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ABSTRACT 

In the absence  of the  ax iom of choice it is somet imes ,  but not a lways,  possible 
to define the notion of cardinal number  such that for any x, x ~ Ix I. 

I. Introduction and remarks in ZF 

A central achievement  of axiomatic set theory is that it lays a proper  

foundation for the theory of cardinal numbers. If x is a well-orderable set. txl is 

defined as the least (Von Neumann) ordinal a such that x -~ ~. (x -~ y if and 

only if there is a 1:1 function f rom x onto y.) This definition is inadequate for  

non well orderable x, which may exist if the axiom of choice A C  is false. Scott  

[18], however,  using the axiom of foundation, extended the definition of Ix l to 

all sets x. (We discuss here only the usual axiom of foundation or regularity [1]. 

A somewhat  weaker version suffices for  Scott 's  definition.) If x is not well 

orderable,  Ix[ is defined as the set of all y of least possible rank satisfying 

x ~ y. L f v y  [10] and, independently, Gauntt  [2] proved that no definition of I xl  
is possible in ZF set theory minus the axiom of foundation. (ZF denotes,  at our 

convenience,  Zermelo Fraenkel or G6del Bernay 's  set theory with foundation 

and without AC. ZFE denotes ZF with G6del 's  axiom of strong choice.) 

A rather basic property of Ix l for well orderable x is that x = tx [. This 

means that I xl  is a representat ive for the ~ -equivalence class of x. For  non 

well orderable x there is clearly no reason to expect  Scott 's  definition to behave 

this way. The present  paper deals with the possibility of finding another  

definition of Ix l which satisfies x ~ Ix [ on all, or at least a larger class of x. An 

equivalent formulation of the problem is that of finding a class R of sets such 

that for  each ~ E C (the class of cardinal numbers as previously defined) there 

is a unique x E R satisfying Ix l = ~t. Such a class R will be called a class of 

cardinal representatives. If D C C can similarly speak of a class of cardinal 

representatives [or D. 
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In view of the form that Scott 's  definition takes it would be very surprising if 

a class of cardinal representatives can be proved to exist. And indeed our first 

theorem is the following. 

THEOREM 1.I. It is consistent with Z F  set theory that no class of cardinal 

respresentatives exists. (We of course assume the consistency of Z F  

throughout.)  

Rather more surprising, and considerably more difficult to prove is the 

following theorem. 

THEOREM 1.2. It is consistent with Z F  + ~ A C  that a class of  cardinal 

representatives exists. 

Following our announcement  of the above results, Azriel Levy  posed to us 

the following question (which we slightly rephrase). 

QUESTION. What is the largest D C C which has a definable class of cardinal 

representatives ? 
Levy  remarked that such a D should contain the cardinals of the ranks as 

well as those of the well orderable sets. 

We conjecture that the answer to the question is the class DR of cardinals 

such that Jl£ = ix l for  some ordinal definable x (see [13]). DR has a definable 

class of representatives (represent d/ by the x of least definition satisfying 

Ixl = AQ. We propose that DR is widest in the following sense. 

CONJECTURE. If R is a definable class which can be proved in Z F  to 

represent  a class D CC then Z F  proves D CDR. 

In the absence of a proof of the conjecture we content  ourselves with 

Theorem 3 and its corollaries below. The fact that DR can be unequal to E in 

Corollary 4 means that DR is more comprehensive than a natural closure of 

the well ordered cardinals under + ,  x, and power set. Corollary 1.5 shows that 

the class DC of ordinal definable cardinal numbers is, in some sense, too big to 

answer the question. These results indicate, at least to us, that the answer 

should be DR. We hope that the remarks preceeding the statement of Theorem 

3 have some independent interest. 

In the following definitions we completely ignore the finite cardinals. The 

reader can modify the definitions to include them if he wishes. If a and/3 are 

ordinal numbers,  R~(a) is defined inductively via:Ro(a)=a,  R~+l(a) = 
~(R~(a) ) ,  and R e ( a ) =  [_) R~(a) for  limit/3 ( ~ ( x )  denotes the power set of 

V</3 

x). We define the following class of C. 
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E is the smallest class of  cardinals containing all the IRa(~t)l and closed under 

+ ,  x and exponentiat ion 

ldp is the class of cardinals d~ satisfying d~ x d~ = d L  

Idm is the class of cardinals d/t satisfying d~ + d~ = d~. 

Df  is the class of  cardinals d~ satisfying ~ ~ ~ .  

REMARK A. Idp c ldm C C - D f  C C and no equalities are provable in ZF 

([5] and [7]). 

REMARK B. J R0(ct)[ E Idp. 

PROOF. The following fact  explicity proves  the result for  successor /3  in 

such a way that the inductively generated maps patch for  limit/3. 

FACT. If  X is transit ive and ~ :  X x X--~X is 1 : 1 and onto then there is a 1 : 1 

onto extension cI,*,~* : ~ ( X )  x ~ ( X ) - *  :~(X) such that qb* is explicitly defina- 

ble f rom qb. 

