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ABSTRACT 

Let X be an Hausdorfl" space. We say that X is a C O  space,  if X is 

compact and every closed subspace of X is homeomorphic to a clopen 

subspace of X,  and X is a h e r e d i t a r i l y  CO space  (HCO space), if 

every closed subspace is a CO space. It is well-known that every well- 

ordered chain with a last element, endowed with the interval topology, 

is an HCO space, and every HCO space is scattered. In this paper, we 

show the following theorems: 

THEOREM (R. Bonnet): 

(a) Every HCO space which is a continuous image of a compact totally 

disconnected interval space is homsomorphic to/3 + 1 for some ordinal/9. 
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(b) Every HCO space o/. countable Cantor-Bendixson rank is homeomor- 

phic to c~ + 1/'or some countable ordinal a. 

THEOREM (S. Shelah): Assume ~ 1 "  Then there is a HCO compact 

space X of Cantor-Bendixson rank ~ and o/. cardinality Rt such that: 

(1) X has only countably many isolated points, 

(2) Every closed subset o/. X is countable or co-countable, 

(3) Every countable closed subspace of X is homeomorphic to a clopen 

subspace, and every uncountable closed subspace of X is homeomorphic 
to X, and 

(4) X is refractive. 

In particular X is a thin-tall compact space of countable spread, and is 

not a continuous image of a compact totally disconnected interval space. 

The question whether it is consistent with ZFC, that every HCO space 

is homeomorphic to an ordinal, is open. 

1. Survey of  the results 

DEFINITION 1.1: (a) A Boolean algebra is regarded as an algebraic structure of 

the form (B ,  + , . ,  - ,  O, 1) (B may be just {0}). + , . ,  - denote respectively the 

join, meet and complementation in B. 0 B, 1B are used when a reference to B is 

needed, _< or _<B denotes the partial ordering on B (a < b if a .  b = a), and ZX is 

the symmetric difference in B, that  is, a A b  = (a - b) + (b -- a). 

(b) If I is an ideal in a Boolean algebra B, and a E B, then a / I  ded {b E 

B: b A a  E I } .  I f E  is a s u b s e t  of B, then E / I  aej {a / I :  a E E} .  Hence 

B / I  = { a / l :  a E B }  denotes the quotient algebra, and for an ideal d _D I of B, 

d / I  is an ideal of B / I .  

(c) a E B is an a t o m  of B if a # 0 and for every b E B such that  0 < b < a, 

b = 0 or b = a. We denote by At(B) the set of atoms of B. B is a t o m i c  if for 

every non-zero b E B, there is a E At(B) such that a < b. 

(d) A Boolean algebra B is said to be s u p e r a t o m i e  if every homomorphic 

image of B is atomic. 

(e) If a E B, then B r a denotes the Boolean algebra induced by B on {b E 
B: b g a}. So 1 Bt" aef _xBI . d~f = a a n d  = a - z .  
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(f) For a subset D of B, we denote by: 

�9 cls(D) the subalgebra of B generated by D. For instance, if J is an ideal 

of B, then clB(J) = J U -J where -J de=f {-b: b E J}. 
�9 cl~(D) the ideal of B generated by D. 

If B is understood from the context, we omit its mention. 

(g) If E is a set, then p(E), the power set of E, is regarded as a Boolean 

algebra, where + and �9 are U and N respectively. FC(E) denotes the subalgebra 

of p(E) of finite or cofinite subsets of E. 

(h) Let (C, _~) be a partial ordered set. We say that (C, _~) is a chain if every 

pair of members of C are comparable, and (C, _~) is well-ordered if (C, _~) is a 

chain with no strictly decreasing sequence. Hence (C, _~) is order-isomorphic to 

an ordinal. 

(i) Let (C, _) be a chain with a first dement denoted by 0 c (if (C, <) has 

no first element, then we must add one). Let C + deJ C U {oo C} be the chain, 

obtained by adding a greatest element co c. We denote by B(C) the subalgebra 

of p(C) generated by the set of [a, b) for a 6 C and b 6 C +, i.e. clp(c)({[a, b): a E 

C and b E C+}). B(C) is called the interval a lgebra of C (see Koppelberg 

[12]). 
B is an ordinal  a lgebra if B is isomorphic to B(C), where C is a weft-ordered 

chain. 

(j) A subalgebra A of B is called a re t rac t  of J, or of B/J ,  if for every b E B, 

[AN (b/J)[ = 1. An ideal J is re tract ive,  if there is a retract of J. We say that 

B is re t rac t ive  if every ideal of B is retractive. 

(k) For a Boolean algebra B, let Ult(B) denote the Boolean space of B, i.e. 

the space of ultrafilters of B. 

Let us recall classical results: 

PROPOSITION 1.2: Let J be an ideal of a Boolean a/gebra B, A a subalgebra 

of B, and ~r j the canonical homomorphism from B onto B/J .  The following 

properties are equivalent: 

(i) A is a retract of J 

(ii) ~rs f A is an isomorphism from A onto B/J .  

(iii) A N J = {08} and elB(A U J) = B. 

Day [9] (see also [12], Vol. 1, pp. 233, and [18]) has given different equivalence 

conditions for a Boolean algebra to be superatomic: 
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PROPOSITION 1.3: (Day [1977]) Let B be a Boolean algebra. The following are 

equ/valent: 

(i) B is superatomic. 

(ii) Every subalgebra of B is atomic. 

(iii) There is no embedding from the atomless countable algebra into B. 

DEFINITION 1.4: (a) Let B be a Boolean algebra. We define, by induction on a, 

a sequence (I~(B), D~(B)), with the conditions D,,(B) d,j B/Is(B) (the algebra 

Do(B) is called the a-th Cantor  Bendlxson derivative of B). Let Io(B) = 
{0}, and thus D0(B) = B. II(B) d,=t d~(At(B)).  Suppose that 5 is a limit, and 

Ia(B) has been defined for every a < 5, then I6(B) = [Ja<6 I~(B). Suppose that 

I~(B) has been defined. Then Ia+l(B) deal (b e B: b/I,(B) e II(D~(B))}. 

(b) A topological space X is sca t te red  if every non-empty subset of X has 

an isolated point in its subspaee topology. 

Trivially, (Ia(B)),eO,d is an increasing sequence of ideals of B (Ord denotes 

the class of ordinals). The following additional equivalences are well-known and 

their proof are straightforward (see [12]). 

PROPOSITION 1.5: Let B be a Boolean algebra. The fo//owing conditions are 
equivalent: 

(i) B is superatomic. 
(ii) There is an ordhaal 3' such that 1B �9 I t(B ). 

(iii) The Boolean space Ult(B) of B is a scattered space. 

Clearly the first ordinal 3' for which 1B �9 I.~(B) is a successor ordinal, say a + l ,  

then a is denoted by rk(B). So 1 B �9 Irk(B)+l(B) -- Irk(B)(B) and D,~,(B)(B) is a 

non-trivial finite algebra isomorphic to p(n) (n > 0 integer). Let I(B) and D(B) 
denote Irk(B)(B) and B/I(B) respectively. If n = 1, then I(B) is a maximal 

ideal of B. 

Let a be a countable ordinal and p > 0 be an integer. If B ~ and B" are 

countable Boolean algebras such that rk(B t) = rk(B") = ot and D(B'), D(B") 

and p(p) are isomorphic, then B' and B" are isomorphic algebras (see [121: w 

Hence we denote by ~3~,p a representative Boolean algebra of this class. 

DV.FINITION 1.6: (a) Let X be a topological space. X is a CO space if every 

dosed subspaee of X is homeomorphie to a dopen subspace of X. X is an HCO 

space if every dosed subspace of X is a CO space. 
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(b) A Boolean algebra B is a CO algebra (HCO algebra) if the Boolean 

space Ult(B) of B is a CO space (HCO space). 

(c) B is a thin-tall Boolean algebra, if B is uncountable and for every a < 

rk(B), IAtCD~CB)) I = ~o. 

PROPOSITION 1.7: 

(a) Let B be a Boolean algebra. 

(1) B is a CO Boolean algebra, i f  and only i f  every quotient is isomophic 

to a factor, i.e. for every ideal I orB, there is an algebra A such that 

B is isomorphic to ( B / I )  x A. 

(2) B is an H CO algebra i f  and only i f  every ideal d of B, B / J  is a CO 

algebra. 

(b) 
(1) Every homomorphic /maKe of a HCO alKebra is a HCO alKebra. 

(2) Every finite product of CO algebras is a CO algebra. 

(3) Let B be a finite product of Boolean algebras (B~)~<,. B is a HCO 

algebra if and only if each Bi is a HCO algebra. 

(c) Let B be a countable sup ato c algebra. Let = rk(B) < and 

p = IDa(B)I. Then B is isomorphic to B~, r and to the ordinal algebra 

B(w p " p). 

(d) Every ordinal algebra is a HCO algebra. In particular every Bnlte Boolean 

algebra is a HCO algebra and every countable supexaton~c interval algebra 

is a HCO algebra. 

(e) FC(X) is a CO algebra i f  and only i f  X is countable. 

(f) I f  B is an infirffte Boolean CO algebra, then B has infinitely many atoms. 

(g) Every atomic CO algebra is superatomic. 

(h) Every HCO algebra is superatomic. 

Proof: (a), (e) and (g) are obvious. 

(bl) is a trivial consequence of the definition of a HCO algebra. 

(b2) is a consequence of the fact that every ideal of B1 • B2 has the form I1 x I2 

where It is an ideal of Bt for l = 0,1. 

(b3) First suppose that for every i < n, B~ is HC0. Using (bl) and the ar- 

guments of (b2), B is HC0. Conversely, if B is HC0, then B~ is HCO (i < , )  

follows from (bl) and the fact that Bi is a homomorphic image of B. 

(c): see [12] (section 17.2). 



294 R. BONNET AND S. SHELAH Isr. J. Math. 

(d) Let B = B(C) be an interval algebra generated by a well-ordered chain. 

Let I be an ideal of B. Then B / I  is generated by C/I  (= {c/I: c 6 C}) and C/ I  

is a well-ordered chain too. So it sufficies to show that B is a CO algebra. Let 

J be an ideal of B. Then C/J  is a well-ordered chain and c ~ c/J  is increasing. 

Therefore C/J  is order-isomorphic to a (unique) initial interval L of C (we recall 

that  S C.C_ C is an initial interval of C if c < s 6 S, implies c 6 S). From the facts 

that: 

(i) B / J  is isomorphic to the interval algebra B(C/J).  

(ii) B(C/J)  is isomorphic to B(L). 

(iii) B(L) is isomorphic to a factor of B(C): this follows from the fact that the 

result is trivial if L = C. If C - L # 0, then C - L has a first dement,  and 

thus B(C) is isomorphic to B(L) x B(C - L) (see [n],  Theorem 15.11; or 

Lemma 2.3 below). 

it follows that  B / J  is isomorphic to a factor of B. Now, the other parts of (d) 

are clear (by (c)). 

(f) For every integer n > 1, let J be an ideal of B such that B / J  is finite with 

n atoms; B is isomorphic to ( B / J )  x A for some Boolean algebra A, and thus B 

has at least rt atoms. 

(h) Let A be a quotient algebra of B, and 0 # a 6 A. Because A I a can be 

regarded as a quotient of B, A I a is a CO algebra, A I a contains an atom and 

thus A is atomic. II 

Bekkali, Bonnet and Rubin ([4] and [5]) have shown that if B is a CO interval 

algebra, then B is superatomic, and if B is an interval HCO algebra, then B is 

isomorphic to B(a)  for some ordinal a.  Note also that S. Mazurkiewicz and W. 

$ierpinski [14] have shown that countable Boolean algebras are HCO if and only 

if they are countable ordinal algebras. We will show: 

THEOREM 1.8: 

(a) Let B be an HCO algebra (and hence by Proposition 1.7(g), superatomic). 

If the rank of B is countable, then B is isomorphic to a countable ordinal 

algebra. 

(b) Let B be a subalgebra of an interval algebra. I f B  is an H C 0  algebra, then 

B is isomorphic to an ordinal algebra. 

So, we prove that  a HCO algebra which satisfies some additional conditions 

must be isomorphic to an ordinal algebra. In Theorem 1.9, we will see that  
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it is consistent that there are HCO algebras which are not isomorphic to or- 

dinal algebras. Indeed the counterexample that we construct is thin-tall. The 

counterexample of Theorem 1.9 is also retractive. So we obtain a superatomic 

retractive Boolean algebra with no uncountable subalgebra embeddable in an 

interval algebra. The fact that a thin-tall algebra does not contain an uncount- 

able subalgebra embeddable in an interval algebra, is an easy consequence of the 

following result due to Rubin and Shelah which appear in Avraham and Bonnet 

([11): 
If  B is an infinite superatomic algebra, embeddable in an interval algebra, then 

IBI = IAt(B)I. 

THEOaEM 1.9: Assume ~ .  There is a Boolean algebra B such that: 

(A1) B a thin-tedl a/gebra, rk(B) = wl arid Do, t(B) = {0,1}. 

(A2) B is a HCO algebra. 

(A3) B is refractive, and for every uncountable ideal I of B, B / I  is countable. 

(A4) Every countable homomorphic image orB is isomorphic to a/'actor, and is 

isomophic to JBa,p for some integer p > 0 and some countable ordinal a. 

(A5) Every uncountable homomorphic image orB is isomorphic to B. 

