges, 

where el has initial vertex uz and e ,  has terminal  vertex v , .  Then  

tL { x I xi = ei,1 < i < n}  = (1/lr)l(uz))~-nr(v,).  

Since any clopen set is a finite union of shifts of such sets, this shows tha t  the 

left side is contained in the right side. Now we show the converse. As a special 

case of a theorem of Trow [T], we know that  the number  M depends only on 

the topological conjugacy class of SA. Marcus [M] proved tha t  after passing to 

a topologically conjugate system, we may assume that  the matr ix  A has all row 

sums and all column sums equal to ~. In this case, all entries of the eigenvectors 

l, r must  equal one, so Ir = M J  for some integer J ,  and for a point x we must  

have 

P { Y l y i = x i ,  l < i < n }  = ( 1 / J M ) ~  -n. 

For a positive integer n, there must  be exactly JMA n such sets (since the sum 

of their measures is 1). For 0 < k < MA n, the union of  kJ  disjoint such sets has 

measure (k /M)A -'~. I 

Example: A pair of mixing subshifts of finite type with the same zeta function 

and the same range of the maximal  measure on clopen subsets, which are not 

orbit equivalent. 

Define the following matrices: 

9 
A =  8 

10 

B =  5 
11 

4 2" 
3 4 , 
4 1 

4 1" 
3 7 , 
4 0 

At ---- 

B I =  

15 4 2 
0 - 1  2 
0 0 - 1  

1"5 4 1 
0 - 1  6 
0 0 - 1  
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Then it is not difficult to check that A = UA~U -1 and B -- V B ' V  -1 for some 

matrices U and V in GL(3, Z): adding the first row to the second and third 

row, then subtracting the second and third columns from the first converts A I 

to A and B' to B. Thus the mixing subshifts determined by A and B have the 

same zeta function. For the large eigenvalue (15), A ~ and B ~ have the same left 

and right eigenvectors, specifically (32 8 5) and (1 0 0) T. Therefore the inner 

product of the left and right eigenvectors for A, and for B, is also 32. It follows 

immediately from Proposition 1.13 that the shifts of finite type corresponding to 

A and B have the same range of values on clopen sets. 

However, cok (I - A) ~ cok (I - A'), and the latter is easy to compute as 

Z/7Z ~ (Z/2Z)3; also cok ( I - B )  _~ cok ( I - B ' ) ,  and the latter is easily calculated 

as z/Tz z /2z  e z /4z.  

Hence the corresponding subshifts are not flow equivalent, and by our Theorem 

1.12, they cannot be orbit equivalent. | 

Questions: Within the class of irreducible shifts of finite type, we ask three 

questions. 

Is the isomorphism class of ~T a complete invariant of orbit equivalence? If Gs 

is isomorphic to G T, must S be shift equivalent to T or T - l ?  If G s is isomorphic 

to G T, must S be conjugate to T or T - l ?  

If we only insist that one of S and T are mixing shifts of finite type, then there 

is a resounding negative answer to the corresponding questions. Specifically, in 

his thesis, Boyle [B1] gave a construction that yields for any non-trivial shift of 

finite type, a strongly orbit equivalent system that is not expansive (hence not 

even a subshift). In this case, there results two systems, one a shift of finite type, 

the other not, with isomorphic unital ordered groups. However, it is still open 

whether the following is true: if S is a subshift and T is a mixing shift of finite 

type with ~s  ~ ~T, then S must be a shift of finite type itself. 

2. Z e t a  func t ions  of  flow equ iva l en t  shi f ts  of  f in i te  t y p e  

Recall for a homeomorphism T that Z ( T )  denotes the set of all zeta functions 

of homeomorphisms flow equivalent to T. In this section, we show that if S and T 

are irreducible SFT's, then they are flow equivalent if and only if Z ( S )  = Z(T) .  

In fact we will show something finer. For an irreducible SFT T, let Zz(T)  be the 

subset of Z ( T )  consisting of the zeta functions of mixing SFT's all of whose poles 

are rational. (These are the zeta functions of the flow equivalent SFT's which 
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are defined by primitive matrices all of whose eigenvalues are rational integers.) 

We will prove 

THEOREM 2.1: f f S  and T are irreducible SFT's, then they are flow equivalent 

if and only if Zz(S) = Zz(T).  

An irreducible SFT S is trivial if and only if Zz(S) = {(1 - z ) - l} .  To prove 

Theorem 2.1, we have to construct families of flow equivalent nontrivial irre- 

ducible SFT's, rich enough that their zeta functions separate the flow equiva- 

lence classes. For this we rely on two results. The first (of course) is Franks' 

classification theorem IF2]. Two nontrivial irreducible SFT's  SA and SB, are 

flow equivalent if and only if det(I - A) = det(I - B) and the abelian groups 

cok(I - A), cok(I - B) are isomorphic (where the matrices are considered as 

endomorphisms of the integer lattices of the appropriate size). The necessity 

of these conditions for flow equivalence was established by Parry and Sullivan 

[PS] for the determinant and by Bowen and Franks [BF] for the group. Franks 

[F2] then invented constructions to show these necessary conditions are sufficient. 

Note that  Ide t ( I -  A) I above is nonzero if and only if the group co k ( I -  A) is finite, 

in which case ]det(I - A)I equals its cardinality. Thus in place of det(I - A) we 

can use its sign, which we take to assume values 0, 1, and -1 .  

The other major ingredient in the proof is the following realization result [BH1]. 

Suppose 13 is a square integral matrix all of whose eigenvalues are rational (which 

entails that they be integers). Then B is algebraically shift equivalent (i.e., shift 

equivalent by matrices whose entries are integers but need not be nonnegative) 

to a primitive matrix if and only if the following two necessary conditions hold. 

Perron condition: The spectral radius is an eigenvalue of algebraic multi- 

plicity one and all other eigenvalues have smaller absolute 

value. 

Trace condition: For all n, tr,~(B) > 0. 

Here t rn(B) is the nth net trace of B, t rn(B) = ~--~dl~ #(n/d)tr(Ba) , where # is 

the MSbins function, #: N --~ {-1 ,  0, 1}. If B is nonnegative, then tr,~(B) is the 

number of points in orbits of cardinality n for the SFT SB [Sm]. The Perron 

and trace conditions together will be referred to as the "spectral conditions for 

primitive realization". Specifying the zeta function of an SFT SA is equivalent to 

specifying the list of nonzero eigenvalues of A with algebraic multiplicities. The 

algebraic shift equivalence class is a finer invariant. If B is algebraically shift 
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equivalent to a matr ix  A, then d e t ( I - A )  -- d e t ( I - B )  and c o k ( I - A )  -~ c o k ( I - B ) .  

Combining the classification theorem and the realization theorem will give us a 

more than adequate  supply of examples. We remark tha t  it is quite possible to 

have Zz(SA) C Zz(SB) with SA and SB not flow equivalent; this will occur, for 

example, if cok(I - A) ~_ Z 2, but  cok(I - B) ~_ Z. 

LEMMA 2.2: A primitive matr ix  A is flow equivalent to a primitive matrix all of 

whose eigenvalues are integers, if and only if de t ( I -  A) # 1. 

Proo~ We can assume A r [1] and use Franks'  classification. It  is easy to see 

that  if det(I  - B)  = 1 and B has only integer eigenvalues, they must  consist of 

zeroes and an even number  of 2's, which cannot  be realized by a primitive or 

even an irreducible matrix.  

If  c o k ( I -  A) _~ Z k with k > 0 or if bo th  k = 0 and d e t ( I -  A) = - 1 ,  realize 

the shift equivalence class of diag(2, 1 , . . . ,  1) (with k ones appearing).  If the 

torsion par t  of cok(I - A) is not zero, we may write it as ~ ( Z / n i Z ) ,  with 

1 < nl]n~l... InI. It  is routine to verify tha t  for all k, for all sufficiently large t, 

the list of integers (1 + n / ,  1 - n l - t  . . . .  ,1 - n l, 1, 1 . . . .  ,1, 2, 2 , . . . ,  2) with k ones 

and t twos, satisfies the spectral conditions for primitive realization. If  there is 

no torsion-free part ,  we set k = 0 and by altering the pari ty of t, we can arrange 

tha t  ( - n l  �9 ( - 1 )  t) matches the sign of det(I  - A). If the torsion-free par t  is of 

rank k > 0, then there is no pari ty condit ion required, since det(I  - A) = 0. 

II 

(We can realize flow equivalence classes with nonnegative integer eigenvalues 

if n l  > nl-1, since then we can replace all the 1 - nj terms by 1 + nj and still 

satisfy the Perron condition.) 

Let C denote the collection of lists of integers of the form, 

F times 

c = (1 - n , , 1  - n 2 , . . . , 1  - n i - , , 1 +  n i , ' i , 1 , . . . , 1 , , 2 , 2 , . . . , 2 )  

any number of t imes 

where F > 0 and either I = 0 and there is a single 2, or the ni are positive 

integers satisfying 1 < n l [n21 . . .  [nl. 