In proving the fact  we let y ~ "z mean that there is a ~b : y--*z which is 1 : i, 

onto, and explicitly definable f rom ~ .  The fact  will be clear once it is shown 

that 

. 9 ( X )  - X = "  ( . ~ ( X )  x , ~ ( X ) )  - ( X  x X ) .  

We list the following easy consequences of the laws of exponents, the 

Cantor-Bernstein theorem, and the fact that 2 C X (X is transitive): 

X ~ ' 2 x X ~ ' l x X  

~ ( X )  ~ ".@(2 x X)  ~ ".@(X) x .@(X) ~ "X x .oP(X) ~ ".@(X) x X 

~ ( X )  ~ ' ~ ( i  + X )  ~ ' 2 x  ~ ( X )  ~ ' 4 x  .~(X) ~ ' 3 x  PP(X). 

The one slightly sticky point is to show 

. ~ ( x )  = " ~ ( x )  - x .  

To see this let $ be a 1 : 1, onto, ~-definable function $ : ~ (X) - -~ ,~ (X)  x ~ ( X ) .  

Let  /9 be the y-axis  projection p:  .~(X)×.~(X)---~.oP(X). (po$)  ~X is a 

• - d e f i n a b l e  map f rom X to ~ ( X ) .  Cantor ' s  diagonal argument  gives a 

~-definable B E ~ ( X )  - Range ( p o $ )  IX. The map z : ~ ( X ) - - * ~ ( X ) - X  

de fned  by 

z(A ) = ~b-'(A,B) 

shows via the Cantor-Bernstein theorem that ~ ( X )  - ~ ' 9 ( X ) -  X. 

The equivalences now in hand give as desired: 
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~ ( x )  x .~(x)  - x x x = ( .~(x) - x )  x x u x x ( .~(x) - x )  u ( .~(x) - x )  

x ( .~(x) - x )  

~ "  3 ~ ( x )  ~ "  . ~ ( x )  ~"  .op(x) -  x .  

REMARK C. E CIdm. (Immediate from Remark B.) 

REMARK D. E CIdp is an equivalent to AC. (This formally proves Tarski 's  

"C CIdp'  is an equivalent to A C "  [21].) 

PROOF. In the presence of regularity (without which the remark is false) 

Tarski 's argument derives A C  f rom 

(Va) (V/3) [ IRo(6)[  + I ~ I ~  Idp] 

(or, fl, % are understood to range over ordinals). 

THEOREM 3. It is consistent with Z F  that there is an ~ E DR N Df  such 

that {dl~- n}.~o has no class of  cardinal representatives. 

Theorem 3 clearly implies Theorem 1 as well as the following two corollaries. 

COROLLARY 4. E C D R C D C C C  and no equalities are provable in ZF. 

PROOF. E - - D R  is not provable since E C I d m  while DR n D f #  O in the 

model of Theorem 3. DR -- DC is not provable since in the model of Theorem 

! .3{M - n } , ~  C DC but {.,/,t - n },~,,~ DR. DR = DC is not provable since there 

are models [1] in which Df # • and 2 ~ cannot  be will ordered. A theorem of 

Tarski [21] shows that Df, hence C, has a subset of cardinal 2 ~. Therefore  in 

such a model C cannot be well ordered while DC can. 

COROLLARY 5. DC cannot be proved to have a class of  representatives. 

PROOF. In the model of Theorem 3 { ~  - n } . ~  CDC. 

A final remark concerning cardinal representatives is that without A C  one 

cannot  have a canonical similarity f rom x to Ix I- In fact,  we can say the 

following. 

REMARK E. A C  is equivalent to "Fo r  every  family of pairs of similar sets 

there is a function associating each pair with a similarity between its terms".  

PROOF. An element of X is explicitly definable from any similarity between 

X x to and (X x to) O {~}. 

The remainder of the paper is organized as follows. Theorem 3, hence also 

Theorem 1, is proved in Section II. Theorem 2 is proved in Section III 

which also obtains some bonus results which are discussed below. 
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In [9] Levy attempted unsucessfully to give a Fraenkel-Mostowski consis- 

tency proof for the following statement A: "The  axiom of choice for families of 

finite sets holds while the axiom of choice for families of countable sets fails." 

Howard [4] (also see [6]) found a mistake in Levy 's  work. He in fact proved 

that a FraenkeI-Mostowski consistency proof for A is impossible. From (3.17) 

and (3.19) follows Theorem 6. 

THEOREM 6. A is consistent with ZF. 

A is thus an example of an abstract (that is, not concerned with sets of -.- of 

sets of ordinals) ZF independence which is not a Fraenkel-Mostowski indepen- 

dence. This complements a number of examples of Fraenkel-Mostowski 

independences which are not ZF independences ([6] and [15]). 

Sageev [19] recently settled a long standing question by proving AC 

independent of C = Idm. (This result has been independently achieved in a 

FraenkeI-Mostowski model by Halpern and Howard.) He actually proved AC 

independent of Order + Z(No)+ C - - I d m  where Order is the linear ordering 

principle and Z(l~0) is: "There  is a function which selects a (finite or) countable 

subset from every set." He raises two questions, and indicates that the second 

is probably false. 

Z(~)-->Order? 

Order + Z(~)--->C = Idm? 

