ON PERMANENTS OF (1, -1)-MATRICES†

BY

EDWARD TZU-HSIA WANG

ABSTRACT

A preliminary study on permanents of (1, -1)-matrices is given. Some inequalities are derived and a few unsolved problems, believed to be new, are mentioned.

1. Introduction

It is well known that the evaluation of the permanent of an arbitrary matrix is a formidable problem. For the special case when the matrices are nonnegative, e.g., (0, 1)-matrices, the upper and lower bounds for the permanent have been studied extensively in the literature, mainly for their combinatorial interpretation and significance. On the other hand, the permanent of a (1, -1)-matrix, though of combinatorial interest, has hardly been worked on. This problem is conceivably more difficult than the corresponding one of (0, 1)-matrices. For one thing, the permanent of a (0, 1)-matrix would not decrease if a zero is replaced by a one, yet it is totally independent of the number of -1's in a (1, -1)-matrix. In fact, it is easy to see that a (1, -1)-matrix of even order can attain its maximum permanent value n! even when all the entries are -1 or exactly half of the entries are -1. (cf. Example 1 in Section 2.)

The purpose of this paper is, therefore, to give a preliminary study on permanents of (1, -1)-matrices. Denote by Ω_n the set of all $n \times n$ (1, -1)-matrices and by J_n the one with all entries equal to 1. The permanent of $A \in \Omega_n$ will be denoted by per A. The $(n-1) \times (n-1)$ submatrix obtained from A by deleting the *i*th row and the *j*th column will be denoted by A_{ij} .

Two matrices A and B in Ω_n are said to be equivalent, denoted by $A \sim B$, if one is obtainable from the other by a sequence of operations of the following types:

[†]Research supported by a University of Waterloo postdoctoral fellowship. Received July 17, 1973 and in revised form March 3, 1974.

- (I) interchange any 2 rows or any 2 columns.
- (II) negate any row or any column.

This relation is obviously an equivalence relation and hence partitions Ω_n into equivalence classes. It is equally obvious that |per| is invariant in each class. The converse, however, is false in general; i.e., |per A| = |per B| does not necessarily imply that $A \sim B$. For example, consider the following matrices in Ω_4 :

Then per A = per H = 8, yet A and H cannot be equivalent since H is a Hadamard matrix and it is easy to see that any matrix equivalent to a Hadamard matrix must itself be a Hadamard matrix.

2. Some results

For $A \in \Omega_n$, it is well known (e.g., [1, p. 102]) that det $A \equiv 0 \pmod{2^{n-1}}$. We show that there is an analogy for permanent.

Proposition 1. Let $A \in \Omega_n$. Then

$$\operatorname{per} A \equiv 0 \begin{cases} (\operatorname{mod} 2^{n/2}) & \text{if } n \text{ is even}; \\ (\operatorname{mod} 2^{(n-1)/2}) & \text{if } n \text{ is odd.} \end{cases}$$

PROOF. Since per(B) = 0 or ± 2 for all $B \in \Omega_2$, the assertion follows from the Laplace expansion and induction on n.

As an interesting consequence of Proposition 1, we obtain the following:

COROLLARY 1. For each positive integer k, there exist at most a finite number of (1, -1)-matrices A (of any order) such that |per A| = k.

REMARK 1. Concerning Proposition 1, we do not know whether it is the best possible in general; i.e., it is not known whether for each n, there exists $A \in \Omega_n$

such that per A is divisible by $2^{n/2}$ (if n is even) or $2^{(n-1)/2}$ (if n is odd) but by no higher power of 2. For $n \le 5$, examples are available to show the answer is in the affirmative.

We next determine those $A \in \Omega_n$ the permanents of which attain the maximum absolute value.

Proposition 2. Let $A \in \Omega_n$. Then |per A| = n! if and only if $A \sim J_n$.

PROOF. The sufficiency is obvious. To show the necessity, suppose per A = n! or per A = -n! Then all the diagonal products of A have a common nonzero value. Hence by a result of Marcus and Minc [3, p. 577], A must have rank 1, and it is easily seen that any $n \times n$ (1, -1)-matrix of rank 1 is equivalent to J_n .

