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SEVERAL GENERALIZATIONS OF 
TVERBERG'S THEOREM 

BY 

J O H N  R. R E A Y  

ABSTRACT 

In a generalization of Radon ' s  theorem,  Tverberg showed  that each set S of at 
least (d + 1) (r - 1 )+  1 points  in R u has an r-part i t ion into (pair wise disjoint) 
subsets  S = S~ U . . .  U S, so that ["1 7 = ~ c o n v S ~ O .  This note  considers the 
following more  general  problems:  (1) H o w  large must  S C R  d be to assure that 

S has an r-part i t ion S = S~ U �9 �9 �9 U S, so that each n memb er s  of the family 
{cony S~}~_I have non-empty  intersection, where  1 _-_ n _-< r. (2) H o w  large must  
S C R d be to assure that S has an r-part i t ion for which I ' l  [_~ conv S~ is at least 
1-dimensional. 

1. Partial intersections in Tverberg's theorem 

Suppose d > 0 and r => n -> 1 are integers. Let T(d, r, n)  denote the smallest 

positive integer with the following property: Every set S C R  a of at least 

T(d,  r, n) points has an r-partition S = $1U �9 �9 �9 U S, into pair wise disjoint sets 

so that each subfamily of n of the sets in {conv S,};=I has non-empty intersection. 

A classic theorem of J. Radon asserts that T(d, 2, 2) = d + 2 and the generaliza- 

tion of Tverberg [5] takes the form T(d, r, r) = (d + 1) (r - 1) + 1. We call the 

latter number Tverberg's number and denote it by t(d, r). 

The following lemma collects a number of obvious facts. 

LEMMA 1. (a) T(d,  r, n) <-- t(d, r) for all d, r, n, and = holds if n = r. 

(b) T ( d , r , n ) = t ( d , r )  if n>=d+ l. 

(So assume 1 <= n <= min {d, r} after this.) 

(c) T(d,  r, 1) = r <- t(d, r). 

(So assume n >- 2 after this.) 

(d) T(d, r, n)  increases monotonically in each variable. 

= I t ( l ,  r) = 2r - 1 if n > 1, (e) T(1, n )  r, 
t r i f n = l .  
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(So assume d >= 2 after this.) 

(f) T(d,  r, n )  >- t (n  - 1, r). 

PROOF. (a) follows from Tverberg's Theorem, (b) follows from Helly's 

theorem (see [2]), (c) and (d) are clear from the definitions, (e) follows from (b) 

and (c), and (f) follows from (b) and (d). [] 

Lemma l(c) shows that a weaker intersection condition may lead to a strictly 

smaller cardinality requirement for S (for the case n = 1 at least), since strict 

inequality holds, i.e. T(d,  r, 1) < t(d, r), provided r _--> 2. The following theorem, 

together with Lemma 1, characterizes T(d,  r, n)  in the 2-dimensional case, and 

leads to improved bounds in 3 dimensions. 

THEOREM 2. I [ d  = n = 2 (and r >-_ 2 arbitrary), or if d = r = 3, n = 2, then 

T(d,  r, n)  = t(d, r). 

PROOF. Lemma l(a) establishes the inequality one way. For the reverse 

inequality, it suffices to show that there exists a set S CRd of exactly (d + 1) 

(r - 1) points which may not be r-partitioned into sets S = S~ U �9 �9 �9 U Sr with 

convSi n c o n v S j ~  for all distinct i,j. Let S be an ( r - 1 ) - f o l d  simplicial 

positive basis for R ~, that is, S - - {c tb lb  E B, ot = 1 ,2 , . . . ,  r -  1} where B is a 

simplicial positive basis for R d, i.e., B C R ~ has d + I points and the origin lies in 

the interior of conv B. Suppose, to the contrary, that S = S~ U . . - U  S, and 

conv S~ n conv Sj J O. Then there exists some S~, say $1, with at most 2 points, by 

the Pigeon Hole principle. (Remember  that S has (d + 1) ( r -  1) points to be 

partitioned into r disjoint subsets, and (d + 1) (r - 1) < 3r by the given limita- 

tions on d and r.) Furthermore,  each Si contains at least 2 points, since if 

S~ = {x}, then there exists a hyperplane H through x with at most r -  2 other 

points of S on one side of H, and S~ = c o n v  S~ could meet at most r - 2 other 

conv Sj. Thus we may suppose that S~ = {o~b~, a2b2} has exactly 2 points of S, and 

by a similar argument with separating hyperplanes, we may assume that b~ and 

b2 are distinct members of the simplicial positive basis B. 

