ON PERMANENTS OF (1, — 1)-MATRICES+

BY
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ABSTRACT
A preliminary study on permanents of (!, — I)-matrices is given. Some
inequalities are derived and a few unsolved problems, believed to be new, are

mentioned.

1. Introduction

It is well known that the evaluation of the permanent of an arbitrary matrix is
a formidable problem. For the special case when the matrices are nonnegative,
e.g.. (0, 1)-matrices, the upper and lower bounds for the permanent have been
studied extensively in the literature, mainly for their combinatorial interpreta-
tion and significance. On the other hand, the permanent of a (1, — I)-matrix,
though of combinatorial interest, has hardly been worked on.This problem is
conceivably more difficult than the corresponding one of (0, 1)-matrices. For
one thing, the permanent of a (0, l)-matrix would not decrease if a zero is
replaced by a one, yet it is totally independent of the number of —1's in a
(1,— 1)-matrix. In fact, it is easy to see that a (1, — 1)-matrix of even order can
attain its maximum permanent value n! even when all the entries are — | or
exactly half of the entries are — 1. (cf. Example 1 in Section 2.)

The purpose of this paper is, therefore, to give a preliminary study on
permanents of (I, — 1)-matrices. Denote by (, the set of all n xXn
(1, — 1)-matrices and by J,, the one with all entries equal to 1. The permanent of
A € Q, will be denoted by per A. The (n — 1) X (n — 1) submatrix obtained from
A by deleting the ith row and the jth column will be denoted by A

Two matrices A and B in €, are said to be equivalent, denoted by A ~ B, if
one is obtainable from the other by a sequence of operations of the following
types:
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(I) interchange any 2 rows or any 2 columns.

(II) negate any row or any column.

This relation is obviously an equivalence relation and hence partitions (,
into equivalence classes. It is equally obvious that |per| is invariant in each
class. The converse, however. is false in general: i.e.. [per A| = |per B| does not
necessarily imply that A ~ B. For example, consider the following matrices in
L9

Then perA =perH =8, yet A and H cannot be equivalent since H is a
Hadamard matrix and it is easy to see that any matrix equivalent to a
Hadamard matrix must itself be a Hadamard matrix.

2. Some results
For A €Q,, it is well known (e.g., {1, p. 102]) that det A =0(mod2"™"). We
show that there is an analogy for permanent.

ProrosiTion 1. Let A €(),.. Then

(mod 2" if niseven;

per A EO[ .
(mod 2" 773 if nisodd

Proor. Since per(B) =0 or =2 for all B €,, the assertion follows from
the Laplace expansion and induction on n.
As an interesting consequence of Proposition |, we obtain the following:

CoroLLARY 1. For each positive integer k, there exist at most a finite number
of (1, — )-matrices A (of any order) such that |per A|=k.

ReMARK 1. Concerning Proposition [, we do not know whether it is the best
possible in general; i.e., it is not known whether for each n, there exists A €Q,
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such that per A is divisible by 2"7 (if n is even) or 2" " (if n is odd) but by no
higher power of 2. For n = 3, examples are available to show the answer is in
the affirmative.

We next determine those A € (), the permanents of which attain the
maximum absolute value.

ProrosiTioN 2. Let A €. Then |per Al=n! if and only if A ~ J...

Proor. The sufficiency is obvious. To show the necessity, suppose per A =
n! or perA = —n! Then all the diagonal products of A have a common
nonzero value. Hence by a result of Marcus and Minc [3, p. 577]. A must have
rank I, and it is easily seen that any n X n (1. — I)-matrix of rank [ is equivalent
to J,.

ExampLE 1. The n X n chessboard matrix A €1, is defined by A; =
(=170 j=1.2.---,n Since it is easy to see that A ~ J,, we have |per A|=n!
by Proposition 1. In fact, per A = n! since we can transform A to J, by
negating rows and columns an even number of times.

In view of Proposition 1. a positive integer k = n! equals |per A| for some
A € Q, only if k is divisible by 2" or 2"~ " depending on whether n is even or
odd. This condition. however, is not sufficient as shown in the next proposition.

ProposiTion 3.1 Let AE€Q,. nz=2 If |perA|#n!, then |perAl=
(n —2)(n — ). Forn > 3, the equality holds if and only if A — J% where J¥ has
— linthe (1, 1) position and 1 elsewhere. For n = 3, equality holds if and only if
A~JY or A ~J¥ where J¥* has — 1 in the (1,2) and (2. 1) positions and |
elsewhere.