Define a partial  order on C (which will be a total  order, except tha t  the 

multiplicity of 2 will be ignored) as follows: c -< c' if 

F < F ' ,  or 
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F = F '  and I < I ' ,  or 
! ! 

F = F', I = I', and ( n l , n ~ , . . . , n l )  < ( n l , n 2 , . . . , n } )  lexicographically 

from the left. 

(For example, (2, 8) < (4, 4).) To make -< into a total order, say c ,,, c ~ if both 

c _~ c' and d ~ c. Finally, given a square integral matrix A, there exists c in C 

such that 

cok(I - A) "" Z F @ Z / n i Z  . 

Note that c is unique up to the multiplicity of 2. This gives a distinguished class, 

[C]A determined by A with respect to ~. 

For irreducible A, define CA to be the set of lists c E C for which there exists a 

primitive B with nonzero spectrum c such that SA and SB are flow equivalent. 

LEMMA 2.3: I[ the irreducible matrix A is not a permutation matrix and 

c o k ( I -  A) # O, then [C]A is the unique minimal element of C~/~.  

Proof: Let c = (1 - nl,  1 - n 2 , . . . ,  1 - n i -1 ,  1 + nl ,  1, 1 , . . . ,  1) (with F >_ 0 

ones) represent [c]a. If I r 0, then adjoining enough 2's will guarantee that 

the spectral conditions for primitive realization will hold, so there will exist a 

primitive matrix B which is algebraically shift equivalent to the diagonal matrix 

having c with enough 2's adjoined, as its diagonal part (as in the proof of Lemma 

2.2). We can also arrange that det(I - B), if nonzero, has the same sign as 

det(I - A) by possibly increasing the number of 2's by one. Hence SB is flow 

equivalent to SA, so in particular, [C]A belongs to CA/~. If I = 0, we may realize 

diag(2, 1 , . . . ,  1) as before. 

It remains to verify that [c] is minimal in CA/~  (since the ordering is total, 

there can be only one minimal element). Suppose [c'] _< [c] in CA~ ~. Then 

F = F ' ,  since F is the rank of cok(I - A) and this is less than or equal to F ' .  

Also, I ~ = I,  because I is the minimal number of generators of the torsion part 

of cok(I - .4). Finally, let A ~ be a primitive matrix with nonzero spectrum c' 

(counting algebraic multiplicities), 

F t imes 

= i 1 - I i c' (1 - n  1, n 2 , . . . , 1 - n i _ l , l + n } , ' l , 1 , . . . , f ,  2 , 2 , . . . , 2  ). 

Let B'  be a nonsingular matrix algebraically shift equivalent to A'. Set C' = 

I -  B p, and note that C' is similar (with respect to GL(Z)) to an upper triangular 
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mat r ix  with the block form 

U =  0 X Y , 
0 0 - I  

where the diagonal  blocks are square, X is ni lpotent ,  and N '  is upper  t r iangular  

with diagonal  ( n ~ , . . . ,  n~). By minimal i ty  of F,  the ma t r ix  X must  be  a zero 

matr ix .  Thus  U is equivalent to diag(n~' . . . . .  n~, 0 , . . . ,  0 , - 1  . . . .  , - 1 ) ,  where the 
I I  I I  n i are posit ive integers such tha t  n~ ' l . . .  In~, and d i a g ( n ~ ' , . . . , n l , 0 , . . . , 0 )  is 

equivalent to the ma t r ix  Z =  [ N o ' X ] = I N 0 ' V ] .  

Since SA and SB are flow equivalent, (n~' . . . .  , n~') = ( n l , . . . ,  hi). Since nl  -- 
' l  n'[]n't <_ nl,  we get n 1 = n~ = hi .  Thus  Z is equivalent to the ma t r ix  Z '  which 

equals Z except tha t  every off diagonal  t e rm  in the first row is zero. Thus  n~ 

is the gcd of the entries of Z below the first row. Now the obvious induct ion 

a rgument  yields n~' = n~ = ni for all i. So c = c'. 1 

We can now complete  the proof  of Theorem 2.1. Suppose A and /3 are irre- 

ducible and SA, SB are nontr ivial  irreducible SFT ' s  which are not flow equivalent.  

We will show Z-Z(SA) ~ Zz(SB). 
If  dc t ( I  - A) = 1, then  det( I  - B) # 1 (else their  flow equivalence invariants  

would be the same and they would be flow equivalent).  Then  by L e m m a  2.2, 

Zx(SA) is e m p t y  and Z x ( S s )  is not.  So we may  assume d e t ( I - A )  and d e t ( I -  B)  

are bo th  not 1. We recover det( I  - A) from any zeta  function, so we may  assume 

sign (det(I  - A)) = sign (det( I  - /3)). If  now det ( I  - A) = - 1 ,  then A is flow 

equivalent to /3 (for the cokernels are bo th  zero and the signs are the same) ,  a 

contradict ion.  Hence, [ d e t ( I - A ) [  # 1, whence c o k ( I - A )  and c o k ( I - / 3 )  arc not 

trivial. By L e m m a  2.3, C A • C B. 1 

3. G r a p h i c a l  g r o u p s  a n d  c h a i n  r e c u r r e n c e  

In this section, we explain how the groups G T are generated in t e rms  of graphs.  

Our  goal here is a thorough and e lementary  introduct ion.  Much of this is 

implicit  or explicit in Poon ' s  paper  [Po]. The  main  differences are tha t  we spell 

things out in a general set t ing (i.e., wi thout  t rans i t iv i ty  constraints  on T);  in the 

"graph groups",  we use ver tex coboundaries;  and we relate the order s t ruc ture  

to chain recurrence and suspension flows. 

GRAPH GROUPS. By a g r a p h ,  we mean  a finite directed g raph  (F, say) which 

is nondegenera tc  every ver tex has at  least one incoming edge and a t  least one 



186 M. B O Y L E  AND D. H A N D E L M A N  Isr. J. Math .  

outgoing edge. Let s = s and V = V(F) denote the edge and vertex sets, 

let C = C(F, 7.) denote the group of functions from s into Z, let C+ denote the 

elements of C with range in 7,+, let 1 denote the constant function from s to 1. 

If v is a vertex, define 7. as the function in C which assigns output  1 to edges 

with initial vertex v, - 1  to edges with terminal vertex E,  and zero to the other 

edges. (If E is an edge from v to itself, we define 7 , (E)  = 0.) Let B = B(F, Z) 

be the subgroup of C generated by the 7,.  A v e r t e x  c o b o u n d a r y  (or more 

briefly a coboundary) is an element of B. By a g r a p h  g r o u p  we will mean a 

preordered unital group G(F) = (C/B ,  C+ + B, 1 + B) defined from some graph 

F as above. 

By a p a t h  we mean a finite sequence E1 . . .  Ek of edges such that  for 1 < i < k 

the terminal vertex of Ei is the initial vertex of E~+I. It  is a pa th  from v to 

v' if the initial vertex of E1 is v and the terminal vertex of Ek is v'. An edge 

E is w a n d e r i n g  if no path  of at least two edges which begins with E can end 

with E. The graph is r e c u r r e n t  if every edge is nonwandering. Equivalently, 

the adjacency matr ix  for the graph is a direct sum of irreducible matrices. 

We say a function f in C is zero/nonncgative on cycles if the sum of f ( E )  over 

the edges E of any cycle is zero/nonnegative respectively. The next lemma in a 

slightly different form comes from Poon [Po]. 

THEOREM 3.1 ([Po]): Suppose a graph is recurrent and f belongs to C. Then 

(1) f belongs to B if and only if  f is zero on cycles. 

(2) There exists g in B such that f + g > 0 if and only if  f is nonnegative on 

cycles. 

(3) The graph group is an ordered group. 

Proo~ If If] is both  positive and negative, then clearly f is zero on cycles. Thus 

(3) follows from (1) and (2). 

In both  (1) and (2), the forward implications are clear. For the converse, fix a 

vertex vo. Given a vertex v # v0, let av = m i n { ~  i f(E~)}, where the minimum 

is over all paths E1 .. �9 Ek from v0 to v. Let avo = 0. Define g = ~-~v a , ' r , .  If  E is 

an edge from v to v', then ( f (E )  + a,) is in the set of sums ~ f(E~) minimized 

by a r  so 

( f  + g)(E) = f ( E )  + a, - a,, > O. 