It is easy to show that if conv $1 O conv S ~  O then S~ must contain at least 

two points which are multiples of b~ and/or b2. But S contains only 2 ( r - 1 )  

multiples of bl and b2, while each of the r sets S~ must contain two of them. This 

contradiction establishes the theorem. []  

COROLLARY 2.1. There exist examples o[ (t(d, r ) -  1)-sets S in R ~ such that 

any r-partition S = $ 1 0  . . . O S,, for which the sets {cony Si} pair wise intersect, 

mus t  have I Si I >-- 3 for all i. 
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COROLLARY 2.2. Suppose  r >-3 and  n = 2 or 3 in the 3 - d i m e n s i o n a l  case.  

T h e n  3r = t(3, r) - r + 3 _-< T(3, r, n) _--- t(3, r) = 4r - 3. 

PROOF. Lemma l(a) gives the right inequality and Lemma l(d) shows that it 

suffices to assume n = 2. To show the left inequality, let S be a partial simplicial 

basis of cardinality 3 r - 1 .  (That is, S contains a [ (3r -1) /4] - fo ld  simplicial 

positive basis, and is contained in a ([(3r - 1)/4] + 1)-fold simplicial positive basis 

in R3.) Assume, to the contrary, that S has an r-partition with the desired 

properties. As before, some S~ has cardinality 2, and the proof proceeds as in 

Theorem 2. []  

Note that Corollary 2.2 improves the lower bounds given by Lemma l(f) in the 

3-dimensional case. 

THEOREM 3. I f  d = n = r - 1, then  t(d,  r)  - 1 <- T (d ,  r, n )  <= t(d,  r). 

PROOF. The right inequality is Lemma l(a). For the left inequality we show 

that every set S of t (d ,  r ) -  2 = ((d + 1) ( r -  1)+ 1 ) -  2 = rd - 1 algebraically 

independent points in R a fails to have the desired r-partition. (Any set of m 

points in R a is said to be algebraical ly  i ndependen t  if their m �9 d real coordinates 

are algebraically independent over the field of the rationals.) Any r-partition of 

an algebraically independent set S = $1 tO �9 �9 �9 tO S, with rd - 1 points must have 

at least one set, say $1, of at most d - 1 points. Thus $1 has deficiency at least 2 in 

R ~, i.e., aft S~ (the smallest fiat which contains SI) is a translate of a linear 

subspace of dimension at most d - 2. Thus the sum of the deficiencies of some 

n = d of the sets S~ must be d + 1. By the algebraic independence O ~'=1 

aft S~ = 0 .  But conv S~ C_ aft S~, so S can not have the desired r-partition. []  

Note  that if d = 3, n = 3, r = 4, then 12 _--< T(3, 4, 3) _-< 13. (This is a special case 

of both Theorem 3 and Corollary 2.2.) 

CONJECTURE 1. T ( d ,  r, n )  = t (d ,  r)  for  al l  r > n >- 2 a n d  all  d >>- 3. 

2. Tverberg-type theorems without independence conditions 

A set S C R  a is said to be (r, k ) -d i v i s ib l e  if it can be partitioned into r (pair 

wise disjoint) subsets whose convex hulls intersect in a set of dimension at least 

k. Thus the theorem of Radon asserts that each set S C Ra of at least d + 2 

points is (2,0)-divisible, while Tverberg's result asserts that each ((d + 1) 

( r - 1 ) +  1)-set S C R a is (r,0)-divisible. Jiirgen Eckhoff [3] established the 

following result while characterizing a certain class of polytopes: Each (2d § 2)- 

set S C R a is (2, 1)-divisible. Eckhoff also raised the question, which we now 

consider, of what the analogous result would be for (r, 1)-divisible sets. Similar 
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results have been obtained when the points of S have some sort of indepen- 

dence. Such independence is clearly necessary for (r, k)-divisibility if k --> 2, for 

otherwise S might lie on a line and no subset could be k-dimensional. 

THEOREM 4 (Reay [4]). Each strongly independent ((d + 1 ) ( r -  1)+ k + 1)- 

set S C R d is (r, k )-divisible. 

If either d = 2 or r = 2, then it may be shown that the strong independence in 

Theorem 4 may be replaced by the weaker condition that the set is in general 

position. (See [4].) If we wish to remove all independence conditions (so that 

k =< 1), then the following example shows that the sets must be larger than those 

of Theorem 4. 