We have proven both of these false. The independence of Order f rom Z ( ~ )  

will be included in [17]. The other is proved in (3.23) and is stated as follows 

THEOREM 7. C = Idm is independent, in ZF, o[ Order + Z(~t,). 

We close this introductory section with the following problem. 

PROBLEM. Prove the independence in ZF of AC from "C = E".  

In view of the above discussion a solution to the problem would immediately 

give both Sageev's  theorem and our Theorem 1.2. (Segeev's model [19] can also 

be used for Theorem 6.) 

II. Proof of Theorem 3 

The proof of Theorem 3 is partly based on our original proof of Theorem 

1, which appears in [6]. We sketch below a somewhat simpler proof of 

Theorem 1 which we recently noticed. 

It suffices by [15, II B 2] to give a FraenkeI-Mostowski model for  the 

nonexistence of a class of cardinal representatives. The arguments of this 

section will show that the ordered model of [12] suffices. It is even easier to 
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consider the unordered model of [12] (also see [7]). In this model a very simple 

proof  is available for  the analogue of our L e m m a  2.12. 

In view of the above  paragraph it is natural to wonder  why we base our 

present  model on Mostowski ' s  ordered model rather than his unordered model. 

The problem is that in order to create a bad OD (ordinal definable) set one 

apparent ly  has to introduce pseudoindividuals in ~.~.~(o~) rather than in 

~o?(to) (as is more usual ([5], [6], and [14]). Things work particularly well if 

each pseudoindividual resembles  the set of individuals in Mostowski ' s  unor- 

dered while the set of pseudoindividuals resembles  the set of individuals in 

Mostowski ' s  ordered model. If, however ,  the pseudoindividuals resemble  the 

individuals of  Mostowski ' s  unordered model, L e m m a  2.10 is false and 

considerable complexi ty  is introduced. 

It should not be inferred that Theorem 3 could not be proved if Mos- 

towski ' s  unordered model were used. The obstacles can be c i rcumvented and 

doing so has the following interesting by-product .  

THEOREM 2.1. Let ~(x)  be a boundable formula (see [5]). If 
(3x @ OD)dP(x) has a Fraenkel-Mostowski model then it is consistent with ZF. 

This detour  is not taken since in order to prove Theorem !.3 one would have 

to generalize the above theorem to surjectivity boundable formulae (see [15]). 

We do not know how to do this. 

2.2. Constants. We follow here the set-up of Cohen [1] with a few 

refinements f rom Shoenfield [20]. The model is built f rom three basic kinds of  

constant  symbols .  
(I)  Ground model constants.  These are constants  which denote the mem- 

bers of a fixed ground model M of ZFE. 

(2) Undefined (new) constants.  

(3) Abstract ion constants.  

Constants  of types 2 and 3 are discussed in [l]. Those of type (3) are 

discussed in [20]. The constants  are arranged in a hierarchy which is complete ly  

determined once one is told where the new constants  fit. In the resulting model 

each e lement  is named by several constants.  The element  and its constant  are 

usually identified. In ambiguous situations a constant  for a is denoted a. The 

new constants  here are as follows. 

(a) There is a single new constant  < at level to +6 .  

(c) There is a set of new constants  {Zq}q~o at level to +3 .  The index set Q 

is the set of rational numbers.  
(d) For each Zq there is a countable set {a~, bq, ...} of new constants  at level 
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o~ + 2. T h e  sets  are  d i s jo in t  fo r  d i s t inc t  q. 

(e) F o r  each  new c o n s t a n t  a at  level  to + 2  the re  is a c o u n t a b l e  set  

{r~, s~, - . .}  of  new c o n s t a n t s  at  level  to + I .The  se ts  a re  d i s jo in t  for  d i s t inc t  a. 

2.3. Conditions. An interval in ~ (oJ )  is an E C ~ ( ~ o )  which  has  desc r ip -  

t ion of  the  fo rm:  

E = { r  E ~ ( ~ o ) : n ,  E r ^ . . -  ^ np E r Am,  ~ r ^ . . .  A m k ~  r}. 

The  in te rva l s  f o rm  the  bas is  fo r  the  usual  t o p o l o g y  on .@(w) ( ident i f ied  with  2~). 

The  s t a t e m e n t  " r  E E "  has  an equ iva l en t  f o r m u l a t i o n  invo lv ing  r and  f ini tely 

m a n y  p a r a m e t e r s  f rom ~o. 

A condition is a finite set  of  s t a t e m e n t s  hav ing  the fo rm:  

P ={r, EE,, . . . ,rk ~Ek} 

where  the  rl are  d i s t inc t  new c o n s t a n t s  at  level  o~ + ! and  the  El a re  in te rva l s .  I f  

Q = { s ,  E F,,. . . ,Sh ~ Fh} 

is a n o t h e r  cond i t i on  then  P--< Q iff {r~}~-, c {sj}~-, and  r~ = s~---~Fj CE,.  

2.4. Forcing. As in [I]  it is on ly  r equ i r ed  to s ta te  when  a c o n s t a n t  is 

s t rong ly  f o r c e d  ( the s t rong  fo rc ing  re la t ion  is d e n o t e d  I-*) to be a m e m b e r  of  a 

new cons tan t .  

