SEVERAL GENERALIZATIONS OF TVERBERG'S THEOREM

BY

JOHN R. REAY

ABSTRACT

In a generalization of Radon's theorem, Tverberg showed that each set S of at least (d + 1) (r - 1) + 1 points in \mathbb{R}^d has an r-partition into (pair wise disjoint) subsets $S = S_1 \cup \cdots \cup S_r$ so that $\bigcap_{i=1}^r \operatorname{conv} S_i \neq \emptyset$. This note considers the following more general problems: (1) How large must $S \subset \mathbb{R}^d$ be to assure that S has an r-partition $S = S_1 \cup \cdots \cup S_r$ so that each n members of the family $\{\operatorname{conv} S_i\}_{i=1}^r$ have non-empty intersection, where $1 \leq n \leq r$. (2) How large must $S \subset \mathbb{R}^d$ be to assure that S has an r-partition for which $\bigcap_{i=1}^r \operatorname{conv} S_i$ is at least 1-dimensional.

1. Partial intersections in Tverberg's theorem

Suppose d > 0 and $r \ge n \ge 1$ are integers. Let T(d, r, n) denote the smallest positive integer with the following property: Every set $S \subset \mathbb{R}^d$ of at least T(d, r, n) points has an r-partition $S = S_1 \cup \cdots \cup S_r$ into pair wise disjoint sets so that each subfamily of n of the sets in $\{\text{conv } S_i\}_{i=1}^r$ has non-empty intersection. A classic theorem of J. Radon asserts that T(d, 2, 2) = d + 2 and the generalization of Tverberg [5] takes the form T(d, r, r) = (d + 1) (r - 1) + 1. We call the latter number *Tverberg's number* and denote it by t(d, r).

The following lemma collects a number of obvious facts.

LEMMA 1. (a) $T(d, r, n) \leq t(d, r)$ for all d, r, n, and = holds if n = r. (b) T(d, r, n) = t(d, r) if $n \geq d + 1$.

(So assume $1 \le n \le \min\{d, r\}$ after this.)

(c) $T(d, r, 1) = r \le t(d, r)$.

(So assume $n \ge 2$ after this.)

(d) T(d, r, n) increases monotonically in each variable.

(e)
$$T(1, r, n) = \begin{cases} t(1, r) = 2r - 1 & \text{if } n > 1, \\ r & \text{if } n = 1. \end{cases}$$

Received February 20, 1978

(So assume $d \ge 2$ after this.) (f) $T(d, r, n) \ge t(n - 1, r)$.

PROOF. (a) follows from Tverberg's Theorem, (b) follows from Helly's theorem (see [2]), (c) and (d) are clear from the definitions, (e) follows from (b) and (c), and (f) follows from (b) and (d). \Box

Lemma 1(c) shows that a weaker intersection condition may lead to a strictly smaller cardinality requirement for S (for the case n = 1 at least), since strict inequality holds, i.e. T(d, r, 1) < t(d, r), provided $r \ge 2$. The following theorem, together with Lemma 1, characterizes T(d, r, n) in the 2-dimensional case, and leads to improved bounds in 3 dimensions.

THEOREM 2. If d = n = 2 (and $r \ge 2$ arbitrary), or if d = r = 3, n = 2, then T(d, r, n) = t(d, r).

PROOF. Lemma 1(a) establishes the inequality one way. For the reverse inequality, it suffices to show that there exists a set $S \subset \mathbb{R}^d$ of exactly (d+1)(r-1) points which may not be r-partitioned into sets $S = S_1 \cup \cdots \cup S_r$ with conv $S_i \cap \text{conv} S_i \neq \emptyset$ for all distinct *i*, *j*. Let S be an (r-1)-fold simplicial positive basis for \mathbb{R}^d , that is, $S = \{\alpha b \mid b \in B, \alpha = 1, 2, \dots, r-1\}$ where B is a simplicial positive basis for R^{d} , i.e., $B \subset R^{d}$ has d + 1 points and the origin lies in the interior of conv B. Suppose, to the contrary, that $S = S_1 \cup \cdots \cup S_r$ and conv $S_i \cap \text{conv } S_i \neq \emptyset$. Then there exists some S_i , say S_1 , with at most 2 points, by the Pigeon Hole principle. (Remember that S has (d + 1) (r - 1) points to be partitioned into r disjoint subsets, and (d+1)(r-1) < 3r by the given limitations on d and r.) Furthermore, each S_i contains at least 2 points, since if $S_i = \{x\}$, then there exists a hyperplane H through x with at most r - 2 other points of S on one side of H, and $S_i = \operatorname{conv} S_i$ could meet at most r - 2 other conv S_i. Thus we may suppose that $S_1 = \{\alpha_1 b_1, \alpha_2 b_2\}$ has exactly 2 points of S, and by a similar argument with separating hyperplanes, we may assume that b_1 and b_2 are distinct members of the simplicial positive basis B.