J. Roitman ([19]) has constructed, under CH, a Boolean algebra satisfying the 

properties (A1), (A2), (A4) and (A5) of Theorem 1.9. (Note that (A4) and (A5) 

imply (A2): see the proof of Lemma 3.9.) 

Comment: Let B be a Boolean algebra satisfying properties (A1)-(A5) above. 

Then every quotient of B has only countably many atoms. Recall that the 

spread of B is countable if every quotient of B has only eountably many atoms, 

or equivalently, the Boolean space of B has no uncountable discrete subset. We 

claim that the spread of B is countable. For a contradiction, suppose that the 

spread of B is uncountable. This means that there is an ideal J of B such 

that B / J  has uncountably many atoms. From (AS) and (A1), it follows that 

At(B) and thus At (B /J )  is countable. Contradiction. In fact, the Boolean 

space Ult(B) of B is an Ostaszewski's space: in particular it is an uncountable 

scattered compact space such that every open set is countable or co-countable 

and every dosed subset is the closure of a countable set (see Ostaszewsld [16], 

[17], and Rudin [21]: pp. 35--36). Theorem 1.9(A5) is related to the existence 

of a Toronto space (see [22]: a Toronto space is an uncountable Hausdofff space 

which is homeomorphic to each of its uncountable subspace). 



296 R. BONNET AND S. SHELAH Isr. J. Math. 

G. Gruenhage has point out that it is an easy consequence of a work of Balogh, 

DoT, l~rernlin and Nyikos [2] that, under PFA, every HCO algebra of cardinality 

R1 is isomorphic to B(Wl). The following problems are open. 

QUESTION 1.10: (a) /n ZFC, is it consistent that every HCO algebra of card/- 

nality > R2 is an ordinal algebra? 

(b) Is a CO algebra superatomic? | 

To complete this introduction, let us state some recent results related to this 

subject: 

The first is due to M. Tees �9  ([23]): 

PROPOSITION 1.11: 

(a) Let B be a Boolean algebra of cardinality R1 such that every uncountable 

homomorphie image is isomorphic to B. Then B is superatomic. 

(b) Let B be Boolean algebra of cardinality RI such that every tmcountable 

subalgebra is isomorphic to B. Then B is superatomie. Moreover ff 2 to* < 

2 ~r and B is not isomorphic to FC(wl), then B is thin-tall. 

The second result, due to R. Bonnet and M. Rubin ([7]), concerns Boolean 

algebras B for which each uncountable subalgebra is isomorphic to B: 

THEOREM 1.12: Assume ~lct. Then there is a thin-tall Boolean algebra B such 

that every uncountable subalgebra is isomorphic to B. 

2. P r o o f  of  T h e o r e m  1.8 

Let us begin to introduce a definition and a result which are needed in the proof 

of Theorems 1.8 and 1.9. 

DEFINITION 2.1: (a) Let B be a superatomic Boolean algebra, and b E B, 

b ~ 0. Let 7 be the first ordinal a such that b E I~(B). Clearly, 7 is a successor 

ordinal, say ~ + 1, and we set rkB(b) =/3; so b �9 Zrkm(b)+l(B ) -- ~/'rkV(b)(B). For 

instance rkB(b) = 0 for b �9 At(B), and rkB(1) = rk(B). 

(b) Let J be an ideal of a Boolean algebra B. We denote by Jr the ideal of 

those b �9 B such that b. a = 0 for every a �9 J. 

(c) (1) Let C1 and C2 be two chains with first elements. We denote by C1 + C2 

the chain, lexicographic sum of C1 and C2 (by definition, z < y in C1 + C2 if z, y 

are in the same Ci and z < y in Ci or, z �9 C1 and y �9 C2). 
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(2) Let (Ga)a<p be a family of chains indexed by an ordinal p. Then the 

lexicographie sum C of (Ca),,<p, defined similarly to (el), is a chain. We suppose 
that each Ca has a first element. Then the interval algebra B(Ca) is canonically 

isomorphic to a factor of B(C). 

LEMMA 2.2: 

(a) Let B be a Boolean algebra and b E B, b # O. Then for every ordinal a: 

(X) ZaCB F b) = X~CB) n (B r b). 

(2) Da(B)  ---} (Da(B r b)) x (Da(B [ -b))  defined by 

alXa(B) ,-, ( . .  blXo, CB r b ) , . . -b lXo(B r -b)) 
(for a E B)  is an isomorphism onto. 

(3) I f B  is superatomic, then rkS(b) = rk(B [ b) = rk(clB(B [ b)). 

(b) Let A and B be superatomie Boolean algebras, and f be a homomorphism 

from B onto A. Then for every ordinal a: 

(1) f[Ia(B)] C I~(A). 

(2) f induces a homomorphism fa from Da(B) onto Da(A) det3ned by 

f a ( b / I ~ ( B ) ) = f ( b ) / I a ( A )  (forb e B). 

(3) rk(A) _~ rk(B). 

(4) Let A be a subalgebra of B, and a, b E B such that a ~_ b. Then 

rk(a r a) < rk(a r b) _< rk(A) = rkA(1). 
(c) Let A and B be superatomic Boolean algebras, and f be a one-to-one 

homomorphism from A into B. Then for every ordinal a: 

(~) /-~[xo(B)] c_ ~ (A) .  
(2) rk(A) _< rk(B). 

(d) For e~e~  ide-~ S of an ~gebra B, @ ( S  U S o) is a dense ~de~ orB. 
(e) Let B be an atomic Boolean Mgebra, Y an ideal orB and Ir be the canonical 

homomorphism from B onto B /  J c. 

(1) If  J is principal, say generated by a, then B / J  is isomorphic to B [ -a ,  

B / J  ~ is isomorphic to B [ a, and both are atomic. 

(2) If  J is non-principM, then: 

�9 elB(J) and B / J  c are atomic, 

�9 At(clB(J)) = At(B) N J, 

�9 lr [ At(ela(S)) is a one-to-one function from At(cls(J)) onto the 

set At(B/yC), 
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�9 ~r r clB(J) is an isomorphism into B / J  c, and 
�9 c lB (J )  n Jo = {o} .  

Proof: (a) Simultaneously, we will prove by induction: (al)  and (a2) and 

(,),~: {a E B r b: a/Io,(B r b) E At(D, (B  r b))} = 

{a e B r b: a/Ia(B)  e At(D,~(B))} 

We prove the three conditions simultaneously by induction on a; except that 

(*)a and (a2)a are consequences of (al)a.  We prove the last fact first. For 

(a2)a, define for any a E B, h(a) = (a.  b/I,,,(B I b),a . -b/I, , ,(B r -b)). 
Thus h is a homomorphism from B onto D,,,(B r b) x D,,,(B r -b),  with kernel 

{a �9 B: a.  b �9 Io,(B r b) and a.  - b  �9 I,,,(B r -b)}, which is by (al)a {a �9 

B: a.  b �9 I,,,(B) and a. - b  E I~(B)} = Io,(B). The existence of the indicated 

isomorphism is hence clear. For (*)~, suppose that c �9 B I b is such that 

c/I,:,(B r b) �9 At((B r b)/I,,,(B r b)), and hence by (a2)~, c/I,,,(B) �9 At(D,(B)) ,  

as desired; the other inclusion in (*)~, is proved similarly. 

Now, we turn to the inductive step. The case a = 0 is obvious. Suppose 

the conditions for a. Suppose that c �9 I,,,+I(B r b). There is a finite subset 

{di: i < n} of B r b such that di/Ic,(B r b) �9 At(D,,(B r b)) (i < n) and 

c/Z,,,(B r b) = E ( d , / I , , , ( B  [ b): i < n } .  I t  follows that cA(E{di: i < n} )  �9 

Io,(B r b) c I,,,(B) by (al),~. By (*),~, di/Ia(B) �9 At(D,(B)) ,  for i < n, and 

thus c �9 I,,,+I(B) N (B r b). Conversely, suppose that c �9 I,,,+I(B) 0 (B r b). 
Then we write c/I,,,(B) = ~,{di/Io,(B): i < n} with di/Io,(B) �9 At(D,(B)) .  

Now, c <_ b, so d i / Io (B)  <_ <_ b/X.(B).  Hence we may assume that 

di _< b for i < n, and the argument goes as above (but backwards). The limit 

step of the induction is obvious. 

(a3) follows directly from (al), the definitions of rkB(b) and of rk(B [ b), and 

from the fact that clB(B r b) = (B r b ) u - ( B  I b) is isomorphic to (B r b) • {0,1} 

if b # 0 , 1 .  

(bl)  is proved by induction. The cases a = 0 and a limit are trivial. Now, 

suppose that f[I,~(B)] C_ I,~(A) and f induces an homomorphism fo from D~,(B) 

onto D,~(A) defined by f,~(b/I,~(B)) = f(b)/I~,(A) (for b �9 B). Let a �9 f[I,,+l(B) 

- I,~(B)]. So a = ~ i< , ,  .f(bi), where the bi/I,~(B)'s are atoms of D,,(B). It 

(ai, ai) be suffices to show that f(bi) �9 I~,+I(A) for all i < n. Let i < n. Let 0 

a partition of f(bi). Hence there are b, t. �9 B such that f(bti) = ati for ~ = 0,1. 

There is no loss in assuming that (b,9, b]) is a partition of bi. Because bi/I~,(B) is 
t '  an atom, bti/I~,(B) = 0 for some ~, say t ' .  Hence, a i / I o ( A )  = 0 by the induction 
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hypothesis. So a E la+1(A). 

(b2) follows from (bl). (b3) follows from (bl) and (b2). For (b4), we recall 

that A r a is a homomorphic image of A. 

(cl) is proved by induction on a.  The cases a = 0 and a limit are trivial. 

Now, for a contradiction, suppose that a e f-l[Ia+l(B)] - Is+x(A). Write 

a = ~ i < ,  hi, where the a ' s  are pairwise disjoint elements of A and f(ai)/Ia(B) E 

At(Oh(B)). Because a • Ia+a(A), there exists disjoint elements c0 , . . .cn  e A 

such that  a = •i<,, c, and c i / Is(A ) • 0 in Da(A) for all j _< n. Now f(ai) = 

~ j < ,  f (ai) ,  f (c j ) ,  so there is an ~(i) _< n such that f ( a i ) - f (%(O)  r Is(B) and 

f(ai) ,  f(cj) e I~(B) for all j r ~(i). Choose ~ E (n + 1) - rng(~). Then: 

f(ct) = E ,< .  f (c t ) . / (a , )  e xo(B). 
Hence ct E Is(A) by the induction hypothesis, contradiction. 

(c2) is consequence of (cl). 

(d) is trivial. 

(e) The facts about principal ideals are trivial. So, assume that  J is non- 

principal. Clearly, At(clB(J)) _~ At(B) N J.  Suppose that a E At(clB(J)). If 

- a  E J ,  choose x E J with - a  < x; then 0 < - x  < a, contradiction. So a E J ,  

and it is an atom of B. This proves that At(clB(J)) = At(B) N Y. To show that 

clB(J) is atomic, suppose that 0 r b E clB(J). If b E J ,  it is easy to get an atom 

contained in b. Suppose that - b  E J.  Choose - b  < y E J ,  and let x be an atom 

contained in y .  b ; clearly x is as desired. 

It is clear that ~" I At(clB(J)), is one-to-one; and it is easily checked that it 

maps into At(B/JC). Now, suppose that b/J ~ is an atom of B/J% Thus b r jc,  

so there is an x E J such that b. x ~ 0. Let a be an atom of B such that  a _< b.x. 

Then clearly a/J  c = b/J c. This shows that r I At(clB(J)) maps onto At(B/Jr  

The other statements of the claim are now clear. | 

Now, we are ready to prove Part (a) of 1.8. 

2.1 PROOF OF THEOREM 1.8(a). It suffices to prove, by induction on the rank 

of B, that B is countable (see for example Henkin, Monk and Tarski [10].) First, 

if rk(B) = 0, i.e. B is finite, then the result is trivial. Now, let ol < wl. We 

suppose that  every HCO algebra A of rank < a is countable. Let B be a HCO 

algebra of rank a. By Proposition 1.7(b3) there is no loss in assuming that  

Da(B)  = {0,1}. For a contradiction, assume that B is uncountable. 

We claim that  B has uncountabIy many atoms. Because B is uncountable, and 
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rk(B) < OJ1, there is a < rk(B) such that D,~(B) has uncountahly many atoms. 

Now our claim follows from the CO property. 

We say that a 6 B is a generalized atom of B if there is/~ such that a/I~(B) E 

At(D~ (B)). We will construct a sequence (an), <~ of pairwise disjoint generalized 

atoms of B such that sup{rkS(a,)+l: n < w} = a. First suppose that a --/~+I. 

From Da(B) = {0, I}, it follows that the algebra D/~(B) is isomorphic to FC(X) 

for some infinite set X. Hence, by induction, we can choose a set {a,: n < w} C_ B 

of pairwise disjoint generalized atoms of D/~(B). Suppose a is limit. By induction, 

we construct a set {a,: n < w} of pairwise disjoint dements of B such that 

sup{rkB(a,) + I: n < ~} = a and each a, is a generalized atom of D,kS(~.)(B ). 

The set {a,: n < oJ} is as required. 