(a) P ~-* " c  ~ -<"  iff P F* " c  = (Zp, Zq)"  and p < q  in Q. 

(b) P F* " c  E I "  iff P ~* " c  = Zo"  for  some  p E Q. 

(c) P ~-* " c  @ Z~'" iff P ~-* " c  = a "  for  s o m e  a in the  set  of  new c o n s t a n t s  

at level to + 2 which  is a s s o c i a t e d  with p. 

(d) P F-* " c  E a "  iff P J-* " c  = r "  for  an r in the  set of  c o n s t a n t s  at  level  

to + I which  is a s s o c i a t e d  with a. 

(e) P F* " c  ~ r "  iff P F* " c = n "  for  s o m e  n E t o  and  the re  is s o m e  

in terva l  E with n C n E and  " r  E E "  E P. 

2.5. The model. As in [1] the  a b o v e  se t -up  p r o d u c e s  a mode l  V of  ZF 

con ta in ing  M as a t r ans i t i ve  p r o p e r  subc la s s .  The  f o l l o w i n g f a c t s  are  eas i ly  

ver if ied and  can  be s t a ted  in V. 

(a) I and  U I a re  d i s jo in t  sets  of  infini te sets .  U U I c ~ ( ~ o )  < l inear ly  

o r d e r s  I d e n s e l y  wi thou t  endpo in t s .  

If x E V and G C I U  U I u  U U I  is finite we say  x E V G  if x is 

def inable  (in V) f rom p a r a m e t e r s  in M U {I, < } U G. If  H well  o r d e r s  G and 

a E On (the c lass  of  o rd ina l s )  T(H,a)  d e n o t e s  the  a t h  e l e m e n t  in the  " l e a s t  

de f in i t ion"  well  o rde r ing  of  V G  i n d u c e d  by  H and a f ixed well  o rde r ing  of  
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M U {I, < }. We list the following standard properties of ~7 and T. 

(b) The replacement schema extends to formulae involving V and T. 

(c) (Vx C V) (3G) [x ~ V G ] .  

(d) VG contains all ordinals and well orderings of G. 

(e) If x is definable (using E I, V, and T) from parameters in VG, then 

xEVG. 
(f) If H well orders G then ~D(a) = T(H,a) is a I:I onto function from 

On to VG. 

We say that G is [ull if for any gEIU UL gNGZ~---~gEG. The 

disjointness of I U U I guarantees that every G is contained in a unique 

smallest (finite) full G*. A well ordering H of G defines canonically a well 

ordering H* of G* so VG = VG* 

2.6. Density and continuity. The following statements describe in V the 

relation between truth, in V, and forcing. Such a description was first given in 

[3]. Proofs are omitted here. Some detail is worked out in a similar but more 

difficult situation in (3.9)- (3.13), 

(a) Density. Every a E  U I  is dense in ~(to), that is, a n E ~ O ,  for 

any interval E. 

(b) Continuity (Schema). Let ~P(x~,'",x,,yl,...,ym, z~,". ,zk) have parame- 

ters in M U {I, < } (and exactly the x 's ,  y 's ,  and z 's  free). Suppose ~ is true at 

distinct r l , - . . , r , c  U U I ,  a , - . - , a , , E  U I ,  and Z 1 , - - ' , Z k E I .  There are 

disjoint intervals E , , .  •., E,  with rl E E~ which satisfy in addition the follow- 

ing. For any full G, G' and ~0 : G-->G' such that: 

(1) r~,...,rn, a, , . . . ,am, Z h . ' ' , Z k C G ;  

(2) ~o is an E-isomorphism; 
(3) ~0 I I  is a< - i somorph i sm;  

(4) ~p(r,) E E,; 

qb(~0(r0,-- .,~0(r,),~0(a.),.. ",~(am),~p(Z0,"" ",~(Zk)) holds. 

SUPPORTLEMMA 2.7. (a) If G~ and G~ are full then ~TG~N VG2= 

VG, n G2. 

(b) If x ~ V there is a unique smallest full G (denoted Gx) with x ~ G. 

Part (b) follows from (a) and the finiteness of the G's.  Part (a) is proved by a 

now standard process of combining the arguments of Mostowski [1 I](for both 

the ordered and unordered models) with those of Halpern and Levy [3]. We 

offer as references also [15, Prop. 3.5] and [6] (where this process is called the 

support iemma). Somewhat more detail is given for an analogus iemma in 

Section III (Lemma 3.16). 
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We say X = * Y if there are cofinite X '  C X, Y'  C Y such that X '  = Y'.  ~ * is 

an equivalence relation. The set A is said to be amorphous if A is infinite but is 

not the disjoint union of two infinite subsets.  

LEMMA 2.8. (a) Every subset of I is a finite union of <-open intervals 

(possibly using + oo as endpoints ) and singletons. 

(b) Every Z ~ I is amorphous. 

(c) If Z,, Z~ E I then either Z, = Z2 or Z, ~ * Z2. 