EXAMPLE 1. The $n \times n$ chessboard matrix $A \in \Omega_n$ is defined by $A_{ij} = (-1)^{i+j}$, $i, j = 1, 2, \dots, n$. Since it is easy to see that $A \sim J_n$, we have |per A| = n! by Proposition 1. In fact, per A = n! since we can transform A to J_n by negating rows and columns an even number of times.

In view of Proposition 1, a positive integer $k \le n!$ equals |per A| for some $A \in \Omega_n$ only if k is divisible by $2^{n/2}$ or $2^{(n-1)/2}$ depending on whether n is even or odd. This condition, however, is not sufficient as shown in the next proposition.

PROPOSITION 3.† Let $A \in \Omega_n$, $n \ge 2$. If $|\text{per } A| \ne n!$, then $|\text{per } A| \le (n-2)(n-1)!$. For n > 3, the equality holds if and only if $A \sim J_n^*$ where J_n^* has -1 in the (1,1) position and 1 elsewhere. For n=3, equality holds if and only if $A \sim J_n^*$ or $A \sim J_n^*$ where J_n^* has -1 in the (1,2) and (2,1) positions and 1 elsewhere.

PROOF. Let p and q denote the number of diagonals of A with diagonal product 1 and -1 respectively. Then p+q=n! and $|p-q|=|\operatorname{per} A|$. Since $|\operatorname{per} A| \neq n!$, A can not have rank 1 and hence by the result of Marcus and Minc [3, p. 577] we obtain $p \leq (n-1)(n-1)!$ and $q \leq (n-1)(n-1)!$. Therefore, $p-q=2p-n! \leq 2(n-1)(n-1)!-n!=(n-2)(n-1)!$ and $p-q=n!-2q \geq n!-2(n-1)(n-1)!=-(n-2)(n-1)!$ which imply that $|\operatorname{per} A| \leq (n-2)(n-1)!$. The "if" part of the assertion for equality is trivial. To prove the "only if" part, we first notice that for n=2, it is clear. Suppose then that $A \in \Omega_n$ such that $|\operatorname{per} A| = (n-2)(n-1)!$, $n \geq 3$. Consider the submatrices $A_{1i} \in \Omega_{n-1}$, $i=1,2,\cdots,n$. If for all i, $|\operatorname{per} A_{1i}| \neq (n-1)!$, then $|\operatorname{per} A_{1i}| \leq (n-3)(n-2)!$ implies that $|\operatorname{per} A| \leq n(n-3)(n-2)! < (n^2-3n+2)(n-2)! =$

^{†1} am grateful to Dr. P. Gibson for pointing out a flaw in the original statement of this proposition.

(n-2)(n-1)!, a contradiction. Hence $|per A_{1i}| = (n-1)!$ for some *i*, and by Operation I, we can assume that i = 1; i.e., $|per A_{1i}| = (n-1)!$. Therefore $A_{1i} \sim J_{n-1}$ by Proposition 2 and we have:

By Operation II, we can also assume that $a_{11} = 1$. Let h be the number of ones among a_{1i} and k be the number of ones among a_{i1} , $i = 2, 3, \dots, n$, $0 \le h, k \le n - 1$. Then it is easily seen that per A' = (n-1)! + (n-1-2h)(n-1-2k)(n-2)! Since |per A'| = |per A| = (n-2)(n-1)!, we obtain |(n-1)+(n-1-2h)(n-1-2k)| = (n-2)(n-1), and thus there are two cases:

Case (i). (n-1)+(n-1-2h)(n-1-2k)=(n-2)(n-1) or (n-1-2h)(n-1-2k)=(n-3)(n-1). If h=0 or k=0, we obtain the solutions h=0, k=1 and h=1, k=0. If $h\neq 0$ and $k\neq 0$, then we can assume that $1 \le k \le n-2$ or $1 \le h \le n-2$ since h=k=n-1 is obviously impossible. If $1 \le k \le n-2$, we rewrite (n-1-2h)(n-1-2k)=(n-3)(n-1) as h(n-k-2)+(n-1-h)(k-1)=0 from which k=n-2 follows. If $k\neq 1$, then we obtain the solution h=n-1, k=n-2. If, however, k=1, then n=3, and we obtain 2 solutions: h=k=1 and h=2, k=1. Similarly, if $1 \le h \le n-2$, then we obtain the solution h=n-2, h=n-1 and for the case h=n-3, 2 solutions: h=k=1 and h=1, h=2.