It is easy to show that if $\operatorname{conv} S_1 \cap \operatorname{conv} S_i \neq \emptyset$ then S_i must contain at least two points which are multiples of b_1 and/or b_2 . But S contains only 2(r-1) multiples of b_1 and b_2 , while each of the r sets S_i must contain two of them. This contradiction establishes the theorem.

COROLLARY 2.1. There exist examples of (t(d, r) - 1)-sets S in \mathbb{R}^d such that any r-partition $S = S_1 \cup \cdots \cup S_r$, for which the sets $\{\operatorname{conv} S_i\}$ pair wise intersect, must have $|S_i| \ge 3$ for all i. COROLLARY 2.2. Suppose $r \ge 3$ and n = 2 or 3 in the 3-dimensional case. Then $3r = t(3, r) - r + 3 \le T(3, r, n) \le t(3, r) = 4r - 3$.

PROOF. Lemma 1(a) gives the right inequality and Lemma 1(d) shows that it suffices to assume n = 2. To show the left inequality, let S be a partial simplicial basis of cardinality 3r - 1. (That is, S contains a [(3r - 1)/4]-fold simplicial positive basis, and is contained in a ([(3r - 1)/4] + 1)-fold simplicial positive basis in R^3 .) Assume, to the contrary, that S has an r-partition with the desired properties. As before, some S_i has cardinality 2, and the proof proceeds as in Theorem 2.

Note that Corollary 2.2 improves the lower bounds given by Lemma 1(f) in the 3-dimensional case.

THEOREM 3. If
$$d = n = r - 1$$
, then $t(d, r) - 1 \leq T(d, r, n) \leq t(d, r)$.

PROOF. The right inequality is Lemma 1(a). For the left inequality we show that every set S of t(d, r) - 2 = ((d + 1) (r - 1) + 1) - 2 = rd - 1 algebraically independent points in \mathbb{R}^d fails to have the desired r-partition. (Any set of m points in \mathbb{R}^d is said to be algebraically independent if their $m \cdot d$ real coordinates are algebraically independent over the field of the rationals.) Any r-partition of an algebraically independent set $S = S_1 \cup \cdots \cup S_r$ with rd - 1 points must have at least one set, say S_1 , of at most d - 1 points. Thus S_1 has deficiency at least 2 in \mathbb{R}^d , i.e., aff S_1 (the smallest flat which contains S_1) is a translate of a linear subspace of dimension at most d - 2. Thus the sum of the deficiencies of some n = d of the sets S_i must be d + 1. By the algebraic independence $\bigcap_{i=1}^{n} \prod_{i=1}^{n} aff S_i = \emptyset$. But conv $S_i \subseteq aff S_i$, so S can not have the desired r-partition.

Note that if d = 3, n = 3, r = 4, then $12 \le T(3, 4, 3) \le 13$. (This is a special case of both Theorem 3 and Corollary 2.2.)

CONJECTURE 1. T(d, r, n) = t(d, r) for all $r \ge n \ge 2$ and all $d \ge 3$.