PROOF. The three assert ions of the lemma mirror standard facts  about  

Mostowski ' s  ordered and unordered models.  Since they are somewhat  less 

difficult to prove than L e m m a  2.7 a we include their proofs  as an illustration of 

how the continuity schema can be used to mimic permutat ion arguments.  

If  the lemma is false the offending subset A or function/" is in V G  for some 

fixed full G. The negations of the desired conclusions imply: 

(a) there is a minimal < -interval K C I with endpoints  in (G n I )  U { +- ~} 

and there is a Z, E K N A  and a Z 2 ~ K - A ;  

(b) some a G Z - G  is in A;  

(c) f ( a ) = b  for some a ~ Z , - G ,  b E Z 2 - G .  

One now finds a G, D G such that the Z, and a which exist above  are in G ' .  

Then one finds a G2 D G and ~ :G~---~G2 which satisfies the criteria of continuity 

such that ~ takes: 

(a) Z, to Z2; 

(b) a to some b E Z - ( A  U G ) ;  

(c) b to some b '  also in Z 2 - G ,  a to a. 

By continuity, one concludes the contradictions: (a) Z ~ E ( K  n A ) N  

(K - A ) ;  

(b) b c A  N ( Z - A ) ;  

(c) b = f ( a )  = b'. 

LEraMA 2.9. If G is full and G' E VG (G' is a finite subset of 

I U  U I U  U U I ) , t h e n G ' C G .  

PROOF. The argument  breaks into three cases. 

Case i. There is an r C ( G ' N  U U I ) - G .  

Let  r E a E U I. By continuity, using a s ta tement  listing r, a, and the 

members  of G, G '  contains a n E some interval E. This, and the finiteness of 

G '  contradicts  density (2.6a). 

Case 2. G ' - G N  U U I = ; 2 ~ b u t t h e r e e x i s t s a C ( G ' - G ) n  U I .  

Let a E Z E L As in (2.8), continuity shows that Z -  G c G ' ,  contradicting 
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the finiteness of G ' .  

Case 3. ( G ' - G ) C I .  

Suppose Z E G '  - G. Let  K be the minimal < - interval containing Z and 

with endpoints  f rom G U {-+ ~}. It follows by continuity that K C G ' ,  again 

contradicting the finiteness of G ' .  

LEMMA 2.10. I f X  is amorphous there is a unique Z @ I such that X ~ *Z. 

PROOF. This argument  is a slight refinement of the arguments  in (2.9). The 

uniqueness is clear by (2.8c). Then given X is in V G  for some fixed full G. 

X f 2 V G  since X would otherwise be well orderable and not amorphous.  

Therefore  there is a w ~ X such that Gw - G / ~ .  

Case 1. There is an r E G ~ - G N  U U I. 

We prove this case to be contradictory.  Fix a well ordering H of (G U Gw) - 

{r}. Denote concatenat ion of orderings by ^. For suitable a and /3: 

and the sentence 

(*) 

X =  T ( H  IG, a)  

w = T ( H ^ { r } , ~ )  

T ( H  ^{r},/3) E T ( H  I G , a )  A r ~ Gr~n^{~,o~ 

holds. By continuity this sentence continues to hold with r replaced by an 

arbi trary r '  ~ a n E where r ~ a ~ U I and E is a suitable interval avoiding 

( G U G w ) - { r } .  If r' ~ r" and 

T ( H  ~{r '}, /3)= T ( H  ^ {r"},~) 

the support  l emma shows 

Gr~{r,~,~ C(G U Gw) - { r }  and r '  ~ Gr~.^{r,~.~. 

This contradicts  the fact  that (*) holds at r ' .  Therefore  by density if E '  and E" 

are disjoint subintervals of E then 

X "  = { T ( H  ^ {r'} ,  f l)  : r' E a N E ' }  

X"  = { T ( H  ^ {r"}.fl) : r" E a n E"} 

are infinite disjoint subintervals of X, and I a s  not amorphous.  

Case 2. ( G w - G )  N U U I - - ~ "  but there is an a ~ ( G w - G ) N  U I .  

Follow the argument  for Case I replacing r by a. Produce the analogous 
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sentence (*) which holds whenever a is replaced by a '  G Z - (G~ U G), where 

a E Z ~ I. Also argue as in Case I that if a '  ~ a" then 

T ( H ^ { a ' } , ~ ) ~  T(H^{a"},[3). The map ~ : Z - ( G ~  U G) defined by 

• (a') = T(H^{a'},[3) 

establishes that Z ~ * Y  for an infinite Y C X. Since X is amorphous Y ~ * X  

and Z ~ * X  as desired. 

Case 3. G~ - G C I. 

This case will be proved contradictory. Again follow the < argument of 

Case I this time replacing r E U U I by Z E I. One obtains, by the arguments 

of Cases 1 and 2, a subset Y C X which is similar to an open< - intervalof I. 

Since < densely orders I, Y can be split into infinite disjoint subsets and X is 

not amorphous.  

LEMMA 2.11. ] I ] ~ D R O D f .  

PROOF. It is obvious from (2.8a) that Ill ~ o f  (see [71). To show Ill E DR we 

must find an OD set similar to I. Such a set is the set of ~*--equivalence 

classes of amorphous subsets of ~ ( ~ ) .  The results of (2.8b) and 2.10) prove 

that the map 4~(Z) = [Z]~. is I : I and onto this set. Our definition of the set has 

no parameters whatever (since w can be defined). 