Thus f + g _> 0, and f + g = 0 if f is zero on cycles. | 
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If F is a graph (which in our context means a directed graph), we can associate 

to it an undirected graph F in a natural  way. The vertex sets are identical, and 

to each directed edge e in F from i to j ,  there is a distinct undirected edge 

between i and j .  An u n d i r e c t e d  p a t h  in F is a sequence of edges el, e2, �9 �9 �9 , gk 

such that  for each j ,  ~j is an edge joining i j - i  to ij; the definition of u n d i r e c t e d  

cycle  is obvious. Given such a path, we define a (e j )  to be 1 if ej goes from ij-1 

to ij, and define it to be - 1  if it goes in reverse. If f is a real valued function 

on F, then the directed sum of f on the undirected path  is the sum of terms of 

the form f (e j )a(S j ) ,  summed over ej in the path. We say that  f v a n i s h e s  on  

u n d i r e c t e d  cycles  if the directed sum of f on every undirected cycle is zero. 

LEMMA 3.2: For a graph F, f :  F --~ Z is a vertex coboundary i f  and only i f ]  

vanishes on undirected cycles. 

Proo~ It  is easy to verify that  every vertex coboundaxy vanishes on undirected 

cycles. Conversely, suppose f vanishes on undirected cycles. Extend the graph 

F to a larger graph F in the following manner. For each edge e, add a new edge 

whose initial vertex is the terminal vertex of e, and whose terminal vertex is 

the initial one of v. Extend f to f : F --* Z by setting ] (g)  = - f ( e ) .  Now F is 

recurrent. The weight of ] on any cycle of F is the directed sum of f on some 

undirected cycle of F. Thus f vanishes on cycles, and by Theorem 3.1, f is a 

vertex coboundary on F. By restriction, f is a vertex coboundary on F. | 

If f = ~ n .7" ,  then for any path  E l , . . .  , Ek from v to v', ~1<i<~ f (E i )  -- 

nv, - n , .  Conversely, suppose f satisfies the path  independence. Applying 

the previous theorem to irreducible components of F, after adding a vertex 

coboundary, we may assume that  f vanishes on nonwandering arcs. 

Next, suppose there is a path  between two irreducible components r i  and r j  

of r .  All paths from r i  to Fj have the same weight, say w. After adding to f a 

multiple of ~ e r ,  %, we can assume w = 0. Now adding to f a suitable vertex 

coboundary supported on the wandering vertices of the paths from r i  to r j ,  we 

get a function vanishing on all these paths and still vanishing on all irreducible 

components of r .  Continuing in this way with successive irreducible components, 

we eventually reduce f to zero. | 

Recall that  a preordered group (G, G+) is u n p e r f o r a t e d  if for every 9 in G 

and positive integer n, if ng belongs to G+ then g belongs to G+. Sometimes 
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authors build unperforation into the definition of a (pre)ordered group (we have 

not). 

PROPOSITION 3.3: 

(1) An edge E in a graph is wandering if and only i f  there exists a nonnegative 

function in B which is positive on E. 

(2) An element [f] in a graph group G is in G+ if and only i f  f is nonnegative 

on cycles. In particular, every graph group is unperforated. 

(3) Every graph group is torsion free. 

(4) If  (G, G+, [1]) is a graph group and (R, R+, [1]) is the group derived from 

the maximal recurrent subgraph of the given graph, then the map which 

restricts a function in C to that subgraph induces an isomorphism of ordered 

groups (G, G+, [1])/J ~+ (R, R+, [1]). 

Proof" (1) Any nonnegative function in B must vanish on a nonwandering edge, 

because a nonwandering edge lies on a cycle. For the converse, partition the 

vertex set into nonempty sets Vo . . . . .  ~M as follows. Vo is the set of vertices in 

the "initial" irreducible components, those which are not accessible from other 

irreducible components. Given ~2i for i < j ,  define /3~ to be the set of vertices v 

which are not in ~ for i < j and for which there is an arc from Vj_ 1 to v. Then 

define Vj to be Vj together with any vertices which are in the same irreducible 

component as some element of ~ .  In particular, VM consists entirely of vertices 

in some set of "terminal" irreducible components. 

Define fi = ~-~,ev~ % and let go = f0. For 0 < i < M, define gi = 2gi-1 + fi. 

By induction on i, each gi is a nonncgative function in B which is positive exactly 

on the wandering edges out of the /2j with j <_ i. Thus gM-1 is a nonnegative 

element of B which is positive exactly on the wandering arcs. 

(2) and (4) follow easily from (1) and Theorem 3.1. 

To prove (3), it suffices to see that whenever n is a positive integer and n f  is a 

coboundary, then so is f .  This is clear from Lemma 3.2. (Alternatively, we could 

just note that the group C / B  for the graph is exactly the first integral simplicial 

cohomology group of the graph, and such a group is well known to be torsion 

free.) | 

While we consider functions from edges of a graph into 77., with vertex cobound- 

aries, Poon ([Po D considered only functions from the vertex set of a graph. Each 

approach has its advantages and in the end, they are equivalent. We chose 
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the edge function view (as in [PT]) since then graphs with multiple edgcs arc 

permitted,  and also because a cohomology group is obtained which coincides with 

its traditional simplicial cohomology group. (In this light, presumably parts of 

Theorem 3.1 Proposition 3.3 are well known.) 

GRAPHICAL GROUPS.  A g r a p h i c a l  g r o u p  is a countable unital preordered 

abelian group isomorphic to the direct limit of graph groups ~n, where the bond- 

ing maps Gn ~-* Gn+a are induced by graph homomorphisms F~+I H F~ of the 

corresponding graphs. 

By a graph homomorphism, we mean a homomorphism of directed g raphs - -a  

map of edges respecting direction and inducing a well defined vertex map. It 

is easy to check that  if h: F ~ F' is a graph homomorphism and f belongs 

to B(F~), then f o h E B(F). So h does induce a well defined homomorphism 

h*: G(F') ---* G(F). Without loss of generality, we may assume that  the bonding 

maps above which give the direct limit group are surjective: we get the same 

direct limit group by replacing the nth graph with the subgraph whose edges are 

in the images of compositions of bonding maps from Fn+k for all k > 0. We 

will see below that  for any homeomorphism T of a zero-dimensional compact 

metric space, G T is a graphical group. Of course, dimension groups are graphical 

groups. We defer a further study of graphical groups to a sequel. To dispel any 

impression that  dimension groups are ubiquitous, we remark without proof that  

(G T, G T, [1]) is not a dimension group if T is an irreducible shift of finite type 

which contains at least two orbits. (In contrast, if T is minimal, then G 7" is a 

simple dimension group, and all possible simple dimension groups can be realized 

in this manner [GPS].) 

PROPOSITION 3.4: A graphical group is torsion free and unperforated. 

Proof A direct limit of torsion free unperforated groups is torsion free and 

unperforated. A graphical group is a direct limit of graph groups, which are 

torsion free and unperforated. | 

To understand GT as a graphical group, it will be convenient to have a few 

general results on zero-dimensional dynamics. 

ZERO DIMENSIONAL DYNAMICS. 

PROPOSITION 3.5: Suppose SA is an edge SFT. Suppose f is a coboundary in 

C(XA, 7/,) defined by f (x)  = f'(xo), where f '  �9 C(F, 7/,) and F is the graph with 
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adjacency matrix A. Then f~ is a vertex coboundary. 

Proof." If f~ were not a vertex coboundary, then by Lemma 3.2, f would not 

vanish on all undirected cycles. Then for any f "  induced by f on a higher block 

presentation of the SFT, f "  would also not vanish on some undirected cycle. This 

would be a contradiction, since for an SFT, any coboundary can be presented as 

arising from a vertex coboundary for a sufficiently high block presentation. | 

Suppose for a positive integer n, S,, is a self homeomorphism of a compact 

metric space Y~. Suppose for n > 1, 7r,~: Y,~ --* Y,~-I is a continuous map  inter- 

twining Sn and S,~-1. Define the inverse limit homeomorphism as the restriction 

S of the product of the S~ to the set 

Y : = { ( y l , Y 2 , . . . ) E l - ~ Y , ~  f o r a l l n >  X, Trn(yn)=yn_l}. 

We say the inverse limit system is s u r j e c t i v e  if each of the bonding maps 7r~ is 

surjective. 

A g r a p h i c a l  i nve r se  l imi t  is an inverse limit of edge SFT's  Z~, where Fn is 

the graph defining the edge SFT Z,~; the bonding maps Z,~+I - ,  Zn are one-block 

codes given by graph epimorphisms 7rn: F~+I ~ Fn (one -b lock  c o d e s  are maps 

between the sequence spaces determined by the effect on symbols at position 0); 

and the maximum over v in V(F,~) of the diameter of 

{z E Z~ [ z0 has initial vertex v} 

goes to zero with n. 

LEMMA 3.6: Suppose T is a homeomorphism of zero-dimensional compact metric 

space. 

(a) T is isomorphic to a surjective inverse limit of subshifts Tn. 

(b) T is isomorphic to a graphical inverse limit. 