EXAMPLE. Let S be an ( r -1 ) - fo ld  cross basis in R d, that is, S = 

= -- + (r - 1)} where B is any linear basis for R d. Then S {ab l b E B, a 0,-+1, - , _  

is a ( 2 d ( r -  1)+ 1)-set, and the origin is the only possible r-divisible point, i.e., a 

point p for which there exists an r-partition S = S ~ U . . . U S ,  with 

p E I") 7~conv S~. This is easy to see from the fact that each point p ~  0 admits a 

closed half-space through p which meets S in a ( r - 1 ) - s e t ,  and so for any 

r-partition of S, pt/~ conv S~ for some i. Hence the set S is not (r - 1)-divisible. 

This shows that the bounds in the following are the best possible. 

CONJECTURE 2. Each ( 2 d ( r -  1)+ 2)-set in R d is (r, 1)-divisible. 

Note that if r = 2 this is Eckhoff's result, while if d = 1 it reduces to the special 

case d = k = 1 of Theorem 4 (since any set of distinct points in R 1 is 

automatically strongly independent). 

THEOREM 5. Each ( 2 d ( r -  1)+ 2)-set S in R d admits two distinct r-divisible 
points. 

PROOF. Let f :Rd- - -~R  be a continuous linear functional for which 

f ( x ) f f ( y )  whenever x and y are distinct points of S. The points of S may be 

labeled in a natural way, 

S = {xl, x2, '",x2ar so that f (x , )<f(x~)  whenever i < j .  

Let S l={x i , . .  ",X(d+l)(r--1)+l} and S2={Xtd-m,-,)+2,''',X2d<,-~)+2}. Each set Si 

contains exactly (d + 1 ) ( r - 1 ) +  1 points of S, so Tverberg's  theorem implies 

z, E N ~lconvS~k for some z, ~ R ~ and some r-partition S, = S,, U . . .  U S~k. 
To finish the proof it suffices to show that z~ and z2 are distinct. 

Now f(z~)<= f ( x )  for at least one x in each SI~, so f(z~)<= f ( x )  for at least r of 
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the distinct points of $1. That is, f ( z l ) ~  f(x~(r-~)+l). Similar reasoning with f and 

$2 yields f(xd(,_l)+2)<=f(z2). Thus f (zO<f(z2) ,  so Zl and z2 are distinct r- 
divisible points. [] 

If the distinct r-divisible points of Theorem 5 could use the same r-partition of 

S, then S is clearly (r, 1)-divisible. Unfortunately there is no guarantee that this is 

the case. However, the same techniques used in Theorem 5 may be applied to 

any (2(d + 1) (r - 1) + 1)-set S in R ~ to get two subsets S~ and S2 with only one 

point in common, and with an r-partition of each S~ for which z~ E f ' ) ~  

conv S~k and z~ g z2. Then 

{O/Z 1 "Ji- (1 -- a)Z2 [ 0 < a < 1} C N conv (S,k LI S2k) 
k = l  

so S is (r, 1)-divisible. This establishes a crude upper bound on the number of 

points necessary for (r, 1)-divisibility: 

COROLLARY 5.1. Each (2(d + 1)(r - 1)+ 1)-set S in R d is (r, 1)-divisible. 

The following notation and lemma will lead to a proof of Conjecture 2 for the 

2-dimensional case (Corollary 7.1) and to a stronger form of Theorem 5. 

For any finite set S in R d, let D,(S) denote the set of all r-divisible points of S. 

Clearly Di(S)DDj(S)  if i<] ,  and D,(S)=conv(S) .  Thus Tverberg's result 

states that D , ( S ) #  0 if S is a ((d + 1)r - d)-set. Easy examples show that D,(S) 
is not a convex set in general. Also let Cj(S) denote the set of all points y E R ~ 

such that each closed half-space which contains y also contains at least j points 

of S. Equivalently C~(S) may be defined as the intersection of all closed 

half-spaces which contain all but j - 1 or fewer points of S, i.e., half-spaces which 

contain more than [ S [ - j  points of S. Clearly conv S = C,(S), C ( S ) D  CL(S) if 

i <] ,  and each Cj(S) is a convex polytope. It is well known (see Theorem 2.8 of 

Danzer-Grunbaum-Klee [2]) that Cj(S) ~ O if j _-< {1S [/(d + 1)}. Here, and in 

the following, {m} denotes the smallest integer not less than m. 

LEMMA 6. Let S be any set of m points in R 2. Let n = {m/3}, and 1 <= j < n. 