Case (ii). (n-1)+(n-1-2h)(n-1-2k)=-(n-1)(n-2) or (n-1-h)(n-1-k)+hk=0 which yields the solutions h=0, k=n-1 and h=n-1, k=0.

In summary, if n > 3, the ordered pair (h, k) must be (0, 1), (1, 0), (n - 1, n - 2), (n - 2, n - 1), (0, n - 1) or (n - 1, 0). In all these cases, it is easy to see that $A' \sim J_n^*$ and thus $A \sim J_n^*$. When n = 3, one more solution is possible, i.e., (h, k) = (1, 1). In this case, it is readily seen that $A \sim J_n^{**}$.

REMARK 2. Since det A is always divisible by 2^{n-1} for $A \in \Omega_n$, if follows from Propositions 1 and 3 that if $A \in \Omega_n$ is nonsingular, n = 1, 2, 3, 4, then $|\text{per } A| \leq |\text{det } A|$. This is, however, false in general; e.g., let

Then we have $\det A = 16$, per A = 24.

Since the maximum value n! is always attainable for |per A|, $A \in \Omega_n$, it is natural to ask whether the minimum value 0 is always attainable. This is clearly impossible for n = 1. In general, we have the following partial answer to this question.

PROPOSITION 4. If $n \ge 2$ is even or $n \equiv 1 \pmod{4}$, then there exist $A \in \Omega_n$ such that per A = 0.

PROOF. When n is even, this is trivial. For $n \equiv 1 \pmod{4}$, i.e., n = 4k + 1 for some $k \ge 1$, consider the following matrix:

where p + q = r + s = n - 1 = 4k.

Since per A = (n-1)! + (p-q)(n-2)!, we obtain:

per
$$A = 0$$
 if and only if $n - 1 = (p - q)(s - r)$ or $(2k - q)(2k - r) = k$.

The last equation clearly holds if we let q = 2k - 1 and r = k.

REMARK 3. For $n \equiv 3 \pmod{4}$, it is not known in general whether there exist $A \in \Omega_n$ such that per A = 0. In the following, we give some results pertaining to this problem.

Proposition 5. There exist no $3 \times 3(1, -1)$ -matrix A such that per A = 0.

PROOF. Let $A \in \Omega_3$. Since |per A| is invariant under Operation II, |per A| = |per A'| where $A \sim A'$ and A' has all entries 1 in the first row and the first column. A simple case by case check then shows that |per A'| = 2 or 6.

Proposition 6. If $n \equiv 3 \pmod{4}$ and $A \in \Omega_n$ such that per A = 0, then

- (i) A cannot contain a submatrix B such that $B \sim J_{n-1}$.
- (ii) A cannot be equivalent to some $B \in \Omega_n$ which has n-3 rows (or columns) with all entries 1.
- PROOF. (i) Assume the contrary. Then A is equivalent to some matrix of the form given in the proof of Proposition 4. Since per A = 0 if and only if (p-q)(s-r) = n-1 = 4k+2, where p+q=r+s=n-1 = 4k+2, we obtain (4k+2-2q)(4k+2-2s) = 4k+2, a contradiction.
- (ii) Assume the contrary. Then $A \sim B$ where $B \in \Omega_n$ has n-3 rows with all entries 1. We evaluate per B by using the Laplace expansion. Let α , β , γ and δ denote the number of 3×3 submatrices formed from the other three rows with permanent 2, -2, 6 and -6 respectively (cf. proof of Proposition 5). Then we

obtain
$$2\alpha - 2\beta + 6\gamma - 6\delta = 0$$
 and $\alpha + \beta + \gamma + \delta = \binom{n}{3}$. Since $n = 4k + 3$,

$$\binom{n}{3} = \frac{(4k+3)(4k+2)(4k+1)}{3 \cdot 2 \cdot 1}$$

is clearly an odd integer m. Adding $\alpha - \beta + 3\gamma - 3\delta = 0$ to $\alpha + \beta + \gamma + \delta = m$ then yields $2\alpha + 4\gamma - 2\delta = m$, a contradiction.

Since for $n \ge 4$ all previously known examples of A for which per A = 0 are singular, it is natural to ask whether there exist nonsingular $A \in \Omega_n$ with per A = 0. The next example originally due to L. Beasley shows that this is indeed possible. (The proof given here is different from that of L. Beasley.)