Proo~ (a) Given a closed open partition 7 ~ of X,  one can define a subshift 

quotient of T, whose symbols are the elements of P ,  as follows: for each z in X,  

define 5: by Ti(x) E xl. If we take a refining sequence of closed open partit ions 

Pn, we get associated subshifts Sn; a surjective bonding map z ~ 7rnz from Sn+l 

to Sn is determined by zi C 0rnz)i for positive integer i. If  we require that  the 

maximum diameter of an element in P~ go to zero with n, then the inverse limit 
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homeomorphism is topologically conjugate to the original homeomorphism T on 

the zero dimensional space X. 

(b) Let P,~ and Sn be as in part (a). Define a graph F,~ whose vertices are the 

elements of P,~. There is an edge from P to P~ in Fn if T(P)  intersects pt.  

Let PP'  name such an edge. This graph defines an edge SFT Zn. Now for 

each n define a conjugacy from S,~ to a subsystem S~ of Zn by sending a point 

x = (xk)kez to the point x'  = (xkxk+l)ke~. These embeddings conjugate the 

bonding maps S~+1 ~ S ,  to bonding maps S',+ 1 H S~ determined by graph 

epimorphisms F,~+I ~-* F,~. II 

LEMMA 3.7: I f  T is a graphical inverse limit with associated graph groups Fn, 

then ~T is isomorphic to the direct limit of the graph groups ~(Fn) under the 

induced homomorphisms 7r*. In particular, for every homeomorphism T of a 

zero-dimensional compact metric space, G T is a graphical group. 

Proos Let Z,~, etc., be as in the definition of graphical inverse limit. We 

represent a point z in Z as a sequence (z(")), with z (") E Zn. If f '  E C ( F , , Z ) ,  

then f '  naturally defines an element f of C(Z, Z) by the rule f :  z ~-~ ff((z("))o). 

This induces a well-defined, order preserving unital homomorphism Cn: ~(F~) --~ 

6 T. For each n, r = r oTtO, so the maps r  induce a homomorphism r from 

the unital direct limit group into G T. We need to check that r is bijective and 

that the inverse image of a positive element is positive. 

So suppose f C C(X,  Z). Since f is constant on small clopen sets, f is defined 

by some f '  on Fk. (By this we mean that f is determined on (z('~))~r. by the 

symbol (z(k))o, which is an edge in the graph Fk; i.e., for some f '  in C(Fk,Z) ,  

f ( z )  = f'((z(k))o).) Therefore r is surjective. If g E C(X,Z)  and f = g o T - g, 

then for some m >_ k, f and g are defined by f " , g "  on Fro. Since f defines 

a coboundary in C(Z,~, Z), it follows by Proposition 3.5 that f "  is a vertex 

71"* " - �9 71"* t coboundary, so r -= 0. Since ~b,~([f"]) = Cm o ( m-z o o ~)([f ]), this 

shows r is injective. A similar argument shows that if f _> 0 in G r ,  then for some 

m > k, [f"] _> 0 in (Fro). This finishes the proof, | 

At this point the next result is an exercise, which we leave to the reader. In any 

case it follows a well-trodden path; we use it to transfer results on the ordered 

groups of mixing shifts of finite type, to those of more general chain recurrent 

systems. The use of graphs like the Fn to approximate zero-dimensional systems 

is not new (e.g., [AR]). 
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PROPOSITION 3.8: Let ( X , T )  be the inverse limit of the zero dimensional 

systems 

(x . ,  T~) ~ (X.+1, T.+I). 

Then F r is naturally, unitally isomorphic to the corresponding direct limit, 

l imF T~ ~ FT-+ , " 

Here "naturally" means functorially. 

CHAIN RECURRENCE. Chain recurrence is an important  idea in dynamical 

systems [C, F1, Rob]. An e-chain from x to y is a finite sequence of points 

x0, xl ,  . . .  , x,` such that  x = x0, x '  = x,~, and for 0 <<_ i < n, dist(T(xi) ,  Xi+l) < e. 

A point x is in the chain recurrent set ch(T) if for every e > 0, there is an ~-chain 

from x, to x. (By compactness, this property is independent of the choice of a 

metric compatible with the topology.) T is chain recurrent if ch(T) = X.  The 

set ch(T) is closed and T-invariant, and the restriction of T to ch(T) is chain 

recurrent [C, F1]. 

If T is a subshift with domain X, then the n - M a r k o v  a p p r o x i m a t i o n  Tn 

to T is the shift map on the set X,` consisting of all sequences x for which for 

all i E Z, the word xi.. .x~+,~ occurs in some point in X. Note the system 

(X, T) is the nested intersection of the systems (X,`, Tn). Let Z,` be the (2n + 1)- 

block presentation of X2,`. A block code Cn from X into Zn is determined by 

(r = (x_,`...x~). Now r = I-I,, r gives an isomorphism from T to the inverse 

limit. 

The proofs of the next two propositions are routine given what has come before, 

and we leave them to the reader. 

PROPOSITION 3.9: An SFT  is chain recurrent if  and only if  it is the union of 

finitely many disjoint irreducible SFT's. I f  ( X ,  T)  is a subshift, then the following 

are equivalent. 

(i) T is chain recurrent. 

(ii) Each Markov approximation T,` is chain recurrent. 

(iii) T is the nested intersection of chain recurrent shifts of finite type. 

PROPOSITION 3.10: Let T be a graphical inverse limit of edge SFT's, with Fk 

and z (k) as in the definition. 

(a) The chain recurrent set o f T  is the set of z such that for all k, (z(k))o is a 

nonwandering edge of Fk. 
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(b) T is chain recurrent i f  and only i f  each Fk is a recurrent graph. 

(c) I f  T is chain recurrent, then the preordered group ~T is an ordered group. 

Proof'. (a) If E is a wandering edge in some Fk, then the set {z [ (z(k))o = E} 

(which is nonempty by the surjeetivity condition in Lemma 3.6) has empty inter- 

section with its forward images under T, and certainly T is not chain recurrent. 

Conversely, suppose every Fk is recurrent. Given e > 0, choose k such that for 

every vertex v in Fk, the diameter of the set of points z such that (z(k))o has 

initial vertex v is less than e. Then given any z, a path (z(k))o . . .  (z(k))o in Fk 

gives an epsilon chain from z to z (the surjectivity condition guarantees that 

edges in Pk actually occur in points). Thus T is chain recurrent. 

(b) This is now obvious. 

(c) By Proposition 3.8, ~T is isomorphic to the direct limit of the Fk. By Theorem 

3.1, each Fk is an ordered group. Therefore the direct limit is an ordered group. 

| 

Below, by a nonnegativc coboundary we mean a function of the form g - g o T, 

where g is a continuous map into the integers, and for all x, (g - g o T) (x )  > O. 

PROPOSITION 3.11: Let T be a homeomorphism of a zero-dimensional com- 

pact metric space X .  Then a point x of  X is in the support of  a nonnegative 

coboundary i f  and only i f  x is not a chain recurrent point for T. In particular, T 

is chain recurrent i f  and only i f  every nonnegative coboundary vanishes. 

Proo~ Let T be a graphical inverse limit of edge SFT's Z ,  given by graphs 

F~. As in Lemma 3.7, f is a nonncgative coboundary in C ( X ,  Z) if and only if 

for some k, f is defined by f ( z )  = f '((z(k))o),  where f '  is a nonnegative vertex 

coboundary in C(Fk, Z). It then follows from Proposition 3.3(1) that z is in the 

support of a nonnegative coboundary in C(X ,  Z) if and only if for some k, (z (~'))0 

is a wandering edge in Fk. By Proposition 3.10(a), this happens if and only if z 

is not a chain recurrent point for T. | 

We now come to the main theorem of this section. Recall that J =_ J(G) 

denotes the subgroup G+ N - G + .  

THEOREM 3.12: Let T be a homeomorphism of  a zero-dimensional compact 

metrizable space X .  Let R denote the restriction of  T to the chain recurrent 

set ch(T). Then tlle restriction map f ~-~ f[ch(T) induces an isomorphism of  
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unperforated unital ordered groups ( G T, G T, [1])/d ~ (G R, G+ R, [1]). Moreover, 

J(G T) = { If] E G T If l  ch(T) is a coboundary of ch(T) } . 

Proof." As R is chain recurrent, (GR, G+ R) is an ordered group. As a 

graphical group, it is unperforated. For f E C(X,Z) ,  let f• -- r ich(T).  The 

map C(X, Z) --* C(R, Z) given by f ~-* fR is a surjection (and therefore ev- 

ery coboundary in C(R, Z) is the restriction of a coboundary in C(X, Z)). The 

restriction map induces a well-defined onto homomorphism p: (G T, G T, [1]) --+ 

(G ~, G+ R, [1]). 