The key fact in proving that { I l l -  n } , ~  has no set of cardinal representatives 

is the following. 

LEMMA 2.12. I[ IX{ = I I { -  n then IG,, n l [  >= n. 

PROOF. Fix a well ordering H of Gx. We will use H, and other parameters in 

G,,, to define a finite subset of I which contains at least n elements. This proves 

the lemma by (2.9). 

Let 

U = { y E V :  G ~ - G x C I } .  

SUBLEMMA 2.13. X C U. 

PROOF. Assume there is a w ~ X with G~, - Gx ~ ( ~. The argument breaks 

down into the same three cases as the proof of (2.10). Without going into detail 

we state what the arguments conclude in each case. 

Case I. (Gw-Gx) (3  U U I~(3 .  

There is a mapping of X onto an infinite disjoint collection of subinterwds of 

some interval E. This conlradicts (2.8a). 

Case 2. ( ( ; ~ - G x ) N  U U I = ( ' ~  b u t ( G ~ - G x ) N  U I ~ .  
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In this case there is an amorphous  subset  of X, contradicting the fact  that X 

can be linearly ordered (since I can). This is argued in [7]. 

C a s e  3. G~ - Gx  C I. 

This is as desired. 

We resume the proof  of L e m m a  (2.12). For y E U, let H~ be the ordering of 

G~ defined (with the parameter  H )  by: 

H, I O y n ( U t u  U UI)=H t 6 , , n ( U l u  U U l ) ,  

H,, r o y n t =  <rG~,nt.  

Let ay be the solution of T ( H y , a )  = y. Using only the parameter  H we extend 

to all of U. In the following expression all parentheses are assumed to be on 

the right. 

y < z iff a y = a t ^ a ~ = a t  

IG~ - I[ <-_ IGz - I I ^ [ G  ~ - I[ = IG~ - I 1 ~  

G~ - I <= H.G~ - I ^ G~ - I  = G~ - I---~ 

IGr n II--< IG~ n E^IGy n II : IG~ n I I ~  

G ~ n I < * G ~ N I .  

Above _-< , .  and < * denote the first difference orderings induced by H and < 

respectively.  We remark that < is rigged so that all intervals are sets. The 

subsequent  use of open  or c o n n e c t e d  refers to the order < on Y C U. 

SUBLEMMA 2.14. I f  dP is a l : i f u n c t i o n  f r o m  l o n t o  Y C U there are d i s jo in t  

< - o p e n  in tervals  J , , - . . , J k  o f  I such  tha t  : 

(a) l - ( J , . . .  U J~) is f in i te;  

(b) dp ~ .li is q < - p r e s e r v i n g  m a p  w h o s e  range  is an open  c o n n e c t e d  s u b s e t  

o f  Y.  

PROOF. The intervals J , , . . - , Jk  are the minimal intervals with endpoints  in 

( G .  n I)  U { -+ oo}. If Z • J, then O ( Z )  E V(G,,, U {Z}) so G.~z~ C G .  U {Z}. It is a 

typical application of continuity to show that for any Z ' E  Ji, Ctz, = O~z and 

G~z,~ = ( G . ~ z , - { Z } ) U  {Z'}. (Note: the alternative is that ¢1, maps Ji into the 

well orderable V G z  - {Z}.) A study of the definition of < on Y will show that 

qb r J~ is order preserving with open range J~ is clearly connected,  in fact  order 

complete,  f rom (2.8a). Since the range of OJ~ is open and relatively connected it 

is connected.  
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SUBLEMMA 2.15. (a) I f  J C !  is an open interval and ~:  J---~l is order 

preserving then dp is the identity. 

(b) I f  A C I and d~: A --~I is I : I then it is the identity except on finitely many  

points. 

PROOF. A continuity argument  modeled on the proof  of (2.8c) proves that @ 

is the identity except  on G ,  Oqb ~[G.I. This gives (b) immediately and (a) 

follows shortly thereafter .  

SUBLEUUA 2.16. Suppose Y C U and I YI = I11- Y is uniquely expressed as 

the disjoint union o[ the least possible number of  singletons and open connected 

subsets o[ Y which are isomorphic to open intervals in L 

PROOF. Sublemma 2.14 guarantees that Y is a disjoint union of a finite 

number  of such singletons and open sets. Let  F~ and F2 be two such 

expressions.  Let J be the leftmost interval of I which is isomorphic,  under @, 

to an R ~ (F, U F2) - (F~ n F2). Without loss of generality, say R E F~. We will 

show that Fj does not involve the least possible number  of open intervals. 

By the choice of  J there is an interval K with the same left endpoint  as J and 

isomorphic under t/, to an S E F >  We claim that ~k and @ agree on their 

common  domain,  qb and tp cannot  differ on only finitely many points since then 

at a bad Z ~ J n K the Y - o p e n  interval (~(Z),qb(Z)) would be empty  and 

Range ~b would be disconnected.  On the other hand ~ and • cant ' t  differ on 

infinitely many points. The proper ty  of (2.15b) applies to Y because Y ~ L 

Applying this to if@ ' or qbO ' gives that both are the identity except  on finitely 

many points. 