2. Tverberg-type theorems without independence conditions

A set $S \subset \mathbb{R}^d$ is said to be (r, k)-divisible if it can be partitioned into r (pair wise disjoint) subsets whose convex hulls intersect in a set of dimension at least k. Thus the theorem of Radon asserts that each set $S \subset \mathbb{R}^d$ of at least d+2points is (2,0)-divisible, while Tverberg's result asserts that each ((d+1)(r-1)+1)-set $S \subset \mathbb{R}^d$ is (r, 0)-divisible. Jürgen Eckhoff [3] established the following result while characterizing a certain class of polytopes: Each (2d + 2)set $S \subset \mathbb{R}^d$ is (2, 1)-divisible. Eckhoff also raised the question, which we now consider, of what the analogous result would be for (r, 1)-divisible sets. Similar results have been obtained when the points of S have some sort of independence. Such independence is clearly necessary for (r, k)-divisibility if $k \ge 2$, for otherwise S might lie on a line and no subset could be k-dimensional.

THEOREM 4 (Reay [4]). Each strongly independent ((d+1)(r-1)+k+1)-set $S \subset \mathbb{R}^d$ is (r, k)-divisible.

If either d = 2 or r = 2, then it may be shown that the strong independence in Theorem 4 may be replaced by the weaker condition that the set is in general position. (See [4].) If we wish to remove all independence conditions (so that $k \leq 1$), then the following example shows that the sets must be larger than those of Theorem 4.

EXAMPLE. Let S be an (r-1)-fold cross basis in \mathbb{R}^d , that is, $S = \{\alpha b \mid b \in B, \alpha = 0, \pm 1, \dots, \pm (r-1)\}$ where B is any linear basis for \mathbb{R}^d . Then S is a (2d(r-1)+1)-set, and the origin is the only possible r-divisible point, i.e., a point p for which there exists an r-partition $S = S_1 \cup \dots \cup S_r$ with $p \in \bigcap_{i=1}^r \operatorname{conv} S_i$. This is easy to see from the fact that each point $p \neq 0$ admits a closed half-space through p which meets S in a (r-1)-set, and so for any r-partition of S, $p \notin \operatorname{conv} S_i$ for some i. Hence the set S is not (r-1)-divisible. This shows that the bounds in the following are the best possible.

CONJECTURE 2. Each (2d(r-1)+2)-set in \mathbb{R}^d is (r, 1)-divisible.

Note that if r = 2 this is Eckhoff's result, while if d = 1 it reduces to the special case d = k = 1 of Theorem 4 (since any set of distinct points in R^1 is automatically strongly independent).

THEOREM 5. Each (2d(r-1)+2)-set S in \mathbb{R}^d admits two distinct r-divisible points.

PROOF. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a continuous linear functional for which $f(x) \neq f(y)$ whenever x and y are distinct points of S. The points of S may be labeled in a natural way,

$$S = \{x_1, x_2, \cdots, x_{2d(r-1)+2}\}$$
 so that $f(x_i) < f(x_j)$ whenever $i < j$.

Let $S_1 = \{x_i, \dots, x_{(d+1)(r-1)+1}\}$ and $S_2 = \{x_{(d-1)(r-1)+2}, \dots, X_{2d(r-1)+2}\}$. Each set S_i contains exactly (d+1)(r-1)+1 points of S, so Tverberg's theorem implies $z_i \in \bigcap_{k=1}^r \text{conv } S_{ik}$ for some $z_i \in \mathbb{R}^d$ and some r-partition $S_i = S_{i1} \cup \dots \cup S_{ik}$. To finish the proof it suffices to show that z_1 and z_2 are distinct.

Now $f(z_1) \leq f(x)$ for at least one x in each S_{1k} , so $f(z_1) \leq f(x)$ for at least r of

the distinct points of S_1 . That is, $f(z_1) \leq f(x_{d(r-1)+1})$. Similar reasoning with f and S_2 yields $f(x_{d(r-1)+2}) \leq f(z_2)$. Thus $f(z_1) < f(z_2)$, so z_1 and z_2 are distinct r-divisible points.