First we check that kerp = J. Suppose f iR -- 0. Using Proposition 3.11 and 

compactness, we find a nonnegative coboundary g which is strictly positive on the 

clopen set where f is nonzero. For some positive integer N, we have ( f+Ng) >_ O. 
Therefore [f] belongs to G.~, and similarly - I f ]  belongs to G+ T. Conversely, 

T T [fnl belongs to GR+N-G R {0} by chain suppose [fl belongs to G+N-G+. Then = 

recurrence, and fR is a coboundary. Then there is some (not unique) coboundary 

g in C(X, Z) such that gR = fa ,  so that [f] = [f - g] where ( f  - g)IR = 0. Thus 

J = kerp. 

It remains to show that p-1 is order preserving. Suppose [fR] & 0. Then 

there is a coboundary g on R such that fR + g > 0; after subtracting from f 

a coboundary which restricts to g, we may assume that fR > 0. There is a 

nonnegative coboundary g in C(X, Z) which is strictly positive wherever f is 

strictly negative. For some N, f + Ng >_ O. This finishes the proof. | 

The homomorphism GT ~ GR above is a special case of a more general phe- 

nomenon. If Y is a chain recurrent subset (or sometimes merely a closed invari- 

ant subset), one may factor out I(Y) := { [f] E ~T I f lY  is a coboundary of Y }, 

and the quotient group (with the quotient ordering) is naturally order isomorphic 

to G TIY. This will be discussed in a forthcoming sequel in considerable detail. 

Remark: When T is not chain recurrent, the preordered group (G T, G T) is usu- 

ally not ordered, but it can be. To restate an example appearing in 

[Po; Remark 1.12, p. 523], for a positive integer n, consider the shift of finite 

type T defined by the matrix 

[10 
If n = 1, then the preordered group is ordered; if n > 1, then it is not. 
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The essence of part (a) of the following was announced by Poon [Po; p. 532, 

lines 1-2]. Recall from 1.6 the bijection between discrete pure traces on G T and 

finite orbits of T. 

PROPOSITION 3.13: Suppose (X, T) is an SFT. The following hold: 

(a) If f : X ~ Z is continuous and for a11 discrete pure traces r ,  T(f)  _> 0, 

then f is cohomologous to a nonnegative function. 

(b) Suppose that (X, T) is irreducible. Then for f in C(X,  Z), If] = 0 if  and 

only i f  for all discrete pure traces T, r([f])  = 0. In particular, G 7' has no 

nonzero infinitesimals. 

(c) Suppose ( X , T )  is irreducible. If U is a clopen set that has nontrivial 

intersection with every finite orbit, then there exists N such that 

Uo<i<N T~U = X .  

(d) Suppose (X, T) is irreducible. I f  f : X ~ Z is continuous and for all 

discrete pure traces v, r ( f )  > 0, then [f] is an order unit of ~ T. 

Proof" (a) After passing to a higher block presentation, X = XA and f ( x )  = 

ff(xo), for some f '  C C(F), where F is a graph with adjacency matrix A. The 

assumption on f guarantees that  f '  is nonnegative on cycles. By Proposition 

3.3(2), f l  E C(F, Z+), and (a) follows. 

(b) This follows easily from Theorem 3.1, and is "well known" in dynamical 

systems. 

(c) Passing to a higher block presentation, we may assume that there is a collec- 

tion E '  of edges in the graph presenting T such that U is the union of the points 

x such that x0 E E I. Suppose N exceeds the number of edges in the complement 

o f E  ~, y E X, and the po in t sy ,  Ty, . . . ,  T N y d o  not lie in U. Then the path 

(YO)(Yl)...(YN-1) avoids E '  and for some i and j we have 0 _< i < j < N with 

yi = yj. Then (yi) . . . (yj- l)  is a loop which can be iterated to give a periodic 

point avoiding U, which is a contradiction. 

(d) With U taken as the support of f ,  it follows from part (b) that there exists N 
_ n - - ] .  

such that every x E X, lira infn 1 ~ = 0  f(T~x) > 1IN. By the ergodic theorem, 
n 

the integral of f against any invariant measure must be at least l / N ,  so by 1.7, 

f is an order unit. I 

Example: Suppose (G T, ( j T  [1]) is an ordered group. Recall that  [f] C G T is 

an order unit if and only if v([f]) > 0 for every trace r ,  i.e., f has positive 

integral with respect to every T-invariant measure. It is natural but naive to 
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hope that apart from the subtleties of the infinitesimals, the measures determine 

the positive set. Specifically, one might hope that if there are no infinitesimals, 

then an element [f] of G T would have to be in GT+ if T([f]) >_ 0 for every trace ~-. 

Poon's result (Proposition 3.13(a)) showed this is true when T is a shift of finite 

type. However, the implication can fail even for simple unital dimension groups; 

these constitute the class occurring as" (G T, G T [1]) for minimal homeomorphisms +, 

T of the Cantor set [HPS]. 

As an easy example, give Q x Q with the strict ordering, i.e., G+ = {(0,0)} U 

{(x, y) I x > 0, y > 0}. Here every trace is a positive linear combination of the 

coordinate projections. In particular, (0, 1) is nonnegative at all traces, but is not 

in G+. This ordered group is simple (every nonzero element of G+ is obviously 

an order unit), with no infinitesimals. It is obviously unperforated and satisfies 

the Riesz interpolation property, and therefore is a dimension group [EHS]. 

4. O r d e r  a n d  (~ech c o h o m o l o g y  

Recall (Section 1.1) that YT is the standard suspension space of T. It is well 

known [PT; Ch. IV, section 3] that the group G T is isomorphic to HI(YT), the 

group of homotopy classes of continuous maps from lIT into the circle (hence- 

forth denoted H~.). (It also well known that  H~r is isomorphic to the first Cech 

cohomology group of the suspension space Yr.) In this section, we consider the 

order structure as it sits in the presentation H~, and explain how the failure of 

the preordered group (G T, G T) to be ordered is measured by HI(TT),  where YT 

is the gradient-like flow space Conley associated to the suspension flow on lIT. 

As a preliminary remark, we note that if r belongs to C(YT, S 1) and y is an 

element of YT, then there is a continuous map g: R --~ lit such that  for all t 

in R, 0: a t (y)  ~-* (r Given r and y, the map g is unique up 

to translation by an integer. The rule x ~-~ (g y (1 ) -  gy(0)), where y -- [(x, 0)], 

defines a continuous function from X to R, which we denote by av. If r 0)]) = 

~b([(x, 1)]), then ar is an integer which wc regard as a winding number. 

THE STANDARD ISOMORPHISM G T ~ HI(VT). We review the standard 

isomorphism given in [PT; Ch. 4, section 3]. Given 9 �9 C(X,R) ,  we define 

Sg �9 C(YT, S 1) by the rule 

Sg: [(x, s)] ~-* exp(27ri((1 - s)(gx) + s(gTx))), 0 < s < 1. 

Then Sg is homotopic to the" constant map i. An explicit homotopy is 

g t  = S ( t f ) , O  < t < 1. 
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Given f E C(X, Z), let r  : Y'r ~ S 1 denote the map given by [(x, ,s)] 

exp(27risf(x)),O _< s _< 1. Given f and g in C(X,Z),  note that  r  : 

(r Therefore the rule [f] ~-* [r gives a well-defined map t: G T ~ HI (T ) ,  

which is clearly a homomorphism. 

To see t is injective, suppose f E C(X, Z) and Ht gives a homotopy such that  

H 0 - -  ~i  and H1 is tile constant map 1. For x C X,  let g(x) be the integer n 

such that  the map [0, 1] ~ S l given by t ~-~ Ht([(x, 0)]) is homotopic to the map 

t ~-~ exp(27r.int). Then g C C(X, Z) and f = g - gT, so t is injective. 

To obtain an inverse to L, suppose ~ belongs to C(YT, S1). As X is zero- 

dimensional, we may choose a continuous function p: X --* 11~ such that  for all x 

in X,  we have that  r [(x, 0)] ~ exp (27rip(x)). Then ~ is homotopic to (r 

and for all x in X, (r : [(x,0)] ~ 1. Thus the rule x ~ a(c~/sp)(x) defines a 

function f in C(X, Z), and Cf is homotopic to ~. Therefore [r ~-~ If] gives the 

desired inverse to t. 

THE GRADIENT-LIKE FLOW SPACE FT- The space Yr admits the suspension 

flow for T, under which a point [(x, s)] advances in time t to [(x, s + t)]. Following 

Conley [C; Ch. II, section 6.3], define an equivalence relation on Yz' by setting 

two points to be equivalent if they belong to the same chain recurrent component 

under this flow. (The chain recurrent set ch(Ie:r) for the suspension flow on Y'r 

is {Ix, s] I x C ch(T), s E R}. Two points Ix, s] and [x', ,s'] are in the same chain 

component  under the flow iff x and x t are in the same chain component for T; 

that  is, for all e > 0, there exists in X an e-chain from x to x ~ and an e-chain 

from x ~ to x.) Let YT denote the quotient space. 