Then Cj(S) = Dj(S), so Dj(S) is convex. If  31m then this holds for j = n as well; 
in any case C , ( S ) =  convDn(S). 

PROOF. If p E R 2 -  Cj(S) then there exists a closed half-space through p 

which contains at most j - 1  points of S. Thus p~.Dj(S)  and Cj(S)DDj(S).  
Birch [1] has shown that the vertices of (7,(8) (and all other points of C,(S) if 

3 [ m) are n-divisible. This establishes the last half of the lemma. We complete 

the proof by sketching an argument similar to Birch's to show that each point of 
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Cj(S) is j-divisible. 

For any point q E C~(S) consider q as the origin in a polar coordinate system 

for R 2, and write the points x, = (p,, 0,) of S in the order of increasing 0. For each 

k = 1 , . . . , j  place x, ~ Sk if i ------ k (mod j). It is easy to show that each Sk has at 

least 3 points of S and q E conv Sk. Thus S -- S~ U �9 �9 �9 U Sj is a j-partition of S 

wi thq E n ~ c o n v  Sk andq  ~Dj ( S ) .  [] 

THEOREM 7. Let S be any (2d(r - 1)+ 2)-set in R d. Suppose D,(S)  is convex. 

Then S is (r, 1)-divisible. 

PROOF. By Theorem 5, D,(S)  contains two distinct points and hence a 

non-degenerate interval I. For each y ~ I there exists an r-partition S = 

S~ U- �9 �9 U S, with y E n 7.~ conv S~. There are only finitely many r-partitions of 

S so some r-partition of S has infinitely many points of I in n ~=~convSi. 

Hence S is (r, 1)-divisible. []  

The following establishes Conjecture 2 for all values of r when S lies in the 

plane. 

COROLLARY 7.1. Each 

PROOF. If r = 2 this is 

Then r < {(4(r - 1) + 2)/3}. 

implies S is (r, 1)-divisible. 

(4(r - 1)+ 2)-set S in R 2 is (r, 1)-divisible. 

a special case of Eckhoff's theorem. Suppose r _-> 3. 

Lemma 6 implies D,(S)  is convex. Thus Theorem 7 
[] 

COROLLARY 7.2. With the hypotheses of Theorem 7, the (2d(r - 1) + 2)-set S 
has a subset X of at most (d + 1)r points which is (r, 1)-divisible. 

PROOF. Suppose, as in the proof of Theorem 7, there is a non-degenerate 

interval I2CI  and an r-partition S = $ 1 U . . .  U S, for which I2C n 7zlconv s~. 

Since each polytope cony S~ is the (finite)union of simplices with vertices in S~, 

there exists a non-degenerate interval 13 C 12 and a set X~ C S~ of at most d + 1 

points for which I3C n 7zlconvX~. Then X =  U 7~,X~ is an (r, 1)-divisible 

subset of S of at most (d + 1)r points. It is interesting to note that either the 

bound ( d +  1)r can be reduced or else the [ (d +  1)r]-set X C S  is actually 

(r, d)-divisible. []  

COROLLARY 7.3. Each ( 4 ( r - 1 ) + 2 ) - s e t  in R 2 contains a subset of at most 

3 r -  1 points which is (r, 1)-divisible. 

PROOF. Corollary 7.2 establishes the existence of such a subset X with at 

most 3r points, i.e., X has an r-partition with n ~=,convX~ at least one 

dimensional. Without loss of generality we may assume interval 13 is an edge of 
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the polygon N LlconvX~ and thus we may choose some X~ to have only 2 

points. [] 

THEOREM 8. Each (2d(r - 1) + 2)-set S in R d has a ((d + 1) (r - 1) + 2)-subset 

which has two distinct r-divisible points. 

PROOF. With the notation of Theorem 5 and its proof, we form a sequence 

X 1 , . . . ,  X, of ((d + 1) (r - 1) + 1)-subsets of S. $1 = X1 and $2 = X, and each Xi is 

obtained from X~-I by replacing one point of Xi I"1 $1 by a point from $2-  $1. 

(This process changes set S~ into $2 one point at a time.) Each Xi is a 

((d + 1 ) ( r - 1 ) +  1)-set in R d, so by Tverberg's theorem, there exists a point 

w, E D,(X~). Now wt = zl and w, = z2, so ]'(w~)<f(w,). It follows that for some 

i, f(w,_~) # f(w,). The set X~_I O Xi is the desired ((d + 1) (r - 1) + 2)-subset of S 

with two distinct r-divisible points. [] 
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