Let J = cI~(U{B f a,: n < 0J}). Obviously J is a non-principal ideal of 

B. Clearly cls(J) has rank ~. By Lemma 2.2(e2), (c) and (h), rk(cls(J)) < 

rk(B/J o) < rk(B) = ~, and hence rk(B/J o) = ~. Because B r an is of rank 

rkS(an) < a, it is countable; hence so is cIs(J), and so by Lemma 2.2(e2) 

again, B/J r has only countably many atoms. Now B/J r is isomorphic to a 

factor of B; say that B is isomorphic to (B/J r) x C. Since B/J r has rank a 

and Do(B) = {0, I} it follows that C has rank < a and hence C is countable. 

Now, because B/J r and C have only countably many atoms, the same holds for 

(B/J r) x C, and thus for B, contradiction. | 

2.2 PROOF OF THEOREM 1.8(b). Let us begin by a simple fact on interval 

Boolean algebra: 

LEMMA 2.3: 

(a) Let C1 and C2 be two chains with Fn'st elements. Then B(C1 + C2) is 

canonically isomorphic to B( C1) x B( C2 ). 

(b) Let C be a chain with a first element and B be a Boolean algebra. Assume 

that B is isomophic to B( C). Then there is a chain C' C_ B such that C 

and C' are order-isomorphic, and B = cl~(C'). 

(c) Let C be a subchain of a Boolean a/gebra B. We suppose that 0 s E C 

(and so 0 B = 0c). Then B(C) and clB(C) are isomorphic. 

Proof" (a) More precisely, let us recall the following fact concerning chains 

and Boolean algebras (see [12]: Proposition 15.11). Let C1 and C2 be chains 

with first element 0 c~ and 0 c '  respectively. Let C = Ci + C2 be the chain, 

lexicographic sum of C1 and C2 (so Cl < c2 for cl E C1 and c2 E C2). Note that 
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C has a first element, namely 0 cl . A canonical isomorphism / from B(C) onto 

B(C1) • B(C2) is obtained by letting: f(c) = (c N ChcN C2). Let us remark 

that we identified co cl with 0cL B(C1), B(C2) are factors of B(C); and by 

identification, B(C) ~ C1 = B(C1) and B(C) r C~ = B(C2). 

(b) and (c) are obvious. | 

Let B be an infinite Boolean algebra of rank a. We suppose that B is embed- 

dable in an interval algebra, and B is a HCO algebra. By Proposition 1.7(b3), 

we can suppose that D~(B) = {0, 1} and, from Theorem 1.8(a), a > wl. We will 

reduce the proof of Theorem 1.8(b) to: 

LEMMA 2.4: Let B be a superatomic subalgebra of an interval algebra. We 

suppose that B is an HCO algebra. We set a = rk(B) and we suppose Da(B) = 

{0,1}. 
Then there are a chain C in B and an ideal I of B such that 

(1) C is order-isomorphic to w ~, 

(2) B / I  is isomorphle to B(w~ 

(3) clB(C) is isomorphic to B(C), and 

(4) riB(C) is a retract ot B/I .  

Assuming Lemma 2.4 for a moment, let us see why this finishes the proof 

of Theorem 1.8(b). First note that, by an easy induction, rk(B(wa)) - a and 

Da(B(wa)) = {0,1}. Now, from Lemma 2.4, there is a subchain C of B and an 

ideal d of B such that: C is order-isomorphic to wa; the interval algebra B(C) 

is isomorphic to the subalgebra cIB(C) of B; and the interval algebra B(C) is 

isomorphic to B/J .  Now, B is isomorphic to (B/J)  x A for some algebra A. 

From the facts that rk(B/J) = rk(B) = a, and the fact that Da(B) = {0,1}, 

it follows that rk(A) < a. Because A is an homomorphic image of B, A is a 

HCO algebra of rank< a. By the induction hypothesis, A is isomorphic to B(C s) 

where C ~ is a well-founded chain. Hence, by Lemma 2.3(a), B is generated by a 

well-ordered chain, namely C I + C. l 

So it suffices to prove Lemma 2.4. Before continuing, let us give an exam- 

ple of Boolean algebra, of rank Wl, embeddable in an interval algebra, with no 

uncountable chain (so, by Lemma 2.4, such an algebra is not a HCO algebra). 

Consider B(wl). Let (aa)~<~l be the strictly increasing sequence in Wl defined 

by a0 = 0; (aa,aa+l)  is order-isomorphic to a + 1, for successor ordinal a; and 

ax = sup{aa: a < A} for limit ordhaals A < wl. Let B be the subalgebra of 
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B(toz) consisting of b E B(tol) such that b or - b  is disjoint from {a,,: a < toz}, 

i.e. either b or - b  is contained in a finite union of (a,~,aa+z). Then rk(B) = toz 

and every subchain in B is countable. 

We begin by two facts concerning interval Boolean algebras. 

LEMMA 2.5: Let D be a well-ordered subchain of a Boolean Mgebra B. We 

denote by {co: /9 < p} the canonica/increasing enumeration of the dements  of  

D O {0}, and let d def cl~(U{ B r (c0+1 - co): 0 < p}). We suppose that: 

(1) cl~(D) is a non-principal ideal orB.  

(2) For 0 < p, B r (CO+l - co) is isomorphic to an intervM a/gebra, denoted by 

B(Co). 
Then clB(D U J)  is isomorphic to the interval a/gebra B(C)  where C is the 

lezJcographic sum o[ (Co)o<p. 

Proof" For each 8 < p, let Bo de=f B [ (co+1 - cO). By Lemma 2.3(b), we can 

suppose that  Co C Bo C_ B. Let C be the lexicographlc sum of (Co)o<p. We 

set C.~ = {c0+b:  b 6 Co} for 8 < p a n d _ C  = U{C_.~: 8 < p}. T h e n C a n d  

C.C. are trivially order-isomorphic. Hence we consider C as a subchain of B. We 

claim that clB(D U J)  and B(C)  are isomorphic. To see this, let us remark 

that,  if we denote by r0 the first element of Co C C, then Co = [r0,r0+z). Let 

D* = {r0:8 < p} and r be the isomorphism from B(D*)  onto clB(D) defined 

by %b*(r0) = co. Hence r = co+x - c $ .  Let r be an isomorphism 

from B(Co) onto Bo. Now, let u < v in C. Let p < v < p be such that  u 6 C~, 

and v 6 C,,. Then 

r ~ r v) n c,,) u (~  - ~,,+,) u r n c'~) 

extends r U Ue<. r and is extendable in an isomorphism from B(C7) onto 

clB(D O J). g 

Because FC(to) and B(to) are isomorphic algebras, the proof above, can be 

applied to show: 

LEMMA 2.6: Let {b,: n E to} be a set of pairwise disjoint non-zero dement  of a 

Boolean algebra B. We suppose that B [ b, is isomorphic to an interval edgebra, 

denoted by B ( C , ) ,  for n 6 to. We set 

J = cl~(U{B r b.:. ~ ~}) 
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Then clB(J) is isomorphic to the interval algebra B(C) where C is the lerdco- 

graphic sum of ( C, ),<~,. 

Let us introduce some notions and results concerning Boolean algebras and 

partial ordered sets. 

DEFINITION 2.7: Let B be a superatomic Boolean algebra. 

Let a _< rk(B). We set A"ta(B) deal {a E B: a/Ia(B) E At(Da(B))}, and 

A"t(B) deal [J~<rk(B)A"t~(B). An element a of A"t(B) is called a g e n e r a l i z e d  

a t o m  of B.  

We say that H is a c o m p l e t e  s e t  o f  g e n e r a l i z e d  a toms  of B, whenever 

H = U{Ha: a _< rk(B)}, where for every a _< rk(B), Ha C Ate(B) and for every 

g E At(B), there is a unique h E H such that rkB(gAh) < rkB(h) = rkB(g). 

That means that for every a _< rk(B), a ~ a/I~(B) is a one-to-one function 

from Ha onto At(D,~(B)). Note that 0 r  Obviously, if H is a complete set of 

generalized atoms of B and a < rk(B), then Ha denotes {h E H: rkB(h) = a}. 

The following result seems to be well-known (see for example Bekkali [3]). 

LEMMA 2.8: Let B be a superatornic Boolean algebra. 

(a) Let H = Ua<rk(B) Ha be a complete set of generalized atoms orB. Then 

/'or every ordinal a, 

I~(B) = cl~(U#<~ Ha) _ clB(U#<,~ H#) = I~(B) U - I~(B) .  

(b) In particular B = clB(H). 

Proof: (a) First let us remark that if Ua<a Ha _C h ( B )  _. clB(Ua<o Ha), then 

clB(tJa<a Ha) = I~(B) U - h ( B ) .  So it suffices to prove, by induction on a, that 

X~(B) = c l ~ ( U a < a  Ha)  c eYB(Ua<a Ha) .  For ~ = 0, we have X0(B) = {0}  = 

c1~($)  C_ clB(0) = {0, 1}. For ~ limit, we have 

za(B) = Ua<o za(B) = Ua<a (cl (U-t<a = cl (Ua<o 
and Ua<a In(B) C_ Ua<~ clB(U.r<a/-/7) = clB(Ua<a Ha). Let us consider the 
successor case. Now, let a e I a + l ( B )  - h ( B ) .  Because a / Z a ( n )  is a f ~ t e  s , m  

of atoms of Da(B), there is a finite subset F of Ha such that ~ de__.i y~.{h: h e F} 

verifies a/Xa(B) = a / h ( B ) ,  and thus aA?~ E In(B). Hence there are unique 

u,v 6 In(B) such that a = ( ~ + v ) - u ,  u_< ~ a n d v . a =  0. By induction 

hypothesis, u, v e cl~(U#< a Ha) (contained in clB(Ua<a Ha)), and thus ~ + v 6 

cl~(Ua<a Ha) (and h + v e clv(Ua<aHa)).  Hence a e cl~(U#< a Ha) and 

a e clv([.Ja< a Ha). Now, suppose that a e cl~(Ua<a Ha). Then a < ~ i < n  ai+v 

with v �9 cl~(~a<a Ha) and ai �9 Ha (i < n). By induction hypothesis, v �9 



304 R. BONNET AND S. SHELAH Isr. J. Math. 

Ia(B), and thus a/Ia(B) <_ ~i<. ai/Ia(B). Therefore a/Ia(B) is a finite sum 

of atoms of D~(B) and so a e X~+~(B). Hence ~o+~(B) = d~(U~<_~ H#). 

(h) is a direct consequence of (a). m 

Let us introduce some characterization of superatomic subalgehra of an interval 

algebra: 

THEOREM 2.9: Let B be a Boolean algebra. The fo//owing conditions are 

equivalent: 

(i) B has a complete set G of generalized atoms such that every pair  of  wh/ch 

are either comparable or disjoint. 

(ii) B is erabeddable in an ordinal algebra. 

(iii) B is embeddable in an interval algebra B(C) generated by a well founded 

chain C such that At(B) = At(B(C)).  

(iv) B is a superatomic Boolean algebra, embeddable in an interval algebra. 

Proof: For (i)r see Bonnet, Rubin and Si-Kaddour [8], and for (ii)r162 

(iv), see Avraharn and Bonnet [1] (for a self-contained proof of 2.9, see also 

Bonnet [6]). | 

DEFINITION 2.10: 

We say that: 

(1) 
(2) 
(3) 

(a) Let (P, <) be a partial ordering, and X a subset of P .  

X is coflnal  in P if for every p 6 P ,  there is q 6 X such that q > p. 

X is an ini t ial  in te rva l  of P if p _< q and q 6 X implies p 6 X,  and 

X is an ideal  of P if X is an initial interval of P such that for every 

p, q s X,  there is r 6 X such that r >_ p, q. 

(4) Let p,q 6 X. q is a s u c c e s s o r o f p i n X  i f p  < q and (p,q) A D  = ~. 

We also say that p and q are consecu t ive .  Moreover, if p has a unique 

successor, it is denoted by P+x or more simply Iv +. 

(b) Let B and G he as in Theorem 2.90) (so, by 2.9(iv) B is superato~c). 
We suppose 0 ~t 1. Whenever Drk(B)(B) = {0, 1}, let: 

G -  d,j {g E G: rkV(g) < rkS(1)}, and 

Maxid(G-)  be the set of maximal ideals of the partial ordering (G- ,  <_S I G- ) .  

LEMMA 2.11: 

(a) Let B and G be as in Theorem 2.9(i) (so B is superatomlc and, by Lemma 

2.8, clB(G) = S). We consider (G, < t G) as a partial ordering. We fecal/ 
that B # {0, i}. 
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(I) G is a well-founded set, containing At(B). Moreover At(B) is the 

set of minima/elements of G. 

(2) G verifies: "For every dement g of G, the set {g' E G: g' > g} is 

totally ordered." 

In partictdar: 

(3) / s  is a subchain of G, and if  d E D is not a max ima/dement  olD,  

then d has a unique successor d+o in D. 

(b) Let B and G be as in Theorem 2.9(i). We suppose that 

Drk(B)(B) ---- {0, I}. 

Then: 

(1) cl (G-) is a ide  orB, and thus B = c l s (G-) .  

(2) Let a be an atom of B. Because (a2) and At(B) _C G - ,  there is a 

unique maxima/chain of G - ,  containing a, denoted by Ca, and the 

initia/ interval I ,  of G-  generated by Ca is an element of Maxid(G-) .  

(3) Conversely, let K be an dement of Maxid(G-) .  Let a G K N At(B), 

and C~ be the maxima/chain of G -  containing a. Then C~ C K and 

thus I,  = K.  