Even when X is a compact metric space that  is not zero dimensional, the flow 

on Yz, induces a well defined "gradient-like" flow on YT, and the rest points in YT 

(which correspond to the chain components in YT) constitute a zero dimensional 

set [C]. We remark that  in our setting this can be seen very concretely. Let T 

be given as a graphical inverse limit, with edge SFT's  Zn defined by graphs F,~ 

and graph epimorphisms 7r,: Fn+l -~ Fn inducing the direct limit. Let F~ be 

the graph obtained from Fn as follows. Delete all nonwandering edges; for each 

irreducible component C of Fn (a graph, in this case the subgraph consisting of 

the component, is irreducible, if there are paths from every point to all others; 

that  is, the adjacency matrix is irreducible), collapse all vertices of C to a single 

vertex vc; and let each wandering edge E of F~ give rise to a distinct edge E' in 

Fin, where the initial and terminal vertices of E ~ are the images of those of E under 
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the vertex-collapsing map. Now the graph epimorphisms 7rn induce well defined 
! ! ! 

graph epimorphisms 7r,~ : P,~+l --* F n. The inverse limit of the graphs F~ under 

these epimorphisms is a one-dimensional topological space X t homeomorphic to 

YT. The rest points in X '  of the gradient-like flow are the inverse limit of the 

distinguished vertices vc. 

The quotient map q : YT -4 YT induces a corresponding map on the first coho- 

mology groups, Hi(q)  : H I ( y T )  --~ HI(I/T). Let j T  : j ( G  T) = 

(G T) fq ( -GT) .  Recall j T  = {[f] E G T ] r ich(T)  = 0}. 

PROPOSITION 4.1: The standard isomorphism ~: G T ---* HI(YT) induces an 

isomorphism of short exact sequences 

{0} , HI (VT)  Hi(q)} HI(YT) H'(i) H' (YR)  

T l T 
{0} , J(G T) ' G T ' G R 

,, {0} 

, { o }  
m 

Here R = TIch(T ), q: YT --~ YT  is the quotient map, and i: YR --* YT is the 

inclusion. The two rightmost vertical maps are the standard isomorphisms on 

the corresponding groups, and the right vertical map is tR, the standard one for 

R. On the bottom line, J(G T) --* G T is the inclusion, and G T --* G a is induced 

by restriction, as in Theorem 3.12. In particular, ~T is an ordered group if  and 

only i f  HI (YT)  is trivial. 

Proofi First we show that the map HX(q) : HI (YT)  --* HI(YT) has image 

contained in ~(J(GT)). Let r : YT --* S 1 be a continuous map. Then r lifts to 

r E C(YT, $1), where r is constant on chain components of YT. The rest point 

set in YT is zero-dimensional, so it has a neighborhood which is the union of 

several disjoint closed sets C on each of which the diameter of the image of 

is less than 1. Lift these to disjoint closed sets C in YT, and identify X with 

{ [(x, 0)] e YT I x �9 X }. After expanding the sets C slightly, we may assume 

they are still disjoint and that each set C ~ := C O X is a closed open set in the 

relative topology on X. We may define the local lift p : X ~ R (which is used 

to define f such that  t ( f )  = [el] = [r independently on each set C'. As any 

chain component of X must be contained in some C ~, and r is constant on chain 

components, this results in a function p which is constant on chain components. 

This produces ] in C(X,  Z) such that ] vanishes on ch(T) and ~b! is homotopic 

to r which shows that  the image of Hi(q) is contained in L(J(GT)). 
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Continuing, we show that  Hi(q)  is injective. Suppose that  the Cf obtained 

above is null-homotopic. We can take (X, T) to be a graphical inverse limit, so 

that  f can be identified with a vertex coboundary on some graph Fn. By con- 

struction, f must vanish on nonwandering edges of F,~, so the natural  homotopy 

from Cf to the constant function 1 is identically 1 on ch(T). This homotopy 

pushes down to YT. This shows that  HI(q)  is injective. 

Next, given an equivalence class If] in J(GT),  we may assume f vanishes on 

ch(T). Then Cf is identically 1 on each chain component, so induces a map 

~f : YT -"+ S1, and obviously the image of the homotopy class of Cf in ~T is f ,  

so that  the range of Hi (q)  is all of J .  

At this point we know that  the left square of the diagram commutes, and all 

vertical arrows are isomorphisms. It  is straightforward to check that  the right 

square commutes,  so the whole diagram commutes. The bot tom sequence is 

exact by Theorem 3.12, so H ~ (i) must be surjective and the top sequence must 

be exact as well. This finishes the proof. | 

A c o n n e c t i n g  o r b i t  between two chain components of T is an orbit which 

is forwardly asymptotic  to one and backwardly asymptotic  to the other. It is 

not hard to see from the isomorphism j T  ~_ H I ~ T  that  JT will be non-trivial 

if there are two chain components with more than one connecting orbit between 

them (the converse fails). With this in mind, we leave the following proposition 

as an exercise. In its statement,  Ci ~ Cj means there is a connecting orbit from 

the component Ci to the component Cj. 

PROPOSITION 4.2: Suppose T is a shift of finite type. Then j T  = 0 if  and only 

i f  T is the disjoint union of SFT's  which are irreducible or have the following 

structure: 

(i) each irreducible component is a single periodic orbit; 

(ii) there is at most  one connecting orbit between any two periodic orbits -in 

particular, there is no chain of  connecting orbits C1 ~ C2 --~ C3; 

(iii) for n > O, there is no loop of  connecting orbits Co ~ C1 ~ C2 --* C3 --~ 

"'" +'- Cn-1 ---'+ Co. 

THE WINDING ORDER. Recall that  if r is an element of C(YT, S 1) and y belongs 

to Y, then there is a continuous map gy _= g : R ---* R such that  for all t in R, 

r a t (y)  ~ (r We define C+(YT, S 1) to be the set of r such that  

for all y, gv is nondecreasing. (In other words, as a point moves forward under the 
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suspension flow on YT, its image under ~ is stationary or moves counterclockwise 

on the circle.) Then we define HA(T ) := {[r I1r �9 C+(y, sI)},  where [r is 

the homotopy class of r (The circle around the plus sign is meant to suggest 

winding number.) Now (H 1 (T),  H A (T)) is a preordered group. We call this 

preorder the wind ing  o rde r  on Hi(T). 

The winding order is geometrically natural. It also makes sense for any real 

ftow on a compact metric space Y (Y may have nonzero dimension, and the flow 

need not have a cross section)--one still has a well defined group H 1 of continuous 

functions from Y into S 1 modulo homotopy, and the winding order still makes H 1 

into a preordered group. In this language (translating Schwartzman's important 

study of sections to flows [Sch]), one can say that a flow has a cross section if 

and only if there is an order unit in (H 1 (T), H A (T)), and following [Sch] again, 

one can relate the order units to the positivity of certain integrals. 

Let H~(T) denote the standard order, i.e., the image of GT+ under the standard 

isomorphism L. With this motivation, we want to compare the winding order to 

the standard order. Obviously, H~(T) C HA(T). The two orders are sometimes 

but not always the same. Let G~ denote the preimage of HA(T ) under the 

standard isomorphism. The next proposition gives a comparison of the two orders 

in terms of coboundaries. 

THEOREM 4.3: Suppose f is an element ofC(X, Z). 

(1) []] �9 G T i f f  there exists g �9 C(X, Z) such that f + g - gT >_ O. 

(2) [f] �9 G T i f f  there exists g �9 C(X, R) such that f + g - gT > O. 

Remark: Note that in (2) the function g -  gT is allowed to have noninteger 

outputs. 

Proof'. (1) This is a definition. 

(2) Let us say an element r of C(YT, S 1) is piecewise linear if for every x C X, 

there is a constant v = v(x) (the "velocity") such that for 0 < s < 1, r [(x, s)] ~-* 

r 0)]). exp(2zrivs). Suppose h �9 G~, with Ch homotopic to r �9 C+(YT, $1); 

we want to deduce there is g �9 C(X, R) such that  h + g - gT >_ O. It is clear that 

r is homotopic to a piecewise linear map still in C+(YT, $1), so without loss of 

generality we may suppose r is piecewise linear. The construction of the inverse 

to the standard isomorphism produces f in C(X, Z) and p in C(X, R) such that 

r is homotopic to r As r is piecewise linear, the choice of f actually gives 
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r = r  Thus for x E X and 0 < s < 1, 

r [(x, s)] H exp (27ri (s f (x )  + (1 - s)p(x) + sp(Tx))) 

and the piecewise linear map r has velocity v(x) = ( f  + pT - p)(x). Since v is 

nonnegative and h is cohomologous to f ,  the desired g exists. 