Since • and ~ agree on their common domain and J is the leftmost  interval 

involved, it follows that J is a proper  subinterval of K and, in particular, the 

right endpoint Z of J is in K. 

Let L be the interval with left endpoint  Z which is isomorphic,  under p, to a 

Q E F,. L exists since distinct open sets of F, are isomorphic to disjoint 

subintervals of L (If the subintervals intersect they do so in an interval. The 

argument  of the last paragraph shows that the corresponding components  of F~ 

intersect.) Hence  only finitely many points of I do ot occur  in one such 

interval. 

Arguing again f rom (2.15b), p and ~ agree on their common domain. 

Therefore  p U ~ b U @  is a 1:1 onto < - p r e s e r v i n g  function K U J U L  to 

Q u R U S. Q u R U S is open and connected f rom topological arguments  

hence so is Q u { t ~ ( Z ) } u  R. This is < - i s o m o r p h i c  to J U { Z } U  L so Q u 
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{to(Z)} U R can replace both Q and R in F~, thus reducing the number of 

intervals in F~ by one. 

We now return for the last time to the proof of Lemma 2.12. For  the given X 

with IxI = [ l l - n  let Y = x U{k~, . . . ,k ,} where the k, are the first n integers 

not in X( IX  I E Df so X N ~o is finite.). Let  F be the decomposit ion of Y given 

by (2.16). From its definition, F E VGx. Let  to be the union of the isomorphisms 

defined from the open sets of F to intervals of I. Sublemma 2.15a quickly shows 

that to is uniquely defined and I : l .  41 @VGx hence so are 

to[{kh- '- ,k,} n Domain to], / -Range  to, and 

G = ~0[{k,,.- .,k,} n Domain ~0] U ( / -Range  to). 

Since III ~ Df finite subtraction is well defined so II - Range to l = I Y - Domain 

tol. Therefore  

IGI = I{k, , . . . ,  k,} N Domain tol + I Y-Domain tO[ 

= I{k,,-- . ,k ,}U (Y-Domain to)l >--I{k,, "" ", k,}l = n. 

G is the promised H-def inable  finite subset of I with IGI-> n. By (2.9), IG×I >-_ n 
and the lemma is proved. 

2.17. PROOF OF THEOREM 3. From Lemma 2.11, III E DR n 19[. It remains to 

show that { l I I -  n } , ~  has no set of representatives.  Assume that it did, say R. 

Each X E R is in VGR since it can be defined from R as "that  member of R 

with cardinal I I{-  m "  for some m. Therefore  IG×I <_-IG, I. On the other hand, 

for  n > IGR[, if X has cardinal I I I - n  then, by Lemma 2.12, IGx{>-n > IGRI. 
This is a contradiction. 

III. Prools of Theorems 2, 6, and 7 

In this section we employ a model of a new type. As the discussion of 

Theorem 6 indicates this model is quite unlike a FraenkeI-Mostowski model. 

It is a special case of the models we described in [16]. Sageev informs us that he 

has independently considered similar models. (The conjecture,  in [19], of 

Theorem 7 was based on such considerations.) We describe the model here in 

what we believe to be sufficient detail for the interested reader. Some 

exhaust ive checking, particularly in Lemmas 3.7 and 3.10 is omitted. A more 

general discussion of these models [17] will contain some of this checking as 

well as a proof of the Boolean prime ideal theorem in this and similar models. 

Here we content ourselves with a proof of the ordering theorem, as needed for 

Theorem 7. (It is a theorem of Mathias (see [1 I]) that the prime ideal theorem 

implies the ordering principle and not conversely.)  

Theorem 2 does have an easy proof in the weak set theory Z F  with atoms. 
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Levy [8] gives a model which resembles Mostowski 's  unordered model but has 

finite and countable supports. One can show that if G is a countable support 

then VG contains a set of every cardinal number. Since VG can be well ordered 

there is a class of cardinal representatives. We are aware, however, of no 

model of Z F  in which a similar argument can be carried out. Indeed we are 

unable to prove Theorem 2 using any of the more classical models of ZF. 

The present model is best intuitively described as an to-iteration of the 

Cohen-Halpern-Levy model ([ I, p.' 136] and [3]). It is constructed from a set 

I =  I,_J In 
n E ~  

where I ~ -- 2 and In+, is an independent set of generic onto functions from to to 

I.. In this context the Cohen-Halpern-Levy model is the submodel based on Io 

and each L is a set of independent ways to well order the entire model based on 

I._} ~<.I,. Models of this iterated sort were first introduced in [22] and it was 

shown there how the model could be completely described in the ground 

model. In the present case such a description is so simple that we can forget 

about the apparatus of iteration and describe the model in the style of Cohen 

[1]. 

3.1. Constants. As in (2.2) we need only specify the new constants. These 

are: 

(a) countably many function symbols of order 0 at level to + 3  in the 

hierarchy; 

(b) countably many function symbols of order n + 1 E to at the first level 

beyond that containing all (the usual canonical) symbols of the form (re, f)  

where m ~ to and f is a function symbol of order n;  

(c) the symbol I at the first level beyond that containing all new function 

symbols. 