(4) Let K ~ Maxid(G-)  and Ca as in (b2). Then C, is cofina/ ha K and 

f ig '  < g" in C,, then rkS(g ') < rkB(g"). 

(5) Let go,91 E G- .  For i = 0,1, there is Ki E Maxid(G-)  such that 

gi E Ki. /s ~ 0, then Ko = K1. ha particular for every g G G- ,  

there is a unique K 6 Maxid(G-)  such that g E K.  

(6) The elements of Maxid(G-) are pairwise disjoint. 

Proof: (a) is obvious. 

(b) Let B and G be as in Theorem 2.9(i). (b l )  follows from Theorem 2.90). 

(b2)-(b4) are trivial. For (b5), if a G At(B) C_C_ G -  is such that a < go "al, then 

a G K0 fl K1 and thus g0 and gl are comparable. Assume go < gl. Then go E Ks, 

and so K0 = K~. (b6) is a direct consequence of (b5). | 

We recall (see Definition 2.1) that for an ideal J of a Boolean algebra B, we 

denote by j e  the ideal of those b E B such that b. a = 0 for every a G J .  

LEMMA 2.12: Let B be a superatomic suba/gebra of an interva/ algebra such 

that D,k(B)(B) = {0, 1}, and G be a complete set of genera/ized atoms verifying 
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the properties of Theorem 2.9(i). Let J be a non-principal ideal orB.  We suppose 

that: 

(1) For every K 6 Maxid(G-),  i f  the set K N J is non-empty, then either 

K C_ J, or K N J has a greatest dement  denoted by bK. 

(2) J = c l~(U{K 6 Maxid(G-):  K C_ J} U {bg: K ~= J and K N J # 0}). 

Then B /  J c has a retract, namely clB(J). 

Proof." First G -  C_ clB(J U JC). Let g E G- .  If g 6 J U je ,  there is nothing 

to prove. Suppose that  g r J U jc.  Let K be the unique element of Maxid(G-)  

such that  g 6 K.  Because g ~ je ,  let a 6 J be such that g �9 a # 0. Note that  

g .  a 6 J.  Let a 6 At(B) be such that a < g . a .  So a 6  J.  Because At(B) C G -  

and a < g; a 6 K.  Hence g . a  = a E K N J.  So, K N J is non-empty and thus 

has a greatest element bg. Because 0 ~ g �9 a <_ g, g �9 a <_ bK and g, bg C G-;  

g and bK are comparable; and because bg 6 J and g ~[ J: bg < g. Let us show 

that g - bK 6 je .  For a contradiction, suppose g - bg ~ je.  Let d 6 J be such 

that d.  (g - bK) # O. Since J is an ideal, we can suppose that d 6 J N At(B), 

and thus d _< g - bh-. Because At(B) C_ G- ,  d _< g 6 K and K 6 Maxid(G-):  

d E J N K (q At(B). A contradiction follows from the facts that: d 6 J N K,  

d.  bg = 0 and the fact that bg is the gratest element of J N K. Now, because 

g" bK 6 J and g - bK 6 je ,  we have g = g .  bK + (g -- bK) 6 clB(J U J~). 

Now, B = clB(clB(J) U jc)  follows from the fact that G -  C_ clB(J U jc)  and 

Lemma 2.11(bl). 

The fact that clB(J) N JC = {0} follows from Lemma 2.2(e2) and the fact that  

J is non-principal. Now the lemma is a consequence of Proposition 1.2. I 

DEFINITION 2.13: Let K 6 Maxid(G-).  We recall that J = c l~(K)  is an ideal 

of B, clB(J) = J u - J .  We set rkS(K) %f rk(clB(J)). 

Now we will prove Lemma 2.4, by induction on rk(B). 

2.2.1 Proof of Lemma 2.4: ~ %f rk(B) is a successor or cf(a) = w. 

CASE 1: There is K 6 Maxid(G-) such that rkB(K) = rk(B). We choose such 

a K.  We set J = c l ~ ( K ) .  

CLAIM h J is a non-priciped ideal and a is limit (and thus cf(a) = w). 

Proof." For every g 6 K,  we have rkB(g) < rkB(1) = rk(B). First J is non- 

principal. For a contradiction, suppose that  J is principal, generated by a member 
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of J ,  say g'. Clearly g~ E K. Because rkS(g ') < rk~(1), we have g~ ~ 0,1, and 

thus clB(J)  and (B [ g') x {0, 1} are isomorphic. Therefore, 

rkV(K) ~ t  rk (c l s ( J ) )  = rk((B r g~) x {0, 1~) = rk(B r g~) = rkB(g ') < r k ( B ) ,  

that is contradictory with rkB(K) = rk(B). Hence J is non-principal. Clearly a 

is limit. | 

By Lemma 2.11(b3) and (b4), let (g , ) ,<~  be a cofinal and strictly increasing 

sequence of elements of K.  We set b0 = g0 and bn+l = gn+l -- g ,  for 0 _< n < w. 

We have J = c l~(K)  = cl~((b. :  n < w}) and rk(B [ b.)  = rkB(b.)  < a for 

n < w. By the induction hypothesis, there are well-ordered chains C .  such that 

B I bn is isomorphic to B(Cn) for n < w. Let C be the lexicographic sum of 

(C , ) ,<~ .  From Lemma 2.3(c), we consider C as a subchain of B. We win show 

that the interval algebra B(C) is az required. Trivially, C is a well-ordered chain; 

B(C) is of rank a; by Lemma 2.3(r again, B(C) and clB(C) are isomorphic; and 

clB(C) = clB(J)  is a retract of B / J  c, follows from Lemma 2.12. | 

CASE 2: For every K 6 Maxid(G-) ,  we have rkV(K) < rk(B). We claim that: 

CLAIM 2: There are {b.: n 6 w} C_ G -  and {Kn: n 6 w} C Maxid(G-)  such 

that: f o r m # n ,  b, 6 K, ,  Km ~ K ,  (and thus bm " bn =0) ,  and for every 

fl < a, there are in~nitely many n < to such that fl < rkB(b,)  < a. 

Proof." First suppose that a = fl + 1. Since G is a complete set of generalized 

atoms, {glib(B): g E G-}  generates Dp(B), and because Da+I(B) = {0,1}, 

it follows that Da(B) is isomorphic to FC(X)  for some infinite set X.  Let 

{b.: n E to} C G -  be such that b./I#(B) E At(D#(B)).  For n < w, let 

K .  6 Maxid(G-)  be such that bn 6 K. .  Then {b,,: n 6 w} C G -  and 

{Kn: n 6 w} are as required. Now, suppose a limit. Let (a . ) .< ,o  be a coil- 

hal and strictly increasing sequence in a. Let Ko 6 Maxid(G-)  and bo 6 Ko. 

Suppose that {bi: i < n} and {Ki: i < n} satisfy the conditions above. We 

set r = rkn(Ki)- Let 8 = max{a . , f lo , . . . , / 3 . -1} .  Let b.+l 6 G -  be such 

that bn+l/I6+2(B) 6 At(Ds+2(B)) and let Kn+I 6 Maxid(G-)  be such that 

bn+l 6 K.+I .  We claim that 

(') bn+l 6 Kn+l - Ki for all i < n + 1 

holds. First rkn(b,+~) = 5 + 2 .  Let i < n be given. Let Ji = el~(Ki) .  Note that 

~i = rkn(Ki)  = rk(clB(Ji)) < 6 + 1. Hence b.+l f[ Ki. So (*) is proved. 
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Therefore K .+I  ~ Ki for i < n + 1. Now the other parts of the dalm are clear. 
| 

Now, let J = cl~({bn: n e w}). By the induction hypothesis, there are well- 

ordered chains Cn such that B I bn is isomorphic to B(Cn) for n < w. Let C be 

the lexicographic sum of (Cn)n<w. Then, we conclude as in Case 1. | 

2.2.2 Proof of Lemma 2.4: a d___ef rk(B) satisfies cf(a) > w. Let C be a chain, 

and D be a well-ordered subset of C. Let {do: 0 < p} be the canonical increasing 

enumeration of elements of D. We say that D is closed in C if for every limit 

ordinal ~ < p, we have d~ = supc({X e C: z < d~,}). That means that C = 

U{[do,do+z): 0 < p}. 

LEMMA 2.14: Let B be a superatomic subalgebra of an interva/algebra such 

that D,k( B)( B ) = {0, 1}, G be a complete set of generalized atoms o r B  verifying 

the properties of  Theorem 2.9(i). Let C be a chain orB. We suppose that C and 

clB(C) satisfy: 

(1) C N G-  is contained in a unique K E Maxid(G-). We set D ~ f  C n K,  

that is a well-ordered chain; and we denote by {do: 0 < p} the canonicM 

increasing enumeration of elements of D U {0}. 

(2) The set D is a maxima/subchain of K,  with no greatest dement  (and thus 

cofina/in K) ,  and D is dosed in C. 

(3) For 0 < p, B r (do+l - do) = clB(C) r (do+l - do). 

Let 

j ~f  c l~(U{ B [ (do+, - do): 0 < p}).  

Then B / J  c has a retract, namely cls(C). 

Proof." Let us remark that D is closed in C means that clB(C) = clB(D U J)  

since if do <_ c < do+l, then c = do + (do+l - c), with do e D and do+l - c E J. 

Because D C C, for every c E C, there is a unique 0 < p such that do < c < do+l. 

Also, note that do = 0B, and by the hypotheses, do+l - do �9 clB(C) for 8 < p. 

Let Be de f B ~ (40+1 - do). 

First, we will prove that B = dB(clB(C) t.J jc). It suffices to show that G -  _C 

clB(clB(C) t9 jc) .  For a contradiction, let g �9 G-  be such that g • clB(clB(C) U 

JC). In particular g �9 G-  - C C_ (G- - K) U ( g  - C). 
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CASE 1: g ~ G -  - K.  Then, by Lemma 2.11(b6), for h E K,  we have g. h = 0. 

In particular g. d0 = 0 for 0 < p .  From the definition of J ,  it follows that  g ~ J~, 

that contradicts g ~ j r .  

CASE 2: g ~ K - C. By the hypothesis (2), let 7~ be the first ordinal ~ < p 

such that g _< d~. We claim that 

(e) For 0 < 7 ~ ,  g ' d o = O .  

For a contradiction, suppose that g .  de ~ 0 for some O < 7g. Then g < do, or 

g > do. The first case contradicts the definition of 7g. Now, suppose do < g _< 

dTa. From the fact that (h E G- :  h > do} is a chain contained in K ,  de E D 

and the fact that  D is a maximal chain of K,  it follows that  g E {h E G - :  h > 

d0} C D = K N C. That  contradicts g E K - C. So (e) holds. 

Assume that  7g is a successor, say 7~ = 6 + 1. In this case, because g.  d$ = 0, 

and g < d6+1; g E B I (d6+1 - d6) _C clB(C) _ clB(clB(C) U j r ) .  Contradiction. 

Suppose that  7~ is a limit ordinal. For every 0 < 79, we have g �9 d0+t = 0, 

and thus g-  (d0+l - d0) = 0; and for every 0 > 7g we have g < d0 and thus 

g .  (d0+l - d0) = 0 too. Hence g E j r ,  that  contradicts g g clB(clB(C) U j r ) .  

That  proves B = clB(clB(C) U j r ) .  

Now, we will prove that  clB(C) N j r  = {0}. Let b E clB(C) N j r .  We have b = 

:~'~{u2k+l -u2k:  k < n} where k < w; with ui, uj e CU{0,1} and 0 < ui < u i <_ 1 

in C U {0, 1} for i < j < 2n - 1. We will show that each u2k+l - u2k = 0. By 

contradiction, suppose that  u2k+l - u2k ~ 0, i.e. u2k < u2k+l. By the hypothesis 

(2) and the fact that D C C, there are p < y < p such that d~, < u2h < d~,+l 

and dv _< u2~+] < d~+]. Because b ~ j r ,  and thus u ~ + t  - u2~ E j r ,  we have 

p < v. Hence: 

u~+~ - ~,~ =((u~+~ - u~). (d~+~ - d~))  + (d~ - ,/~,+~) 

+ ( ( ~ + ~  - u ~ ) .  (d~+~ - d~)) 

and thus: 

d~ - d~,+l E j c ,  and 

(u2k+~ - u2k) .  (d ,+~  - d , )  ~ S~. 

From the definition of J and jc ,  it follows that: 

( ,2k+~ - , ~ k ) .  ( d , + z  - d , )  = 0 = ( ,2~+~ - - ~ k ) .  ( d . + l  - d . ) .  
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and thus u2k+z--u2k = d~-du+z.  This imples that d~+l = u2k (and u2~+z = dr), 

that contradicts u2k < d~+z. Hence b = 0. Now, the Lemma 2.14 is a consequence 

of Proposition 1.2. | 

LEMMA 2.15: The set Maxid(G-) is countable. 