Proor. Let p and ¢ denote the number of diagonals of A with diagonal
product | and — | respectively. Then p +¢q =n! and |p —q| = |per A|. Since
lper A| # n'!, A can not have rank | and hence by the result of Marcus and
Minc [3. p. 5771 we obtain p =(n — )(n — D'and g = (n — 1)(n — 1)! Therefore,
p—q=2p-n'=2n—Nn-ND'-n'=n-2n-N'and p—-gq=n'-2qg =
n'=2n—1n—NH!=—(n—23n—-1! which imply that |perA|=
(n —2)(n — . The “if” part of the assertion for equality is trivial. To prove the
“only if” part, we first notice that for n =2, it is clear. Suppose then that
A €Q, such that |per A|=(n —2)(n — D', n = 3. Consider the submatrices
Ai€Q, . i=172--.n If for all i. |perA,|#(n—1)!, then |perA,|=
(n —3)(n —2)! implies that |per A|=n(n —3)(n -2)!'<(n’—3n +2)(n -2)! =

+1 am grateful to Dr. P. Gibson for pointing out a flaw in the original statement of this
proposition.
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(n —2)(n — 1!, a contradiction. Hence |per A,;| = (n — I)! for some i, and by
Operation I, we can assume that i =1; i.e., |Jper A= (n —1)!. Therefore
Ay~ J._, by Proposition 2 and we have:
[~ an A - G |
(43 3]
A~A =
Jn*l
L anl
By Operation II, we can also assume that a,, = [. Let h be the number of
ones among a; and k be the number of ones among a:, i=23,---.n,
0=hk=n-1. Then it is easily seen that perA’' =
(n—1'+(n—1-2h)n—1-2k)n-2)! Since l[per A’| = [per A|=

(n—2Xn—1!. we obtain [(n—D+(n—1-2h)}n-1 =2K)|=(n —-2)}n—1),
and thus there are two cases:

Case (). (n—D+(n—1-2h)}n—-1-2k)y=(n-2)(n—-1) or (n—1-2h)
(n—-1-2k)=(n=3)n-1. If h=0 or k=0, we obtain the solu-
tionsh =0.k=1and h =1, k =0.If h#0 and k # 0, then we can assume that

l=k=n-2o0or l<h=n-2since h =k =n—1is obviously impossible. If
l=k=n-2, we rewrite (n—1-2h)n—-1-2k)=(n-3)(n—-1) as
h(n—k —2)+(n—1—h)k—1)=0 from which k =n—2 follows. If k#1,
then we obtain the solution h =n — 1,k =n —2.1f, however. k = |, then n =3,
and we obtain 2 solutions: h =k =1 and h =2, k = 1. Similarly, if 1=h =
n — 2. then we obtain the solution h =n —2,k = n — 1 and for the case n — 3,2
solutions: h =k=1land h =1, k =2.

Case (ii). (n—1D)+(n—-1-2h)n—-1-2k)=—(n—1)(n—-2)or (n—1-h)
(n—1—k)+hk =0 which yields the solutions h=0, k=n-1 and
h=n—-1 k=0

In summary, if n >3, the ordered pair (h, k) must be (0, 1), (1,0), (n — I,n—
2).(n—2.n—1),(0,n—1)or (n—1,0). In all these cases, it is easy to see that
A’ ~J* and thus A ~J%* When n =3, one more solution is possible, i.e.,
(h.k)=(1,1). In this case, it is readily seen that A ~ J¥*.

ReMARK 2. Since det A is always divisible by 2"7' for A € Q,, if follows
from Propositions | and 3 that if A €, is nonsingular, n =1,2,3,4, then
lper A|=|det A|. This is, however, false in general; e.g., let
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1 -1 -1 -1 =1

A: 1 —l | -1 —1 E(lg.

Then we have det A = 16, per A = 24.
Since the maximum value n! is always attainable for |per A|, A €Q,, it is
natural to ask whether the minimum value 0 is always attainable. This is clearly
impossible for n = 1. In general, we have the following partial answer to this

question,

ProrosITION 4. If n =2 is even or n =1 (mod4), then there exist A €(),
such that per A =0.

Proor. When n is even, this is trivial. For n = 1 (mod 4), i.e., n = 4k + 1 for

some k = 1, consider the following matrix:

1 J. €,
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where p+g=r+s=n—-1=4k.
Since per A =(n — D!+ (p — g)n —2)!, we obtain:

perA=0ifandonlyif n —1=(p —q)s —r)or 2k —q)2k —r)=k.
The last equation clearly holds if we let ¢ =2k —1 and r = k.