Conversely, suppose g C C(X,  R) and .f + g - gT >_ O. Then 0I is homotopic 

to Cf(Sg), which is piecewise linear with nonnegative velocity. | 

In two interesting cases we can show that the winding order is the standard 

order. If (G, G +) is a partially ordered abelian group with an order unit, then 

we will call it a r c h i m e d e a n  if for g in G, a(g) _> 0 for all (pure) traces a 

implies g >_ 0. This definition, suitable for our purposes, is equivalent to the 

strongest form of archimedeanness discussed in [G]. In particular, if (X, T) is a 

shift of finite type, then G "r is archimedean (Proposition 3.13). This also occurs 

for certain rather special sofic shifts but for other (also special) sofic shifts, there 

can be infinitesimals in GT. Another archimedean example occurs if (X, T) arises 

as the orbit space of mixing SFT under the action of a finite group. Both of these 

constructions will be discussed in the sequel to this paper. 

COROLLARY 4.4: I f  (X, T) is a zero dimensional dynamical system, the traces 

for both orderings on G T, that is, G T and G~ (and normalized with respect to 

the constant function in both cases), are given by integration with respect to 

T-invariant measures on X .  In particular, the group isomorphism G T --* H I(T)  

induces an al~ne homeomorphism between the normalized trace spaces. 

Proof: The first part is a consequence of Theorem 4.3 and the discnssion in 

Section 1.6, and the second follows from this and the definitions. I 

PROPOSITION 4.5: In the following cases, the standard group isomorphism t : 

G r ~ Hi (T)  is an order isomorphism t:  (GT, G T) ~ (HI(T) ,  HA(T)).  

(a) I f (X ,  T) is such that ~T is archimedean; in particular, this applies i f (X ,  T) 

is a shift of finite type. 

(b) If  (X, T) is minimal. 

In general, t restricts to a bijection between the sets of order units of (G T, G T) 

and of (HL(T), H~(T)) .  

Proof: In general, we have G T C_ G T, so it suffices to show the reverse inclusion. 
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(a) Given If] in G T, we must have that a([f])  > 0 for all traces a with respect 

to G T. By Corollary 4.4, this entails/3([f]) >_ 0 for all traces/3 with respect to 

G T and by archimedeanness, this forces If] �9 G~. +, 

(b) Now suppose T is minimal. Without loss of generality suppose T has more 

than one orbit, so its domain is a Cantor set. If f + gT - g is identically zero, 

then because f has integer outputs and T has a dense orbit, the fractional part 

of g must be constant; replacing g by its integer part, we see If] = 0 in G T, so 

If] �9 G T. If f + gT - g does not vanish identically, then by minimality there is 

a positive integer N such that for all x, the partial sum S N ( f  + gT - g)(x) > 

2max{[g[}, where SN(h) = h + h o T + . . .  + h o T '~-1. Then S N ( f )  > 0 and 

If] �9 
By Theorem 4.3, the constant function [ lx]  is an order unit with respect to 

G T. It follows immediately that order units with respect to G T are also order 

units with respect to V T. Conversely, if [f] is an order unit with respect to G~, 

then a([f])  > 0 for all traces a with respect to G~. Hence/3([f]) > 0 for all traces 

/3 with respect to GT+, and thus by 1.7 (or using the fact that  G T is unperforated 

and a general positivity principle), [f] is an order unit. | 

Suppose e > 0. Recall that a sequence of points (zi)iel is an e - p s e u d o - o r b i t  

for T if for all {i , i  + 1} C I, dist(Tzi, zi+i) < e. (The set of integers I may 

be finite or infinite, but must contain more than one element.) It is a periodic 

e-pseudo-orbit if I = Z and the sequence (zi)iel is periodic. Let T be given as 

a graphical inverse limit X of SFT's Z,~, with projections p,~ : X ~ Zn. Given 

e > 0, there is a minimal positive integer n(e) such that for every n > n(e), the 

set of images p,~(zi) of periodic e-pseudo-orbits of T is the set of periodic orbits 

of Z~. As �9 ~ 0, n(e) ~ oc. Thus we can think of periodic pseudo-orbits of T 

as being the periodic orbits of the approximating Z~. 

PROPOSITION 4.6: Suppose f �9 C ( X , Z ) .  Then [f] �9 G T i f f  there exists e > 0 

such that f has nonnegative sum along every periodic ~-pseudo-orbit. 

Proof'. Let T be given as a graphical inverse limit of SFT's Z~ with graphs F,~. 

As in Proposition 3.8, a function f in C(X,  Z) is given by a function F on edges of 

some FN, which defines a function fN �9 C(ZN, Z) such that f ( x )  = f N ( P N ( X ) ) .  

Suppose [f] �9 G T. Then F is nonnegative on cycles, so f~ has nonnegative sum 

along every periodic orbit of ZN and f has nonnegative sum along every e-pseudo- 

orbit of T (for sufficiently small e). Conversely, given e > 0, we can choose ZN 
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above with N large enough that every periodic orbit of ZN is the image of an 

e-pseudo-orbit for T. If f has nonnegative sum along every e-pseudo-orbit, then 

F must be nonnegative on cycles, so [fN] E G ZN and thus f E G T. I 

Example 4.7". A chain transitive T for which the preorder G~ is not an order. 

Since the preorder G~ is an order when T is chain recurrent, this gives an example 

in which the standard and winding orders are different. 

Let C be the middle-thirds Cantor set in [0,1]. Let {U1, U2,. . .  } be the col- 

lection of disjoint open intervals from [0, 1] whose union is [0, 1] \ C. Choose an 

increasing continuous surjection p : [0, 1] ---* [0, 1] such that for all x, y in [0, 1], 

p(x) = p(y) if and only if {x,y} C 0~ for some i. From each U~ = (a~,bi), 

choose a strictly increasing bisequence (xn)~E~ such that  lirn~_+oo xn = bi and 

l im n__~  xn -- hi. Let X t be the union of C and all these bisequences. Define 

T~: X ~ -* X t by T~(xn) = Xn+~ on the bisequences and T ~ -- Id on C. Choose 

an isolated point from X t and define f E C(X ~,Z) by setting f(y) = -1  and 

f (x)  = 0 if x ~ y. Define p E C(X I,R) by 

S v(x) if o < x < Ty, 
p(x) I, p(x) - I i f T y < x <  1. 

Then ( f  + p -pT) ( x )  vanishes for all x. Let X be the quotient of X ~ obtained by 

collapsing 0 and 1 to a single point. Then T ~, p, f induce corresponding objects 

on X, which we shall call T, p, f respectively. Clearly T is chain transitive. For 

every e > 0, f has negative sum on some periodic e-pseudo-orbit, and therefore 

[f] ~ 0. However, f + p - p T  vanishes; so If] belongs to (G~n-G~) .  This finishes 

the proof. (We remark that  the map r [(x, s)] ~ exp(2uip(x)) = exp(2rip(x)) 

is an element of C+(YT, S 1) homotopic to (~f.) I 

5. K - T h e o r y  

The unital ordered group ~T can be interpreted as K0 of the crossed-product 

C*-algebra arising from the dynamical system T. 

This was explained by Putnam et al. [Pu, GPS] for minimal systems and by 

Poon [Po] for systems with a dense forward orbit. 

In this section, we work out the connection in the general case that T is a 

homeomorphism of a zero-dimensional compact metric space. We also point 

out that K1 has a natural interpretation, and observe that a "dimension shift" 

occurs in the connection between K-theory and cohomology. A reference for the 

K-theory that occurs in what follows would be [Bla]. 
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Form the C*-algebra C = C(X)  x T Z obtained from the action of T viewed as 

an algebra automorphism of C(X).  

The Grothendieck group of C, written Ko(C), is the abelian group generated 

by the equivalence classes of finitely generated projective modules under stable 

isomorphism (in the case of a C*-algebra, finitely generated projective modules 

can be replaced by projections in matrix algebras). It has a natural structure 

of a preordered abelian group, Ko(C) +, consisting of the equivalence classes 

that contain projective modules. It also has a natural choice of order unit, the 

equivalence class of the free module on one generator, often denoted [1]. The 

assignment C ~ (Ko(C), K0(C) +, [1]) is functorial (with respect to unital ring 

homomorphisms). 

There is also a (topological) K1 group, which for C*-algebras is simply the 

direct limit of the group of invertibles modulo its connected component, in matrix 

algebras over C. It normally has no natural preordered structure, although one 

occasionally arises. 