Proof: By contradiction, suppose that Maxid(G-) is uncountable. Let 

(Ka)a<w~ be a family of palrwise disjoint members of Maxid(G-),  and a~ �9 

Ka NAt (B)  for a < wz. We set X = {aa: a < wz}, g = cl~(X) and 

A = c l s ( J )  = clB(X). Because J is a non-principal ideal of B and satisfies 

the hypotheses of Lemma 2.12, the subalgebra A is isomorphic to B [ J  r From 

the fact that  FC(X) is isomorphic to A, and the fact that  A is a quotient of the 

HCO algebra B, it follows that FC(X) is a CO algebra. By Proposition 1.7(e), X 

is countable, that  is contradictory. Consequently Maxid(G-)  is countable. | 

There is K �9 Maxid(G-)  such that  rkB(K) = a,  follows from cf(a) >_ wx and 

Lemma 2.15. Let D be a maximal chain in K,  and {do: 0 < p} be the canonical 

increasing enumeration of elements of D U {0}. Note that D has no greatest 

element. For each 0 < p, let Bo &f B r (d0+z - do), and eto de___t rk(B0). Let us 

remark that  

a0 = rk(B0) = rkS(d0+z - do) = rkS(d0+l) < rkS(1) = rk(B) = a . 

By induction hypothesis, B [ (d0+z - do) is isomorphic to some B(Co), where 

Co is order-isomorphicto w ~'. We set a = ~ ( a 0 : 8  < p}. Let C b e  the 

lexicographic sum of (Co)o<p over p. C is order-isomorphic to w ~, and by 

Lemma 2.3(c), we consider each Co and C as a subchain of B. We will show 

that  the interval algebra B(C) over C is as required. Trivially, B(C) is of rank 

a. B(C) and clB(C) are isomorphic algebras (that follows from Lemma 2.3(c) 

again). We claim that elB(C) is a retract of some quotient of B. To see this, 

let J = cl~(U{B I (do+l - do): 0 < p}). We have by the definition, clB(C) = 

clB(D U J).  

The hypotheses of Lemma 2.14 are satisfied, and thus B / J  c has a retract, 

namely clB(C). | 
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3. P r o o f  of  T h e o r e m  1.9 

Let us begin by a definition: 

DEFINITION 3.1: A Boolean algebra B is a good  a lgebra  if it has the following 

properties: 

(G1) B is thin-tall, rk(B) = wl, and D,,,(B) = {0, 1}. 

(G2) If I is an uncountable ideal of B, then B / I  is countable. 

(G3) There is &(B)  < wl such that for every/~ _> &(B),  there is a retract A~ 

of B/I~(B)  such that I~(B) is generated by 

U Zp(B) re. 
r ) 

Let us recall that ( ~  is the following axiom: " There is a family (So)o<,,t of 

subsets  o1r such that S o C O~ and such that t'or every subset A ofT1, the set 

{a < Wl: A Cl a = Sa} is stationary in wl ". 

The family (Sa)o<~,~ is called a ~l-sequence: ' ~  "captures" all subsets of 

wl as well (see [11], [131 or [151). The proof of Theorem 1.9 is divided into the 

two main parts (a) and (b) of the following result. 

THEOREM 3.2: 

(a) A good Boolean algebra satisfies the requirements of Theorem 1.9. 

(b) Assume ~ 1 "  There is a good Boolean algebra. 

We first turn to the proof of Theorem 3.2(a). 

3.1 PROOF OF THEOREM 3.2(a) . We start by stating some easy facts needed 

in that proof. 

DEFINITION 3.3: (a) Let B be an algebra, I an ideal of B, A a subalgebra of 

B, and b E B. We set 

I [ b  = { a . b : a E I } ,  

A I b  = { a . b : a E A } .  

(b) For two algebras B' and B", we denote by B I -~ B" the relation: B' and 

B" are isomorphic. 

(c) For every superatomic Boolean algebra B and every ordinal fl < rk(B), we 

set Ba ae2 clB(I/~(B)) that is Ip(B) 0 -I#(B).  

(d) Let B be a superatomic Boolean algebra and A be a subalgebra of B. 

A E B if for some a, A = clB(Ia(B)). Note that in this case, Do(A) c {0,1}. 
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The next proposition is obvious: 

PROPOSITION 3.4: 

(a) Let B, A and b as in the Definition 3.3(a). Then: 

(1) I r b = { c 6 I : c < _ b } ,  

(2) A I b is a subalgebra o r b  [ b, and is a homomorphic image of A. 

(b) Let B be a superatomic Boolean algebra, A a subalgebra of B such that 

A C B and a = rk(A). Then: 

(1) For every 7 < ~, X~(A) = I~(n) .  

(2) Ia(A) = I~(B) and I~(A) is a maximal ideal of A (and thus D~(A) = 

{0,1}). 
(c) C is an order relation in the class of superatomic Boolean algebras. 

The proofs of all parts of the following proposition are straight-forward. For 

the sake of completeness, we will prove it, at the end of subsection 3.1. 

PROPOSITION 3.5: 

(a) Let B be a Boolean algebra and I be an i d e a / o f  B, such that B / I  is 

countable. Then B / I has a retract. /n particular every countable algebra 

is refractive. 

(b) Let B be a thin-tall Boolean algebra and J be a countable ideal orB.  Then 

for some a < w,, J C_ I~(B). 

(c) 

(1) Let B be a thin-tall Boolean algebra. For every fl < w,, B~ is 

isomorphic to ~3~,,. 

(2) For [3 < w, and 0 < p < w, ~B,r  is isomorphic to a factor of B. 

(d) Let B be a Boolean algebra and J be an ideal of B. 

(1) Let K be an ideal of B. If  J C.C. K,  then 

{b fi B: b/J 6 I~(B/J)}  C {b 6 B: b /K 6 I~(B/K)}  . 

(2) Let a be an ordinal such that J C It,(B), and [3 > a .w. Then 

{b 6 B: b 6 Iz(B)} = {b e B: b/J 6 I z (B / J ) }  . 

(Hence Z~(B/J) = Zr and there is an isomowhism g from 

Da(B /J )  onto Da(B ) such that for MI b 6 B, 

g( (b /J ) /~ (B/J ) )  = b /~(B)  . 
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(3) For every ordinal a and fl, 
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{b 6 B: blIa(B) q I~(BIIa(B))} = I,~+/~(B) 

and there is an isomorphism f from D#(Da(B)) onto Da+~(B) such 

that for all b 6 B, 

f ( (blIa(B)) l I~(BlIa(B)))  = blI~+~(B ) 

(e) (Isomorphism Theorem.) Let B be a Boolean algebra, I and J be ideals 

such that I D_ J. Then I I J is an ideal of B / J and the algebras ( B I J ) I ( I I J ) 
and B I I  are isomorphic. 

To show Theorem 3.2(a), let us begin by the refractive property: 

LEMMA 3.6: If  B is a good Boolean algebra, then B is refractive. 

Proof." Let B be a good Boolean algebra. We will prove that B has the following 

property (,), and that property (*) implies retraetiveness, where: (*) is the 

following property: 

There are ideals {It: t 6 T} orB, and subalgebras {At: t 6 T} o r b  such that: 

('1) For every t 6 T, B / I t  is atomic, At is a retract of B/I t ,  It is generated 

by U{It r c: c 6 At(At)}, and for every c 6 At(at), B r c is retractive. 

(*l) l f  J is an ideal orB,  then either B I J  has a retract, or there is t 6 T such 

that J C_ It. 
Let us show that a good algebra has the property (*). Let 

T = (6 + I:  o(B) _< 6 < 

Now, for 6 + 1 6 T, let I6+1 de__l I6-t-l(B) axAd A$-I-1 be  given by (G3). For ('1), 

the only non-trivial part is the fact that B r a for a 6 At(A~+,) is retractive. 

But this is a consequence of the fact that B r a, for a 6 At(A~+I), is countable 

and thus, by Proposition 3.5(a), retractive. Let us show (*2). Let J be an ideal 

of B. First suppose that J is uncountable. By (G2), B / J  is countable, and 

thus retractive, by Proposition 3.5(a). Now, suppose that J is countable. By 

Proposition 3.5(b), let 5 be such that J _C I6(B). So 6+ 1 6 T and J C_ I~+,(B). 

Next, we show that if B has property (*), then B is retractive. Let J be an 

ideal of B. By contradiction, suppose that B / J  has no retract. By ('2), let t 6 T 
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be such that  J C It. From (4el)  , if a E At(At), then B r a is retractive; let A. be 

a retract of (B r a)/(S t ~) (so A, C B r ~ C B). Let 

A %' clB(At U I,.,I{A,: ,, e At(At)}). 

We claim that  A is a retract of B / J .  

Let b E B. We show that b E elB(A U J).  Because At is a retract of B/ I t ,  

let b ~ E At, u ~ u x E It sueh tha t  u ~ _< b , , u  1 .b '  = 0 a n d b =  b ' - u  ~  1. 

Because Zt = cl~ (U{Xt r ~: a �9 A t ( a t ) } ) ,  for i = 0,1,  there is a finite subset 

F '  of At(At) such that u'  �9 cl~ (U{It I a': a '  �9 Fi}).  Since A,,  is a retract of 

(B r ai)/( J [ ai) and I, r ai C B t ai, let b,, �9 A, , ,  u, , ,  v,, �9 d r ai C d such 

that  us~ _< bat, vs~'b,~ = 0 and ui.a i = b,~-us~+v,~. Hence u i = b i -u i+vi  where 

b, = E ( b s , :  a' �9 F ~} �9 c lB(U{As , :  a' �9 F~}) ,  u~ = E { u , ' :  "' �9 F '} �9 S and 
vi = ~ { v a ' :  a i �9 F i} �9 J .  So b -- b ' - u ~  x = b'-(bo-uo-t-vo)-F(bl - u x + v x )  �9 

clB(At U U{As: a �9 At(At)} U J ) ,  that finishes this part. 

We show that  A N J  = {0}. It suffices to show that if b �9 A, and c �9 As C_ B r a 

for some a �9 At(At) with b. c �9 J ,  then b. c = 0. Because a �9 At(At): b. a = 0 

or a _< b. In the first case, b. c = 0 since c _ a. In the second case, we have 

c < a < b a n d t h u s b . c = c e A ,  n ( J  r a) = {0}. 

So A is a retract of B / J .  | 

Our next goal is to show that  if B is good and if J is a countable ideal of B, 

B / J and B are isomorphic algebras. 

DEFINITION 3.7: Let B be an atomic Boolean algebra, and C be a Boolean 

algebra. We define the Boolean algebra C o B. (Informaly speaking, C o B is 

the Boolean algebra obtained by replacing every atom of B by a copy of C.) For 

every a �9 At(B) and c �9 C, let k~ be the member of C At(B) such that: 

c i f b = a ,  
k~(b) = 0 otherwise, 

for all b �9 At(B). Note that the mapping kS: c H k~ is an isomorphism from C 

onto the factor C, de=f ka [C] of C At(B). Now, we define Co B to be the subalgebra 

of C At(B) generated by 

(U c,)u{ C :-:beB}. 
aeAt(B) aeAt(B) 

a~_b 
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Note that  for every a �9 C o B, there are unique b �9 B, u ~ = ~ i < m  U, ~ and 

ul ~i<,~ u~ such that,  setting b* def ~aEAt(B) 1 c~ i = = uj e Ca, with ai �9 At(B), 
a<b 

u ~ < b*, u ~  b* = 0 and a = b * -  u ~ + u  1. 

We need the following lemma. 

LEMMA 3.8:  

(a) Let B be a good Boolean algebra, and d be a countable ideal of B. Then 

B / J is good. 

(b) Let B be a good Boolean algebra. Then for every/~ _> ~0(B), B and 

Bp o DE(B ) are isomorphic algebras. 

Proof: (a) Let J be a countable ideal of B. 

B / J  satisfies (G1). Let a < wl be such that J C_ Ia(B) and fl = a . w .  From 

Proposition 3.5(d2), it follows that 

{b �9 B: b / J  �9 Xa(B/J)} = Xa(B) 

holds. Because B# _ B, it is easy to check that for ~ < fl, At(D~(B#/J)) = 

At(D~(B/J)).  By Proposition 3.5(d2), for fl <_ ~ <_ wl, D~(B) ~- D~(B/J). 

Hence B / J  is thin-tall and D~,(B/J)  = {0, 1}. 

B / J  satisfies (G2): let I be an uncountable ideal of B/J .  Let K be an ideal 

of B such that  K / J  = I. Then K _D J and K is uncountable. From (G1)B and 

from Proposition 3.5(e), it follows that ( B / J ) / I  ~- B / K  is countable. 

B / J  satisfies (G3): let o~ < wl be such that J C_ Ic,(B), and fll ~ f  a . w .  We 

set rio(B/J) de=f max(ill + 1,fl0(B)). Let fl >_ flo(B/J). Let A ~ be a retract of 

B/I~(B)  relative to B, be assured by ri0(B). By Proposition 3.5(d2), I~(B/J)  = 

IE(B)/J. Now A~/J  is a retract of ( B / J ) / I z ( B / J )  and At(A~/J)  = {a/J: a �9 

At(A~)}. By (G3), I~(B/J)  is generated by U{I$(B/J)  I c: c �9 At(A~/J)}.  

(b) is a trivial consequence of the following claim: 

CLAIM: Let d be an ideal of B. We suppose that 

(1) B / J  is atomic. 

(2) B I d  has a retract A. 

(3) J = c l~(U{J  r a: a e At(A))). 

(4) There is an algebra D such that D is isomorphic to clBFa(J [ a) for every 

a �9 At(D). 

Then B is isomorphic to D o (B/J) .  
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Proof: F o r b E B ,  let b ' E A ,  u ~ u 1 6 J be such that  u ~  1 . b ' = 0 a n d  

b = b ~ - u ~ + u 1. From the hypothesis (3), for i = 0,1, 

Fi d_et {a e At(A): a .  tt i # 0} 

is finite. We set: 

aEAt(B) 
.5b' 

where uj = )'~EAt(A) ui" a = ~ e F ~  ui" a for i = 0,1. Note that ~(b) E D o A. 