Example 2. Let $A = (a_{ij}) \in \Omega_n$ be as follows:

$$A = \begin{bmatrix} 1 & -1 & -1 & \cdots & -1 \\ 1 & 1 & -1 & \cdots & -1 \\ 1 & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 1 & 1 & 1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

where $a_{ij} = 1$ for all $i \ge j$ and $a_{ij} = -1$ otherwise, where n is even. Then it is easy to see that $\det A = 2^{n-1}$. We claim that per A = 0. By negating the first column and all the rows of A, we obtain per $A = -\operatorname{per} B$, where

$$B = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & -1 & 1 & \cdots & 1 \\ 1 & -1 & -1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & -1 & -1 & \cdots & 1 \\ 1 & -1 & -1 & \cdots & -1 \end{bmatrix}$$

Since B can clearly be transformed to A by applying Operation I only, we have per B = per A. Therefore per A = -per A whence per A = 0.

Our next result shows that if $A \in \Omega_n$ satisfies some prescribed properties, then a better bound for per A might be possible.

PROPOSITION 7. If $A \in \Omega_n$ is normal such that $|\lambda_i| \le n^{1/2}$ for all eigenvalues λ_i of A then $|\operatorname{per} A| \le n^{n/2}$.

PROOF. This is an immediate consequence of a result of Marcus and Minc [4, Th. 1] which states that for any normal matrix N, $|\operatorname{per} N| \leq (1/n) \sum_{i=1}^{n} |\lambda_i|^n$.

COROLLARY 2. If $H \in \Omega_n$ is a Hadamard matrix, then $|\text{per } H| \leq |\text{det } H|$.

PROOF. Since $HH^t = nI$, where I denotes the $n \times n$ identity matrix, it is clear that H is normal and $|\lambda_i| = n^{1/2}$ for all eigenvalues λ_i of H. The result follows from Proposition 7 since it is well known that $|\det H| = n^{n/2}$.

REMARK 4. For Hadamard matrices, the bound given in Corollary 2 is, in general, very rough. It gives the values 1, 2, 16 and 4096 for n = 1, 2, 4 and 8 respectively. However, it is known (cf. [6, p. 409]) that for n = 1, 2, 4, 8, (and 12), there is only one equivalence class of Hadamard matrices and the values of |per H| can easily seem to be 1, 0 and 8 for n = 1, 2 and 4 respectively. For n = 8, we find, with the aid of computer, that |per H| = 384.

3. Some problems

In addition to those problems mentioned in Remarks 1, 3 and 4, there are many others. We mention here just a few of them.

PROBLEM 1. For each $n \ge 4$, can one always find nonsingular $A \in \Omega_n$ such that |per A| = |det A|?

PROBLEM 2. Is there a decent upper bound for |per A| when $A \in \Omega_n$ is nonsingular?

PROBLEM 3. Can per H = 0 for a Hadamard matrix H other than the one of order 2?

PROBLEM 4. Does |per H| distinguish among non-equivalent Hadamard matrices? (In view of the fact mentioned in Remark 4, the first step would be to evaluate the values of |per H| when n = 16 in which case there are 5 non-equivalent classes [6, p. 409].

ACKNOWLEDGEMENT

The author would like to thank the referee for his valuable suggestions pertaining to the original draft of this paper.

REFERENCES

- 1. D. K. Faddeev and I. S. Sominskii, *Problems in Higher Algebra* (translated by J. L. Brenner), Freeman, San Francisco, 1965.
- 2. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Prindle, Weber and Schmidt, Boston, 1969.
- 3. M. Marcus and H. Minc, Some results on doubly stochastic matrices, Proc. Amer. Math. Soc. 13(1962), 571-579.
- 4. M. Marcus and H. Minc, *Inequalities for general matrix functions*, Bull. of Amer. Math. Soc. 70 (1964), 308-313.
 - 5. H. J. Ryser, Combinatorial Mathematics, Carus Monographs, 14, Wiley, New York, 1963.
- 6. W. D. Wallis, A. P. Street, J. S. Wallis, *Combinatorics: Room Squares, Sum-Free sets, Hadamard matrices*; Lecture Notes in Mathematics, Vol 292, Springer-Verlag, Berlin, Heidelberg, New York, 1972.

DEPARTMENT OF MATHEMATICS
WILFRID LAURIER UNIVERSITY
WATERLOO, ONTARIO, CANADA