If the distinct r-divisible points of Theorem 5 could use the same r-partition of S, then S is clearly (r, 1)-divisible. Unfortunately there is no guarantee that this is the case. However, the same techniques used in Theorem 5 may be applied to any (2(d + 1)(r - 1) + 1)-set S in \mathbb{R}^d to get two subsets S_1 and S_2 with only one point in common, and with an r-partition of each S_i for which $z_i \in \bigcap_{k=1}^r conv S_{ik}$ and $z_1 \neq z_2$. Then

$$\{\alpha z_1 + (1-\alpha)z_2 \mid 0 < \alpha < 1\} \subset \bigcap_{k=1}^{\prime} \operatorname{conv}(S_{1k} \cup S_{2k})$$

so S is (r, 1)-divisible. This establishes a crude upper bound on the number of points necessary for (r, 1)-divisibility:

COROLLARY 5.1. Each (2(d+1)(r-1)+1)-set S in \mathbb{R}^d is (r, 1)-divisible.

The following notation and lemma will lead to a proof of Conjecture 2 for the 2-dimensional case (Corollary 7.1) and to a stronger form of Theorem 5.

For any finite set S in \mathbb{R}^d , let $D_r(S)$ denote the set of all r-divisible points of S. Clearly $D_i(S) \supset D_i(S)$ if i < j, and $D_1(S) = \operatorname{conv}(S)$. Thus Tverberg's result states that $D_r(S) \neq \emptyset$ if S is a ((d+1)r-d)-set. Easy examples show that $D_r(S)$ is not a convex set in general. Also let $C_i(S)$ denote the set of all points $y \in \mathbb{R}^d$ such that each closed half-space which contains y also contains at least j points of S. Equivalently $C_i(S)$ may be defined as the intersection of all closed half-spaces which contain all but j - 1 or fewer points of S, i.e., half-spaces which contain more than |S| - j points of S. Clearly conv $S = C_1(S)$, $C_i(S) \supset C_i(S)$ if i < j, and each $C_i(S)$ is a convex polytope. It is well known (see Theorem 2.8 of Danzer-Grunbaum-Klee [2]) that $C_i(S) \neq \emptyset$ if $j \leq \{|S|/(d+1)\}$. Here, and in the following, $\{m\}$ denotes the smallest integer not less than m.

LEMMA 6. Let S be any set of m points in \mathbb{R}^2 . Let $n = \{m/3\}$, and $1 \le j < n$. Then $C_i(S) = D_i(S)$, so $D_i(S)$ is convex. If $3 \mid m$ then this holds for j = n as well; in any case $C_n(S) = \operatorname{conv} D_n(S)$.

PROOF. If $p \in R^2 - C_i(S)$ then there exists a closed half-space through p which contains at most j-1 points of S. Thus $p \notin D_i(S)$ and $C_i(S) \supset D_i(S)$. Birch [1] has shown that the vertices of $C_n(S)$ (and all other points of $C_n(S)$ if $3 \mid m$) are *n*-divisible. This establishes the last half of the lemma. We complete the proof by sketching an argument similar to Birch's to show that each point of $C_i(S)$ is *j*-divisible.

For any point $q \in C_i(S)$ consider q as the origin in a polar coordinate system for R^2 , and write the points $x_i = (\rho_i, \theta_i)$ of S in the order of increasing θ . For each $k = 1, \dots, j$ place $x_i \in S_k$ if $i \equiv k \pmod{j}$. It is easy to show that each S_k has at least 3 points of S and $q \in \operatorname{conv} S_k$. Thus $S = S_1 \cup \dots \cup S_j$ is a j-partition of Swith $q \in \bigcap_{i=1}^{j} \operatorname{conv} S_k$ and $q \in D_j(S)$.

THEOREM 7. Let S be any (2d(r-1)+2)-set in \mathbb{R}^d . Suppose $D_r(S)$ is convex. Then S is (r, 1)-divisible.

PROOF. By Theorem 5, $D_r(S)$ contains two distinct points and hence a non-degenerate interval *I*. For each $y \in I$ there exists an *r*-partition $S = S_1 \cup \cdots \cup S_r$, with $y \in \bigcap_{i=1}^r \operatorname{conv} S_i$. There are only finitely many *r*-partitions of *S* so some *r*-partition of *S* has infinitely many points of *I* in $\bigcap_{i=1}^r \operatorname{conv} S_i$. Hence *S* is (r, 1)-divisible.