It is easy to check that ~ is an isomorphism from B onto D o A that concludes 

the proof of our claim and of Lemma 3.8. II 

LEMMA 3.9: Let B be a good Boolean a/gebra, and J be a countable ideal of 

B, then B and B / J are isomorphic a/gebras. 

Proof: By Proposition 3.5(b), there is a such that J C_ Is(B). Let r l  = a .w, 

and ~2 = ri0(B). By Lemma 3.8(a), B/J  is good. So, let rs = ~o(B/J), and let 

>_ ~:,~2,~s. By Lemma 3.8(b), 

(1) B / J  -~ (B/J)# o D#(B/J), and by Proposition 3.5(cl) 

(2) (B/J)# ~ B#,,. D#(B/J) = (B/J)/I#(B/J).  By Proposition 3.5(d2), 

I#(B/J) = I#(B)/J. Hence D#(B/J) = (B/J)/(I#CB)/J). Because J" c 

/#(B), by the isomorphism theorem (Proposition 3.5(e)), 

(3) D#(B/J) ~ B/I#(B) = D#(B). It follows from (1), (2) and (3) that: 

(4) s / s  o D#(B). 
The same holds for I = {0} (by the goodness of B) and thus, B ~ ~#,~oD#(B). 

Hence by (4), B/J  and B are isomorphic algebras. | 

Let us end the proof of Theoreom 3.2(a). 

(A1) follows trivially from (G1). 

(A3) The first part follows from Lemma 3.6, and the second part is a conse- 

quence of (G2). 

(A4) Let J be an ideal of B such that B/J  is countable. Hence B/J  is iso- 

morphic to ~#,r  for some ~ < wl and I < p < w. (A4) follows from Proposi- 

tion 3.5(c2). 

(A5) Let J be an ideal of B such that B/J  is uncountable. By (G2) J is 

countable. Now (A5) follows from Lemma 3.9. 
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(A2) From (A4) and (A5), it follows that B is a CO algebra. Let us show that 

if I is an ideal of B, then B / I  is a CO algebra. If B / I  is uncountable, then 

B / I  ~ B and thus is a CO algebra. If B / !  is countable, then B / I  --- B#,p for 

some ~ < wl and p < w, i.e. B / I  ~- B(w #. p). In this case the result follows 

from Proposition 1.7(c) and (d). 

To complete the proof of Theorem 3.2(a), it remains to prove Proposition 3.5. 

Proof of Proposition 3.5: (a) Let B / I  = {hi: i < w}. We will construct a retract 

.4 = {ai: i < w} of B / I  such that ai/I  = bi for all i and ai ~ bi is a one-to-one 
def 

homomorphism. We can suppose that b0 = 0 and bx = 1, and thus a0 = 0 and 
def ax = 1. Assume that  {ai : i  < n} are defined such that: An de_~ cls({ai:  i < n}) 

and B ,  de t cls/I({bi: i < n}) are isomorphic by c ~-* c/I  for c E .4,.  If b, E B, ,  
then we set A,+I  = An and B,+l = B, .  Now suppose that b, ~ B , .  Let 

{hi: j < p} = At(A,)  an b / =  ai / I  for j < p (hence At(B, )  = {b/: j < p}). We 

define (a~)i<p by a~ = 0 if b/ .  b, = 0, a~ = a1 if/7i _< bn; next if b/.  bn # 0 and 

b i - b, • O, then we choose a~ �9 B such that  hi, < a j, aJ,/I = b i .  bn. Hence 

(hi - ai,)lI = [,i _ bn. We set an = E i < ,  a~, A,+I deal clB({ai: i _< n}) and 

Bn+l de__.f clBH({bi: i < n}). Clearly bn = an/I  and, by the construction, An+l 

is a retract of Bn+l/(I  f3 Bn+l) containing An. Hence A = Un<,, An is a retract 

of B/I .  

(b) Let J be a countable ideal of B. For each a �9 J, a e IrkS(,)+l(B). Let 

a = sup{rkB(a) + h a �9 J}. Then J C_ I,~(B). 

(cl) Because B/~ is a countable algebra and D~(B) = {0, 1}, then B# and B#,I 

are isomorphic. 

(c2) Let ~#,p be given. For i < p, let ci �9 B be such that cilia(B) �9 
At(D~(B)). We can suppose that for i < j < p, c~ �9 c i = 0. Clearly B#.~ is 

isomorphic to B [ ci and thus ~/~,p is isomorphic to B I ~-,i<p ci. 

(dl) By induction on 7. The case 7 = 0 or 7 limit, are trivial. For the successor 

case, suppose that  (b/J) / I~(B/J)  is an atom of (B/J) /Ly(B/J);  we would like to 

show that  (b /g ) /Ly (B /Z)  is zero, or is an atom of (b/g) / I - / (B/Z) .  For b �9 B, 

we recall that (b ~ b 1 ) is a partition of b if b = b ~ + b 1 with b ~ b 1 = 0. For a partition 

(b~ ') of b, we set i~(J,b~ a) = {g �9 {0,1}: bt/J �9 I~(B/J)}.  i~(g,b~ 1) is 

defined similarly. The fact that (b/J)/I-~(B/J) is an atom of (B /J ) /Lr (B/J )  
means that  for every partition (b~ ~) of b, i.y(j, bO,b ~) • 0. Our induction 

hypothesis implies that i.~( J, b ~ b ~ ) C_ i.y( g ,  b ~ b~ ). Hence i./( g ,  b ~ b ~ ) # 0 for 
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every partition (b ~ b 1 ) of b. So, if [i.~(K, b ~ b 1)1 = 2, then ( b / K ) / L r ( B / K )  is zero, 

and if li./(K, b ~ b~)[ = 1, then (b /K) / I . / (B /K)  is an atom of ( B / K ) / L ~ ( B / K ) .  

(d2) Suppose that  J C_ Ia(B). We set/~ = a . w .  For every ~ < w, we have, 

using (dl) twice: 

{b �9 B: b/J  �9 Ie`.t(B/J)} C {b E B: b/Ie`(B) �9 Ia . t (B/I~(B))}  

= Ia.(t+l)(B ) 

C {b �9 B: b/J  �9 Ie`.(t+l)(B/J)} ; 

from this the desired conclusion follows. 

(d3) is proved similarly by induction. 

(e) is a classical result on commutative rings and left to the reader. 

3 . 2  PROOF OF THEOREM 3.2(b). 

3.2.1 Preliminaries. We will give a proof of Theorem 3.2(b), with &(B)  = 0 in 

the the part (G3) of our definition of a good Boolean algebra. 

The following result can be found in Bonnet, Rubin and Si-Kaddour [8]: 

THEOREM 3.10: Let (ha)~<p be a sequence of cardinals, with hp = 1 and 

h de=~ ho. Let {a,~,o: v < h,~ ; a < p} C_ p(h) satisfy the followingproperties. For 

fl < p, let B# be the suba/gebra of p(h) generated by {a,,,~,: v < h~, ; ot </~}, 

and J: be the i dea /o fB#  generated by {ae`,v: v < he` ; a < fl}. We suppose: 

(HI) 

(H2) 

(H3) 
(H4) 

(HS) 

Let 

O) 
(a) 

ao,i = {i} for every i < h. 

a~,,v ~_ Be, for every v < h,~ and a < p. 

aa,v fq a,~,g E Ja for every a < p and v < # < he`. 

For every a < fl < p and v < he`, I~ < h#, we have aa,v f3 a#,g E Be`+1. 

For every a < p, v < ha and fl < a there are infinitely many I~'s in ha 

such that aa,~, - ar E J~. 
def B = Bp. Then: 

Ja is a max ima / idea /o f  Ba. 

Je` = Ie`(B/3) for/~ >_ a,  (in particular Je` is an idea /of  B)  and 

At(Da(B#) = {ae`,v/Ia(B#): v < he`} for ~ > a. 

In particular: 

(3) = Z (B) for _</L C B# E B. 

(4) At(D~(B)) = {aa,o/I~(B): v < Aa} for a < p. 
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Let us remark that (H3) and (H4) imply: 

(H6) forevery  (a ,v)  E (~ de f U~<s~{]~ } X A,8, B I aa,v (: Bct+l. 

Indeed, the set {b E B: a~,,~ t3 b q B,~+I} contains all the generators of B by 

(H3) and (H4), and is clearly closed under the Boolean operations, so it consists 

of all the B, as desired. 

In what follows, we set 

Ja ~ Ia(B~) = I~(B~,,) 

for or < 0.) 1 . We will construct {ca,i: i < w , a  < wl} satisfying the conditions of 

Theorem 3.10. 

Let (A~)~<,~ be the canonical enumeration of limit countable ordinals. Hence 

A~ = w . ( l + a ) ,  (for instanceA0 = w). Note that i f w  ~ = a,  t henAa  = a 

(for informations, see J. G. Rosenstein [20]: exercice 3.34). We set Lira(w1) = 

{A,~: a < wl}, and 

Do ~ t  {As E Lim@,): A~ = a} 

that is a club (dosed unbounded subset) of Wl. 

In order to use <>~t, we shall also have a one-to-one correspondance ~a from 

A~, onto the subalgebra B~ of p@) generated by {cp,~: i < w, fl < a}; in such 

a way ~ _C ~ for/~ < a. Note that 0 p('~) = 0, 1 p('~) = w; B0 = FC(w), and 

~[A,~] = B,~ for all a < wl. We set ~ ~ U~<,~, ~a,  that is a one-to-one function 

from wl onto B ~ t  B,~. 

Let (S,~)~<,~ be a <>~,-sequence. Let us remark that: 

(1) a E Do if and only if ~[a] = B~. 

(2) If a e Do, then ~[Sa] C_ Ba. 

LEMMA 3.11: 

(a) Let a, c 6 B be such that a/Ja 6 At(Da(B)) .  rkB(a -- c) < rk~(a) (= a) 

i f  and only if  a/Ja = (a f3 c)/Ja <_ c/Ja. 

(b) Let {ca,i: i < w, cr < wl} C p(w) satisfy the hypotheses of Theorem 3.10, 

and the following property: 

( , )  For every a < Wl , / f  

(i) e Do (so = is li /t = d  = 
(ii) ~[S,~] _C J,~, 
(iii) Is E ~[S~,], then a/4k~~ ~ At(D~kao(~)(B,~)), and 
(iv) sup{rkB~ a q ~[S~]} = a ; 
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then for every i < w, and every c �9 ca,i/J~, there is a �9 ~o[S~] such that 

rk B" (a - c) < rk B~ (a). 

Then B satisfies: 

(I) B is thin-tall and D~,(B)  = {0,1}. 

(2) I f  J is an uncountable ideal of B,  then B / J  is countable. 

Proof'. (a) is trivial. 

(bl) follows from the conclusions of Theorem 3.10. 

(b2) Let J be an ideal of B. We suppose that B / J  is uncountable. We will 

show that  there is a < Wl such that  J C_C. Ja and thus J is countable (since 

trivially Ja is countable). 

CLAIM 1: For every a E B,  i f  rkB(a) = a < wl, there are unique n, i 0 , . . . ,  in-1 

< t,, and u, v �9 J,~ such that a = ~ - u + v, with ~ ~ ~ k < ,  c~,ih , u < ~ and 

v . ~ = O .  

Proof." Clear. I 

CLAIM 2: Let ~ < wl and d �9 A t (D~(B /J ) ) .  There are a(d) < wl and i(d) < w 

such that: 

(t) a(d) ~f c~cd),iCd ) satis~es (a(d) lJ) lXdB/Z)  = d and 

(2) ~ �9 Joca) F aCd) (so ~ < aCd)), then ( , I a ) l r d B I J )  = O. 

Proof: SimiLar to that  of Lemma 2.8. Let 

a(d) = mln({a < ~1:3  a e B ,  rkS(a) = a and ( a l J ) l l e ( B / J )  = d } ) ,  

and a be such that  rkB(a) = a(d) and ( a / J ) / I r  = d. By Claim 1, a = 

5 - u  ~ +v 1 with 5 = ~'-~k<,, C~(d),i~, u ~ < 5, u 1 .~ = 0 and u ~ u 1 E J~(a). From the 

definition of a(d) and from rkB(u ') < a(d) (i = 0,1), we have ( u i / J ) / I ~ ( B / J )  = 

0. Hence we can suppose that a -- ~ = ~'-~k<,~ ca,i~. Because d e A t (D ~(B /J ) ) ,  

it follows that  for some s < n, say i(d), ( c a , , , / J ) / I e ( B / J )  = d. We set i(d) = it 

and a(d) ~ t  c~(d),i(d). Then, a(d) and i(d) axe as required: (2) follows from the 

fact that  d e A t ( D ~ ( B / J ) )  and from the definition of a(d). 1 

End of the proof of  Lemma 3.11(b2). With the notation of Claim 2, for each 

d, we choose a(d), and let n de2 U~<wl{a(d): d E A t (D ~(B /J ) ) } ,  that  is, by 

the definition, a set of seneralized atoms of B. We recall that  ~o is a one-to-one 

function from wt onto B. 
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Let S _C wl be such that ~o[S] = A. The set 

D1 = {5 e Do: 5 = sup{rkB(~o(v)): v �9 S and rkB(~o(v)) < 5}} 

= {5  �9 Do: 5 = sup{rkB(b): b �9 A and rkB(b) < 5}} 

is a club of wl. By Q~t, there is a �9 D1 such that SN a = S~. Hence a satisfies 

the hypotheses (i)-(iv) of (.).  