For the specific case of crossed product C*-algebras that we are dealing with 

here (and more generally), the two K-groups can be computed using the Pimsner- 

Voiculescu exact sequence. Let A = C(X)  (although this diagram is valid for 

A any C*-algebra, and C -- A x Z with any action on A); then this diagram is 

exact. 
Ko(A) Ko(T)-id) Ko(A) K0(i) )Ko(C) 

T 1 
KI(C) , KI(A) ( KI(A) 

K1 (i) Kl (T ) - id  

Here i : A ~ C is the natural inclusion (we use functorial notation applied to 

mappings, rather than the usual asterisks). In our case, A = C(X)  where X is 

zero dimensional, so that K0(A) = C(X, Z) (with the coordinatewise ordering--  

every projective module corresponds to a nonnegative integer valued function, 

determined by the trace of the corresponding projection evaluated at points of 

X), and Ko(T) is the map induced by T, i.e., f H f o T. Also KI(A) = 0, so 

we deduce that as abelian groups, K0(C) -~ C(X, Z)/cobdy (T) (since cobdy (T) 

is precisely the range of Ko(T) - id) and KI(C) is isomorphic to the kernel of 

Ko(T) - i d ,  i.e., the fixed point subalgebra of C(X, Z)- - the  vector space subspace 

spanned by characteristic functions of clopen sets U with TU = U. 

In particular, as abelian groups, we have identified G T with K0(C). As we 
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will see shortly, this identification is a preorder isomorphism as well (the P-V 

sequence does not determine the preordering on K0). 

There is a direct natural map K0(C) ~ HI(YT), given by [p] ---+ 

[exp2~rit �9 Trp(x)] (note the use of brackets [ ] to denote equivalence classes 

of different kinds of objects, projections on the left and homotopy classes on 

the right), where p is a projection in some matrix algebra over C and Trp(x) is 

its trace making it into a function on X. This map ks compatible with the iso- 

morphism HI(YT) ~-- G T and the identification of K0(A) with G T, as is readily 

verified. 

There is also a natural map H~ ~ KI(C).  Let f : YT ---* Z be continuous. 

Then the level sets, f - l ( m )  are clopen and invariant under the action of the 

reals. In particular, their intersection with the image of X • 0 is T-invariant, and 

this yields a clopen set in X which is T-invariant. We thereby obtain a map from 

H~ - C(YT, Z) to the fixed point subgroup of C(X, Z), i.e., to KI (C(X)  x r  

Z). It is routine to verify that this is a one to one group homomorphism because 

any R-invariant clopen subset of YT is uniquely determined by its restriction. 

Finally, the map is onto since any clopen invariant set in X can be enlarged to a 

R-invariant clopen subset of YT in the obvious way. 

Note for example, that  YT is connected if and only if the only clopen 

T-invariant subsets of X are the trivial ones; that is, the dynamical system is 

i n d e c o m p o s a b l e .  

In particular, we have isomorphisms HI(yT) ~ K0(C) and H~ ~ KI(C).  

This dimension shift suggests a general phenomenon is at work, and this is indeed 

the case. We are indebted to George Elliott for the following explanation; see 

[Co; Corollary 6]. 

Let (for now) A be any unital C*-algebra on which a single automorphism, 

call it T, acts. Form the crossed product C*-algebra C = A • Z and also the 

m a p p i n g  t o r u s  o f  T, 

AT := { f :  [0, 1] ---* A I f (1)  = Tf(O)} . 

If A = C(X) and T is induced by a self-homeomorphism of X (also called T), it 

is easy to check that  AT = C(YT). There is a natural action of the reals on AT 

given by 
S T[r]f({r + s}) if {r} + s < 1, ( r .  f)(a) 

T[~]+lf({r§ i f { r } §  
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where brackets denote greatest integer and braces denote fractional part. Again if 

A = C ( X )  and T is induced by a self-homeomorphism, this real action is induced 

by the natural real action on YT. In any event, we can form the C*-algebra crossed 

product, AT • I t  with this action. A standard theorem in this context asserts 

that AT • R is stably isomorphic to A • Z (that is, they become isomorphic on 

tensoring with the algebra of compact operators); in particular, their K-theory is 

the same. By Connes' isomorphism theorem ([Co]), K0(AT) ~- KI(AT  x R) and 

KI(AT) -~ K0(AT • It).  Hence there are isomorphisms K0(AT) ~- KI(A • Z) 
and KI(AT) -- K0(A XT Z). 

If A = C(X) ,  then AT = C(YT), and it is known that for suitable com- 

pact spaces, Z, K0(C(Z))  is the direct sum of the even cohomology groups and 

Kl (C(Z) )  is the direct sum of the odd ones. In our case, X is zero dimensional, 

so that  YT is locally a product of a zero dimensional space and a one dimensional 

space, and thus YT is one dimensional. Hence all the higher cohomology groups 

vanish, and thus K0(A • Z) --~ HI(yT)  and KI(A XT Z) ---- H~ This proof 

does not give the preorder isomorphism on the level of K0, however. 

In [Po; Remark 3.10], Poon noted that if ~T is archimedean, then the two 

possible preorderings on GT, the first being the ordering yielding G T (that is, 

the quotient ordering on C(X,  Z ) / ( T  - id)C(X, Z)) and the second induced from 

K0(C(X) • Z) via the Pimsner-Voiculescu exact sequence, are the same. We 

prove this here in the general zero dimensional situation. 

LEMMA 5.1: Let A and B be preordered abelian groups, and suppose r : A -~ B 

is a group isomorphism such that r  = J ( B ) and moreover, the induced 

map -r : A / J ( A ) --* B / J ( B ) is an order isomorphism. Then r is an isomorphism 

of  preordered groups. 

Proof: Select b in B +. Then b+ J (B)  >_ 0 (as an element of B / J ( B ) - - n o t e  that  

b + J ( B )  consists entirely of "positive" elements). By assumption, there exists a 

coset a' + J (A)  >_ 0 such that -r + J (A) )  = b + J(B) .  If a = r then a 

belongs to the coset a' + J(A); however, every element of this coset lies in A +, so 

that a belongs to A +. Thus r is preorder preserving. Interchanging A with B 

yields that r is preorder preserving, so that r is a preorder isomorphism. | 

THEOREM 5.2: Let (X, T)  be a zero dimensional metrizable compact space to- 

gether with a self-homeomorphism. Then GT is isomorphic to Ko (C(X )  XT Z) 
(as preordered abelian groups). 
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Proof'. We note first that the identification of Ko(C(X) XT Z) with G T given 

by the PV sequence includes within it some information on the positive cone. 

Explicitly, the map K0(i) : C(X, Z) ~ G :r is induced by the inclusion C(X) 

C(X) • Z and when viewed aS a map on the Grothendieck groups, is preorder 

preserving. The upshot is that with respect to the ordering on G T induced by 

K0(C(X) XT Z), the equivalence class of every image of a projection is positive. 

Hence the positive cone for the second, induced ordering contains that of the 

quotient ordering. Moreover, it is eaSy to see that the pure traces with respect 

to either preordering can be identified with the invariant meaSures; hence both 

preorderings have the same set of pure traces. 

Suppose (X, T) is an irreducible shift of finite type. Pick a in ~T positive 

with respect to the induced ordering. Then it is nonnegative at every pure trace, 

hence by Proposition 3.13, it is positive with respect to the quotient ordering. So 

in this caSe, the two orderings agree. Of course the same is also true for a finite 

disjoint union of irreducible shifts of finite type. It is routine to verify that both 

orderings commute with inverse limits, hence they agree on the claSs of inverse 

limits of finite disjoint unions of irreducible shifts of finite type- -by  Proposition 

3.9, this is precisely the set of chain recurrent (zero dimensional) systems. Thus 

the orderings are identical for chain recurrent systems. 

Now let (X, T) be an arbitrary zero dimensional system. We form (ch(T), T ) - -  

the restriction to the chain recurrent subset--and observe that the identification 

of G T with Ko commutes with the inclusion map ch(T) ~ X; explicitly, 

~T __._~ ~T 

l l 
No(C(X) x r  Z) ,, Ko(C(ch(r)) x~ Z). 

Here the arrows to the right are onto; the top one just factors out j(~T) aS we 

have seen, the bot tom one is simply induced by the inclusion of spaces. The 

vertical maps are preorder preserving group isomorphisms (first paragraph), and 

the right vertical map is an order isomorphism. Since the left vertical map is at 

leaSt order preserving, it sends j(~T) to J(Ko(C(X) xT Z)). Anything in the 

kernel of the bottom map would have to be in the image of the left vertical map, 

since both vertical maps are group isomorphisms. Hence the image of j(~T) is 

all of J(Ko(C(X) XT Z)). The conditions of the preceding lemma now apply to 

yield that the left vertical map is an isomorphism of preordered groups. | 
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The result, Theorem 3.12, asserting that  ~ T / j  ~ GY, i.e., that  

Ko(C(X)  XT Z ) / J  ~- K0(ch(T) x y  Z) can be interpreted as an excision result 

for K0, at least when J = 0. There is no counterpart for K1, as simple ex- 

amples show. For example, if (X, T) is the two point compactification of the 

shift on Z (equivalently, it is the subshift of finite type determined by the ma- 

trix [~ ~[), then J = 0, K I ( C ( X ) •  Z ) ' ~  Z (there are no nontrivial invariant 

clopen sets), but ch(T) consists of the two points at infinity and T fixes these, so 

KI(ch(T) x y  Z) ~-- Z 2. 
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