The following establishes Conjecture 2 for all values of r when S lies in the plane.

COROLLARY 7.1. Each (4(r-1)+2)-set S in \mathbb{R}^2 is (r, 1)-divisible.

PROOF. If r = 2 this is a special case of Eckhoff's theorem. Suppose $r \ge 3$. Then $r < \{(4(r-1)+2)/3\}$. Lemma 6 implies $D_r(S)$ is convex. Thus Theorem 7 implies S is (r, 1)-divisible.

COROLLARY 7.2. With the hypotheses of Theorem 7, the (2d(r-1)+2)-set S has a subset X of at most (d+1)r points which is (r, 1)-divisible.

PROOF. Suppose, as in the proof of Theorem 7, there is a non-degenerate interval $I_2 \subset I$ and an *r*-partition $S = S_1 \cup \cdots \cup S_r$ for which $I_2 \subset \bigcap_{i=1}^r \operatorname{conv} S_i$. Since each polytope conv S_i is the (finite) union of simplices with vertices in S_i , there exists a non-degenerate interval $I_3 \subset I_2$ and a set $X_i \subset S_i$ of at most d + 1 points for which $I_3 \subset \bigcap_{i=1}^r \operatorname{conv} X_i$. Then $X = \bigcup_{i=1}^r X_i$ is an (r, 1)-divisible subset of S of at most (d + 1)r points. It is interesting to note that either the bound (d + 1)r can be reduced or else the [(d + 1)r]-set $X \subset S$ is actually (r, d)-divisible.

COROLLARY 7.3. Each (4(r-1)+2)-set in \mathbb{R}^2 contains a subset of at most 3r-1 points which is (r, 1)-divisible.

PROOF. Corollary 7.2 establishes the existence of such a subset X with at most 3r points, i.e., X has an r-partition with $\bigcap_{i=1}^{r} \operatorname{conv} X_i$ at least one dimensional. Without loss of generality we may assume interval I_3 is an edge of

the polygon $\bigcap_{i=1}^{r} \operatorname{conv} X_i$ and thus we may choose some X_i to have only 2 points.

THEOREM 8. Each (2d(r-1)+2)-set S in \mathbb{R}^d has a ((d+1)(r-1)+2)-subset which has two distinct r-divisible points.

PROOF. With the notation of Theorem 5 and its proof, we form a sequence X_1, \dots, X_t of ((d+1)(r-1)+1)-subsets of S. $S_1 = X_1$ and $S_2 = X_t$ and each X_i is obtained from X_{i-1} by replacing one point of $X_i \cap S_1$ by a point from $S_2 - S_1$. (This process changes set S_1 into S_2 one point at a time.) Each X_i is a ((d+1)(r-1)+1)-set in \mathbb{R}^d , so by Tverberg's theorem, there exists a point $w_i \in D_r(X_i)$. Now $w_1 = z_1$ and $w_i = z_2$, so $f(w_i) < f(w_t)$. It follows that for some $i, f(w_{i-1}) \neq f(w_i)$. The set $X_{i-1} \cup X_i$ is the desired ((d+1)(r-1)+2)-subset of S with two distinct r-divisible points.

REFERENCES

1. B. J. Birch, On 3N points in the plane, Proc. Camb. Phil. Soc. 55 (1959), 289-293.

2. L. Danzer, B. Grunbaum and V. Klee, *Helly's theorem and its relatives*, Proc. Symp. in Pure Math., Vol. 7, *Convexity*, Amer. Math. Soc., 1963, pp. 101-180.

3. J. Eckhoff, On a class of convex polytopes, Israel J. Math. 23 (1976), 332-336.

4. J. Reay, An extension of Radon's theorem, Illinois J. Math. 12 (1968), 184-189.

5. H. Tverberg, A generalization of Radon's theorem, J. London Math. Soc. 41 (1966), 123-128.

CLEMSON UNIVERSITY

CLEMSON, SOUTH CAROLINA, USA

AND

WESTERN WASHINGTON UNIVERSITY BELLINGHAM, WASHINGTON, USA