We will show that J C_ J~+l. By contradiction, let b �9 J - J~,+l. Then 

b/J~ # O. Then, there are i < w and u �9 Ja  such that c~,i - u <_ b. Hence 

c~,i - u �9 J .  From (o), the choice of a ,  and from the definition of A, S and So, 

it follows that there is v �9 So such that a(d) d=ef ~o(v) verifies 

rkB(a(d) - (ca,i - u)) < a(d) de_f rka(a(d)).  

Hence a(d) - (ca,i - u) �9 Ja(d). Let ~ be such that d �9 D~(B/J) .  We have: 

(1) (CaCd) - (ca,i - u)la)lX (BIJ) = 0 by Claim 2(2), 

(2) ( (a (d ) / J ) / I~ (B /J )  ~ 0 since d �9 At (D~(B/J) .  

Therefore ( a( d) . ( ca,i - u ) / J ) / Z~ ( B / J ) ~ 0, and thus a( d) . ( ce,,i - u) ~ J. That 

implies Ca,i - u f[ J. Contradiction. l 

3.2.2 The inductive step. Our induction hypothesis ,(a) (for a < Wl) is as 

follows: 

*l (a )  For every 7 < ~ -< a, B a and J'r satisfy the hypotheses (H1)-(H5) o1. 

Theorem 3.10. 

*2(a) For every V < 1~ <_ a, there is a retract B#, 7 o[ B a / J  7. 

For every A < a I/m/t, it"/~ < A, then BA,7 = ~7<a<x Ba,7" 

*s(a)  For every 7 < 1~' < ~" <- a, Ba,,7 C_ B#,,,7. 

*4(a) For every 7 <- a, every finite subset a ot" 7 and every a E JT-LJ{J6 :5  < v} 

there is a_ D__ a such that a_ �9 J7 N N{Bm~:/~ �9 o-}. 

First, let us show that *s(a)  implies that for 7 < fll < /~2 _< a ,  Ba t ,7  = 

B#2,7 fl Bflt. This is a direct consequence of Part  (a) of the following lemma: 

LEblMA 3.12: 

(a) Let B1, B2 be Boolean Mgebras such that B1 C B2, I an ideal o1" B2, 

A2 C B2 a retract o1"B~/I, and A1 _C B1 be a retract o1"B1/(IN B1). h e 

A1 C_ A2, then A1 = A2 N B1. 

(b) Moreover, we suppose that A1 is atomic and that there is an atomic suba/- 

gebra C o1" B2 such that: 



322 R. B O N N E T  AND S. SHELAH Isr. J.  Math.  

(1) As = clB,(A1 U C). 

(2) We assume that there is ideal J~ D_ At(A1) of A1 such that for every 

al E '71 and every c E At(C), a l  �9 c E A1. 

Then As is atomic and At(As) = At(A1). 

(c) Let a be a limit ordinal. Suppose that: 

(1) For every fl < a, B/3 and J~ satisfies the hypotheses (H1) - (H5) of 

Theorem 3.10. 

(2) For every  "y < < has a retract  Bp, . 

(3) For every 7 ~ fl < a,  B~,x C_ B~+l,-r. 

(4) For every limit A < a and every 7 < A, Bx,-r = LJ#<~ B~,7. 

For 7 < a,  let B~,7 d~f U~<~ B~,7. Then Ba,x is a retract of B a / J  7. 

Proof: (a) First, suppose that B1 = B2. It suffices to show that As C_ A1. 

Let as E As. Let al E A1 be such that alAa~ ~ I. Since al ~ A1 C_ As, 

we have aiAa~ ~ As and thusa lAa~  -- O. SoA1 ~ al = as. In the general 

case, it suffices to show that As ~ B1 is a retract of B1/(I  N B~). Trivially 

As N B1 N I -- {0}, and B~ -- clv,((A~ O ( I ~  B~)) C_ cl~,((A~ N B1) t3 ( I f ]  B1)), 

and thus clH, ((As N Bz)U ( I  N B1)) = B~. Now (a) follows from Proposition 1.2. 

(b) Clearly 

At(clB,(A1 t9 C)) = {al -c: a l e  At(A1), c �9 At(C) and a l ' c  ~ 0} .  

Let a2 E At(A2). Let us show that a2 E At(A1). a2 has the form a l -  c, with 

al E At(A1) a n d c  E At(C). By (2), a l . c  E Al,  a n d t h u s a l  = a l - c =  a2. 

Hence At(A2) C_ At(At). Let al E At(A1) - At(As). This means that there are 

as E At(As) and c E At(C) such that 0 ~ as" c < al.  As as .  c E A1, we obtain 

a contradiction. So At(A1) = At(As). 

(c) is obvious. | 

Because we will construct a subalgebra B = Bw~ of p(w), the operation �9 and 

% are denoted by N and U. 

It is easy to construct (B~, Ja, (B~,m),~<~)a<~ satisfying *(w). Let a < wl 

be limit and suppose that for every 5 < a, (B~)~<6, (JT)'r<j, and (B~,7)7<#<6 

are defined and verify *(5). We set B~ = U~<~ B~, J~ = l,J~<o J~ and B,~,.~ = 

~<aB~,#. From Lemma 3.12(c), it follows that (B#)#_<~, (J-~)-~___a, and 

(B#,.~)~<#<~ satisfy *(a). 
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Let w < a < wl. We suppose that Ba,  Ja  and for ~ < a,  J~ and Ba,p are 

constructed, and satisfy *(a). We must construct Ba+l ,  Ja+l  and Ba+l,p for 

f l < a + l .  

Let {/3k: k < w} be a f ixed  en u mer a t i o n  o f  a .  

F o r i  < w ,  we will define ca,i as a u n i o n o f c a , i ,  " f o r i  < n < w .  To do this, 

we will define an increasing sequence P = (p")n<w of conditions. A condition 

p" has the form (an, {cn,i: i < n}), where n is an integer, and (a", {c~n,i: i < n}) 

satisfies: 

(P1)  a" �9 

(P2) a" �9 A{Ba,~,: k _< n}. 

(P3) {c~,i: c~, i ~ 0 and i < n} is a partition of a". 
c m . p n  n . For two conditions p,,, = (a" ,  { ~,i. i < m}) and = (a", {%,v i < n}) (in 

JP), we set p "  < p" if m < n and if: 
a m C_ a n .  

n 0 a m m for every i < k < m. C~,  i ~--- Coq i 

n _ a m  %,i �9 ~{Ba,ah: k < m} for every i < n, 

(P4) 

(P5) 

(P6) 

hold. 

Before continuing, let us note an easy fact: 

LEMMA 3.13: Le t  pq (a~, q �9 = {%,i" i < q}) /'or q <_ n sa t i s f y  (P1)-(P6) (so the 

condi t ions  are pa i rwise  comparable) .  Then:  

(P7) For every i < p, and m < p, cP~,i N (a v - a m)  E N{B~,#,: k _< m}. 

(P8) I.f i < p < m ,  then  cV~,i - a m -- $. Hence  (P6) is tr ivial  in this  case. 

(P9) I . f i  < p an d  m < p, then  ~ , i  - am = ~ , i  - %~,i. 

(P10) I.f rn <_ p, t hen  a" - a m e N{Ba,#,:  k _< m}. 

(P11) < is an order relat ion on • .  

P r o o f  (P7) From (P3) and (P6), it follows that: 

4,/n (ap - a m) = 4 , i  - . "  �9 n { B a , # . :  k < m } .  

(P8) ~ , i  C_ a p _C a m by (P3) and (P4). 

(P9) follows from the fact that cP~,i - a m = cP~,i - (cP~,/N a m) = cP~,i - c~i. 

(P10) is a consequence of (P3) and (P5). 

( P l l )  The only non-trivial part is the fact that the property (P6) is transitive, 

but  this follows from (P9) and (P5). | 

The case of a legal guess (defined in 3.14) ensures that our construction will 

satisfies the hypotheses (*) of Lemma 3.11(b). 
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DEFINITION 3.14: Sa is a legal guess whenever: 

(1) ~ = ~~ e Do (and thus ~[~] = B~). 
(2) ~[so] c_ s~ c_ Bo = ~[~], 
(3) For every a E qo[S~], a/JrkS,,(a ) is an atom of B/ : rkS . (a  ). 

(4) For every [3 < ~, there is e E q~[S~] such that rk v" (e) > [3. 

LEMMA 3.15: 

(a) Suppose that ot is a limit ordinal, Ba has been defned, and Sa is a legal 

guess. There is an increasing sequence of conditions P = {pn: n < to} 

with p" = tan fen �9 i < n}) such that P satisfes the following density 

requirements: 

(R1) For every a 6 Ja, there is n < w such that a C an. 

(R2) For every i < to and [3 < a, there is n < to such that c~, i r J#. 

(R3) For every i < to, n < to and [3 < a, there are k > n and e E ~[S~] 

such that e r J# and rk Bo(e - (c~,, - : ) )  < rk v ' (e) .  

(b) Suppose that a is a / imi t ,  Bo has been defined, and So is not a legal 

guess. There is an inereaslng sequence of conditions P = {pn: n < to} 

with pn = ~/a n, t ten~,i." i < n}) such that ]P satisfes the following density 

requirements: 

(R1) For every a E Jo, there is n < to such that a C_ an. 

(R2) For every i < to and [3 < a,  there is n < to such that c~, i r J#. 

(c) Suppose that a is a successor ordinal and Ba has been des We set 

a = [3 + 1. There is an increasing sequence of conditions ~P = {p": n < o~} 

with pn = tan tc n .. i < n}) such that P satisfies the following density 

requirements:" 

(R1) For every a E Ja, there is n < to such that a C an. 

(R2) For every i < to and r < to, there is n < to such that c~,i /J # is the 

union of at least r atoms of Ba/J#.  

Proof of Lemma 3.15(a): The claims 1, 2 and 3 are stated to satisfy the density 

requirements (R1), (R2) and (R3) respectively. 

CLAIM 1: Let {(aJ, {c'/~,i: i < j}): j < n} satisfy (P1)-(P6),  and let a E J~. 

Then, there are a n and {c~,,i: i < n} such that a C_ a n and {(M, {cJa,i: i < 

j}): j < n} satisfy (P1)-(P6). 

Proof: Let a n be such that a n e Ja, a n D_ a U a n-1 and a n E l"l{Ba,#j: j _< n}. 
The existence of a ~ follows from *4(tr). Let cnct,n-1 = an - an-X, and c~, i = ca,in-1 
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for every i < n - 1. Trivially (P1)-(P5) are satisfied. Let us prove (P6). Because 

(P2) holds for a n - t  and a n, we have n _ a n an-1 ca,.-1 - - E rI{Bo,#,: k < 
" - a t a n - a"-* E f'){Ba,•h: k < n -  1} C n - 1}. Hence, for l < n, c~,,_ 1 = _ _ 

n{Ba,ah: k < ~}. Next, supposei  < n - 1  a n d t  < n. If ca, i " - a  t = 0, then 

n _ a  t _ n _ a t  ~ 0, t h e n l  < n and c ~ , , i - a  t Ca, i E n{Ba ,p . :  k < e}. If c . ,  i = 

ca,in-1 _ a t E n{Ba,#b: k _< l} by the induetlon hypothesis. | 

CLAIM 2: Let  {(aJ, {@a,F / < J}): J < n} satisfy (PI)-(P6), let p < n - 1 and 

< Then, there a n and i < n} su:h that a a n and {(ai, i < 

j}): j < n}  sat is fy  (P1)-(P6), and c~,, ~ d 0. 

Proof: Let a E Ja - J# be such that  a n a n-1 = 0. By *4(a), let a n be such 
n n--1 U that  a n E Ja,  a n D a O  a n-1 and a n E n{Ba,#i:  j < n}. We set ca, p = ca, p 

n.-1 (a n - an-X), co,,-1" = 0, and for every i < n - 1 and i # p, we set c~,,i = ca, i . 

Trivially (P1)-(P5) holds. Now, (P6) holds. Because (P2) holds for a n-1 and 
n - -  a n - 1  = a n - - a  n - 1  E a n, (a n - an-*) E n{Ba,p, :  j < n - 1}, and thus %,e 

n { B a , & : j < n - 1 } . _  I f s  t h e n c  no,e- at = (a n - a  n-1)U,(c n-l~,e - a t) E 

N{B.a,: J _< O. I 

CLAIM 3: Let {(aJ, {d~ , / : /<  j}): j < n} satisfy (P1)-(P6), and let p < n -  1 
n . and # < a.  Then,  there are a n and {ca, i. i < n} ,  and  there is e E ~[Sa] such 

- -  C n that  {(aJ,  {~,, :  i < j}): ] < n}  sat is fy  (P1)-(P6), e ~ J# and rk s~ (e ( , , ,  - 

an-l)) < rkS*(0. 