REMARK 3. For n =3 (mod 4), it is not known in general whether there exist
A €, such that per A = 0. In the following, we give some results pertaining
to this problem.

ProrosITION 5.  There exist no 3 x 3 (1, — I)-matrix A such that per A = 0.

Proor. Let A € (L. Since |per A| is invariant under Operation I, [per A| =
|per A’| where A ~ A’ and A’ has all entries 1 in the first row and the first
column. A simple case by case check then shows that |per A’| =2 or 6.

ProrosiTION 6. If n =3 (mod4) and A € Q, such that per A =0, then

(i) A cannot contain a submatrix B such that B ~ J,_,.

(ii) A cannot be equivalent to some B €}, which has n—3 rows (or
columns) with all entries 1.

Proor. (i) Assume the contrary. Then A is equivalent to some matrix of the
form given in the proof of Proposition 4. Since per A =0 if and only if
(p—qg)s—r)=n—1=4k +2, where p+tq=r+s=n—-1=4k +2, we ob-
tain (4k +2—-2q )4k +2—2s) =4k + 2, a contradiction.

(ii) Assume the contrary. Then A ~ B where B € (), has n — 3 rows with all
entries 1. We evaluate per B by using the Laplace expansion. Let «, 8,y and 8§
denote the number of 3 x 3 submatrices formed from the other three rows with
permanent 2, —2,6 and — 6 respectively (cf. proof of Proposition 5). Then we

obtain 2a —28 + 6y — 65 =0 and a+B+‘y+6:(:). Since n =4k + 3,

<n) _ (4k +3)(4k +2)(4k + 1)
3/ 3-2-1

is clearly an odd integer m. Adding a —B+3y-38=0toa+B+y+é=m
then yields 2a +4y —28 = m, a contradiction.

Since for n = 4 all previously known examples of A for which per A = 0 are
singular, it is natural to ask whether there exist nonsingular A €, with
per A = 0. The next example originally due to L. Beasley shows that this is
indeed possible. (The proof given here is different from that of L. Beasley.)
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ExaMmprLE 2. Let A = (a;) € (1, be as follows:

[ - ]

where a; = | for all i =} and a; = — | otherwise, where n is even. Then it is
easy to see that det A =2""'. We claim that per A =0. By negating the first
column and all the rows of A, we obtain per A = —per B, where

Since B can clearly be transformed to A by applying Operation I only, we have
per B = per A. Therefore per A = —per A whence per A = 0.
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Our next result shows that if A €}, satisfies some prescribed properties,
then a better bound for per A might be possible.

ProposiTioN 7. If A € O, is normal such that |A| = n'” for all eigenvalues A,
of A then |per A|=n"".

Proor. This is an immediate consequence of a result of Marcus and Minc
[4,Th. 1] which states that for any normal matrix N, |per N|=(1/n)Z7_, | "

CoroLLArY 2. If HEQ, is a Hadamard matrix, then |per H| = |det H|.

Proor. Since HH' = nl, where I denotes the n X n identity matrix, it is
clear that H is normal and |A;|=n'” for all eigenvalues A; of H. The result
follows from Proposition 7 since it is well known that |det H| = n"".

REMARK 4. For Hadamard matrices, the bound given in Corollary 2 is, in
general, very rough. It gives the values 1, 2, 16 and 4096 for n = 1,2,4 and 8
respectively. However, it is known (cf. [6, p. 409]) that for n = 1,2,4,8, (and
12), there is only one equivalence class of Hadamard matrices and the values of
l[per H| can easily seem to be 1, 0 and 8 for n = 1,2 and 4 respectively. For
n =8, we find, with the aid of computer, that |per H| = 384.

3. Some problems
In addition to those problems mentioned in Remarks 1, 3 and 4, there are
many others. We mention here just a few of them.

ProBLEM 1. For each n =4, can one always find nonsingular A € (1, such
that |per A| = |det A|?

ProBLEM 2. Is there a decent upper bound for |per A| when A €, is
nonsingular?

ProBLEM 3. Can per H = 0 for a Hadamard matrix H other than the one of
order 2?

ProeLEM 4. Does |per H| distinguish among non-equivalent Hadamard mat-
rices? (In view of the fact mentioned in Remark 4, the first step would be to
evaluate the values of |per H| when n =16 in which case there are §
non-equivalent classes [6, p. 409].
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