Proof'. Let 7 < a be such that  a n-1 E Jr.  Since Sa is a legal guess, there 

is e E ~[S~] such that  e E J a - ( J ~ U J T )  (so e r Ja). B y * , ( a ) ,  let a n 

be s u c h t h a t  a n E Ja,  a n D a n - l o s  and a n E ~{B~,pi: j _< n}. We set 

Ca,pn = Ca,pn--1 U (a n - an-X),  c na,n_l = ~, and for every i < n - 1 such that  i # p, 

we se t  cch i n  _. ca,in-1. As in the proof of Claim 2, {aJ: j _< n}, {c~,i: i < k _< n} 

satisfy (P1)-(P6). Next, rk B" (e N a n) = rk B• (e) follows from the fact that  

At(Drks~(e)(B ) 9 C/JrkB.(e ) <_ an/J~ke.,( ,) .  By the choice of e, the fact that 

a n-1 E J- ,  and the definition of n . we have rk B" (e - (c~,p - an- l ) )  < rk B" (e). Ca,p~ 

| 

End of the proof of Lemma 3.15(a): Let ao = 0 (= 0). Then ao, {c~ i < 0} 

satisfy (P1)-(P6). In order that (i), (ii) and (iii) will hold, we have to fulfil R0 

tasks. We make an w-sequence of taskes such that every task appears infinitely 

many times. By claims 1-3 the taskes can be fulfilled, that  ends Part (a). 
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Proof  o f  Lemma 3.15(h) and (c): Similar. I 

3.2.3 End  of the proof. We set: 

�9 For i < w, let Ca,i U net�9 Cna i" 
n>i ' 

�9 n ~ + l  = clor u {c~,~: i < ~}). 

�9 n ~ + , , ~  = r162 i < ~}). 

�9 For ~ < a,  let k be the unique index such that/3k = ft. (We recall that 

{/3k: k < w} is an enumeration of a.) Let 

B~+I,# = clp(,~)(Ba,# U {ca,i - at': i < w}) .  

Note that for k > i ca , i  - a k = ca,i - c~, i and for k < i Ca,i - a k = ca,i. We 

will prove that: 

LEMMA 3.16: With  the above notations,  we have: 

(a) 

(1) U(c. ,~:  i < ~,] = , .  

(2) xf i # j then c~,~ n ca,~ = 0. 

(3) {cp,i: i < w and/3  < a}  satisities the hypotheses  (H1)-(H5) of 

Theorem 3.10. 

(b) Ba+x,a is a retract of  B a + l / J a .  

(c) For/3 < a,  Ba+x,~ is a retract of  B a + l / J ~ .  

(d) For every a E Ja+l - Ja  and every tinite subset a o f a  + 1, there is a_ E J~+l 

such that  a_ D__ a and a_ E N{Ba+x,/~:/3 E Or}. 

Proof." (al)  and (a2) follows from (P3) and (R1). 

(a3). It suffices to verify (H1)-(H5) for/3 = a. (H2) is a consequence of (R2), 

and (H3) follows from (a2). (H4) holds: let 7 < a and j < w. Then %,j �9 Ja. 

By (R1), c~,j C a n for some n, and thus c.t, J n ca,i _C a n �9 J~. Therefore 

c~,j n Ca,i �9 Ja C Ba.  (H5) holds: let i < w and/3 < a. For every s # i, there 

is j t  such that c~,jt f3 Ca,t r J~, and thus c~, h - Ca,i �9 J~. Moreover, if s # s 

then jr, # j r , .  So (H5) holds. 

(b) Trivially ca,i �9 B~+I.  ca, i /J~ # 0/J~  in B ~ + I / J ~  follows from (R2) and 

from the definition of Ca,i. Now, it is easy to check that Ba+l,a is a retract of 

B~+I/J~. 

( c ) / n  what  follows,/3 and k are such that /3  =/3k. 
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First, we show that clt~(,~)(J/~ U Ba+~,/~) = Ba+l. We have: 

So, it suffices to show that ca,i �9 clp(,~)(Jz U B,,+I,#). We have: 

(1) c a , i - c ~ , i  = c ~ , i - a  k �9 Ba+l,/~. By (P3), c~, i C_ a k �9 Ja,  and thus 

c~,i �9 Ja C_ clt~(,,)(Ja) = Ba = clt,(~,)(J # U Ba,#). Therefore: 

(2) c~, i �9 clp(w)(J# U Ba,#). Hence 

co,i = (Ca,i - c~,i) co, ~ �9 clp(,o)(J# U Ba+l,/~) �9 

That shows that clo(~)(J ~ U Ba+l,#) = Ba+l.  

In order to prove that Jo I"1Ba+l,# = {0}, we need the following result. 

SUBLEMMA 3.17: 

(a) Let b �9 J a n  Bo,#, and i < ~. Then b n (ca,~ - a k) �9 Ba,#. 

(b) Let fl < a. Then At(Ba,/~) = At(Ba+,,~). 

(c) Let d �9 J~. Suppose that d has the form b A (ca,i - a k) with b �9 Ba,~. 

Then b �9 la.  

(d) Let d �9 Y#. Suppose that d has the form bANieF - ( c a , i - a  ~) with b �9 Ba,# 

and F C_ ~ tlnite. Then: 

(1) b �9 J~ and 

(2) d has the form b A Niea(c,~,i - a k) for some finite subset G ofT.  

Proof." (a) From (R1) and (P4), there is n > k such that b C__ a". 

b n (c. ,~ - a k )  = c . , i  n (a" - a ~) n b = (c:,~ - a k) n b 

since c ~ , i A ( a " - a  k) = ( c~ , i . a " ) - ( co j . a  k) = c" . - a  k By (P6) (and the fact that a ~ s  * 

- -  a k fl = ~k), we have c~, i �9  a n d b e c a u s e b � 9  b A ( c ~ , i - a k ) � 9  

(b) Let C = cls,+,({c~,~ - ak: i < w}). Clearly C is an atomic subalgebra of 

B~,+I and every atom of C has the form c~,i - a k. Now (b) follows from the fact 

that Ba+l,~ = clB,+~(Ba,~ U C), from Part  (a) and Lemma 3.12(b). 

(c) By contradiction b �9 Ba - Ja and thus - b  �9 Ja. By Part  (a), we have 

( -b )  N (ca,~ - a k) �9 Ba,~. From the facts that d �9 J# C_ Ba and the fact that 

ca,, - ~k = (b n (ca,, - ak)) u ((-a) n (ca,, - ak)) 

= d u ( ( - b )  n (ca,~ - . k ) ) ,  
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it follows that  ca,i - a t �9 Ba. Because c~, i C_ a t �9 J,, C_ Ba,  we have t C`,,i �9 Ja C_ 

B`,. Consequently c`,,i = (cmi - ck,i) U Cka,i �9 Ba. Contradiction. 

(dl): b �9 Ja. We have: 

(z) d/J,, = 0s-+l/so since d �9 Sp C_ S`,. 

(2) (ca,i - a t ) /J ` ,  = e`,,i/Ja �9 A t (Ba+l / i ` , ) ,  since a t �9 J`,. By (1), 

(3) 0~-+1/so  = d/S`, = ( b / S p .  ( I / i ~ ( - c o , ~ / S o )  �9 

From (1)-(3), it follows that 

(4) b/J= ~ lVo+ ' l  J~ But 

(5) b/J`, = 0 s*+t/J" or 1BO+t//, since b �9 B`, = Ja U - J a  C_ B`,+I. 

From (4) and (5), it follows that b/Ja = 0 B~176 , i.e. b �9 J`,. So (dl)  is proved. 

(d2): d has the form b n n i e a ( c a , i  - a t )  for some finite subset G of to. We 

have 

d = b n ( N - ( c ` , , ' - a t ) )  = N b - ( c o , , - a t )  
iEF iEF 

= ( n ( b - c ` , , i - a h ) ) U ( b n a t ) .  
iEF 

Because: a t 

have b O a k 

Therefore b n a  t = 0. By (R1), let n < w be such that  b C_ a n . 

b C an = Ui<n n c_.. Hence c`,,i Ccf,i. 

d =  N ( b - c = , , - a t ) =  U b n ( c = , ' - a t )  " 
iEF i<n 

iftF 

That finishes the proof of Sublemma 3.17. I 

e B=,# (this follows from (P2) and fl = /~) and b �9 Ba,#; we 

�9 B`,,#. B e c a u s e b n a  k C_ d �9 J # , w e h a v e b n a  t �9 J # A B a , p .  

We have 

We end the proof of 3.16(c). To show that J~ n a~,# = {0B"+I}, it suffices to 

show that  if d E J~ has the form b n n i c e  bi with b E Ba,~, F _c w finite and 

bi = ca,i - a k or -(ca, i  - ak), then d = 0s"+ I. Let bn n i~F bi be such a d. Note 

that: 

(1) If bi = c`,,i - a t and bj = c`,j - a t with i ~ j ,  then bl n bj = r and thus 

d = 0 = 0 .  

(2) If bi = c`,,i - a k and bj = - ( c ` , j  - a t)  with i # j ,  then bi C__ -b j ,  and thus 

d C b n n i e F - { j }  hi. 
Therefore, there is no loss in assuming that d has the form 
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( i)  : b N (ca , i  - a h) or 

(ii) : b N NiEF -(cct,i - ak). 
We will distinguish the two cases: 

CASE 1: d = b N ( c ~ , i - a  k). We have b E B~,,~ C_ B~, = / ~ , U - / ~ .  By 

Sublemma 3.17(e), b E J~. Now, d E B~,,p by Sublemma 3.17(a). Therefore 

d E Jp n B~,~, and thus d = 0. 

CASE 2: d = b N NieF -(c~,i - ak). By Sublemma 3.17(d), d has the form 

b n Niea(c~,i - a k) for some finite subset G of ~. But in this case, we can 

suppose that  d has the form b N (co,i - ak), and the arguments go as in Case 1. 

Now (c) is a consequence of Proposition 1.2. 

(d) Let a q J~,+l - Jo, and a C_ ct + 1 finite. There is no loss in assuming 
E ~r (note that  this implies that  we must find a_ as a finite sum of c~,,i). 

First, we claim that  

(d') There  is n* < ~ such that  a C_ U{e~,,i: i < n*}. 

By definition, a C_ b U U{c,~,i: i < r} where b E Jo. From (R1), let s be such 

' �9 s}. Consequently a C U{ca,i: i < n a} that b C_ a ' .  From (P3), a ~ C_ U{%,i. i < 

where n ~ = max(r, s). 

Next, we claim that  

(d") For every  ~ < a there is n~ < ~ such that  for every  q > n~, U{ct,,i: i < 

q} E Ba+l ,#  

Let k < ~ be such that  ~k = 8. We set np = k + l .  Let q > n p  be 

_ ,  ,t_k+l. i < k + 1}. Hence U{c,,i: i < q} = fixed. By (P3), we have a k+l C U,~..,i . 

U { ( c , , i - a k + l ) U a k + l :  i < q}. By (P2) a k+l q B~,~ h = B~,,a. Now c ~ , i - a  k+l = 

(c , , i  - a k) - (a ~+1 - ak). Because ~k = ~ and the definition of B~,+l,p~, we have 

(c~,i - a k) E B~+l,~h. By Lemma 3.13(P10), (a k+l - a k) E B~,~.  Consequently 

U{c~,i: i < q} E Ba+l,~, = Ba+l,#. 

We win finish the proof of (d). Let n = max(n~,max({ns: ~ ~ ~r})) and a = 

U{ca,i: i < n}. So a_ E Ja+~. By (d'), a _C a; and by (d"), a ~ N{B~+~,#: fl ~ ~}. 

This finishes the proof of (d), and of Lemma 3.16. l 

To finish the proof of Theorem 3.2(b), it remains to show: 

LEMMA 3.18: 

(a) The  induct ion hypothes is  .(tr + 1) holds. 
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(b) {eAi: i < w ;~ < a + 1) verities the hypotheses  (H1)-(HS) of Theorem 3.10 

(therefore B de__.f U{B~: a < Wl} verifies the conclusions os Theorem 3.10). 

(c) B is good (i.e. veri es (a l ) ,  (G2) and (G3)), that shows that B is as 

requ/red in Theorem 3.2(b). 

Proof: (a) * t ( a + l )  holds trivially for s -- 1,2; * s ( a + l )  follows from Lemma 3.16 

(b) and (c); and *4(a + 1) is a consequence of *4(a) and of Lemma 3.16 

(a). 
(b) is a consequence of Lemma 3.16(a3). 

(c). Let us show that B is good. 

(G1) follows from Part (a) and Theorem 3.10. 

(G2) is a consequence of Lemma 3.11(b). Let us verify that the hypothesis (e) 

of 3.11(b) holds. Let a < wl be such that the hypotheses (i)-(iv) of (e) holds. 

Then S~ is a legal guess. Let i < w and c �9 cc,,i/J,~. We must find a �9 ~o[Sa] such 

that  rk B~ (a - c) < rk s~ (a). There is no loss in assuming that c --- ca,i - u with 

u �9 Ja. By Lemma 3.15(a) (R1) there is n < w such that u C_ a a, and thus we 

can suppose that  c = ca , i -an .  By (R3), for fl < a,  there are k > n and a e ~[Sa] 

such that  rkS"(a - (c~, i - an)) < rkS~ Since e = c,~,i - a" D_ c~, i - an, the 

conclusion of (e) holds. 

(G3). Let a �9 J~. By (R1) , le t  n < w be such that a C_ an. B y ( P 1 )  and 

(P3), Ui< ,  c~,i = an �9 J~. Therefore a G Ui< ,  c~,i and a = ~ i < , ( a  N c~,i) �9 

I m 
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