In the sequel the variables f , g , . . ,  will range over new function symbols. 

3.2. Forcing terms, In the model the function symbols of order n will 

become the functions of I,. For this one would want forcing conditions to be 

finite sets of statements of the form fp = g where f has order n + I, p E to, and 

g has order n (2 is the set of function symbols of order - I). To carry out 

standard arguments one needs, in addition, that if the condition P forces a 

statement involving f , , . . . , f ,  and I then so does the subcondition of P 

involving only the f , , . . . ,  fn. A moment 's  consideration of the condition 

P = { f p - - g ,  fq = h } 
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and the statement " ' f ( p ) ~  f(q) '"  reveals that this is not true of the conditions 

described above. 

The arguments can be rescued by demanding that a condition be closed 

under the induced equalities and inequalities. In the example considered above 

the inequality f p ~  fq is induced (if g ~  h) so the condition will include this 

inequality and the restricted condition will force fp / fq. The problem now is to 

codify what equalities and inequalities are induced and prove that none have 

been overlooked. This is the reason for the following definitions of forcing 

term, subterm, and substitution. 

(a) A forcing term is a sequence of the form t : fp~. • • pro, m >= O. where f is 

a new function symbol of order n _-> m - 1. The order of t is n - m. 0 and I are 

included as terms (but not function symbols) of order - 1. 

(b) t~ is a subterm of t2(t, <- t2) if t, is a nonvoid initial subsequence of t2. 

(c) If t~ and t2 are terms of order n and t is a term, the substitution 

t- 
| t  unless t, ~ t 

s u b ( t | ,  t2, t) 
: t , . . . . . . . .  

3.3. Conditions. A condition is a finite set of equalities and inequalities 

between terms which has the consistency and closure properties listed below. 

For convenience we use @) and ~) within a condition so as not to confuse this 

situation with the more normal use o f  = or ~ elsewhere, Q is a variable which 

can stand for O or ~). A condition P satisfies: 

(a) If  t,(Dt2 ~ P then t, and t2 have the same order, t, occurs in P if some 

t,Gt2 ~ P. 

(b) t, O t 2 ~  P - ~  t, ~t2f f~ P. 

(c) t~(Dt2 E P - ~  t2Qt, @ P. 

(d) If  t occurs in P and t ,<: t  then t, O t , ~ P .  

(e) If  t, and t2 are distinct new function symbols of the same order and both 

occur in P then t, ~ ) t2C  P. 0~)l E P. 

(f) If  t, O t 2 ~  P and t o t '  E P then sub(t,,t2, t ) ( ~ t '  E P. 

(g) If  t, and t2 occur in P and have the same order then some t,Qt2 @ P. 

If t has order - 1  then t O O E P  or t O I E P .  

REMARK 3.4. For fixed P the relation t , -~p t2<->t ,Ot~@P is an equival- 

ence relation on the terms which occur in P. The equivalence class of t, denoted 

[t]p consists of terms with the same order as t. 

A P-class is basic if it contains a (unique, by (2.4b and e)) function symbol,0,  

or I. P is basic if every class of P is basic. For an arbitrary P, B ( P )  denotes the 
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set of  basic terms which occu r  in P. If  B is a set of  basic terms terms P I B is 

the subset  of  P consis t ing of  those  equalit ies and inequalit ies a m o n g  terms 

whose  func t ion  symbols  are f rom B, together  with the terms 0 and I. P I B is 

verified to be a condi t ion.  

REMARK 3.5. E v e r y  condi t ion can be ex tended  to a basic condi t ion (condi-  

t ions are ordered  under  c ) .  

REMARK 3.6. Let  [ and g be funct ion  symbols  o f  o rder  n and n -  ! 

respect ively.  If  P conta ins  neither fp (~z)g nor fp (~)h for  a funct ion  symbol  

h ~ g  then some extens ion  of  P conta ins  [p (&)g. 

LEMMA 3.7. P and Q have a common extension (are compatible) in the set 

of conditions if and only if both : 

(a) P I B(P) N B(Q)  and Q I B(P)  n B(Q)  are compatible; and 

(b) i[ [t ]o N {t']o 7 z ~ and both are basic classes then both contain the same 

function symbol. 

PROOF. Parts (a) and (b) are clear ly necessary .  To  show that they are 

sufficient one  cons iders  two special cases.  

(I)  B ( Q ) C B ( P )  and Q D P r B(Q).  In this case  the c o m m o n  extens ion  R 

is to sat isfy R I B ( Q ) = Q .  

(2) Q I P,(P) A B ( Q ) = P  t P,(P) N B ( Q ) .  

If  P and Q are arbi t rary  but satisfy (a) and (b) one  can first use the special 

Case  (I)  to obtain a P '  and Q '  which satisfy the hypo theses  of  the special Case  

(2). Case (2) then finishes the job. 

Case (1) is proved by a d o w n w a r d  induct ion on the orders  of  the terms 

involved in P and Q. One  proves  for  each such n that P has an ex tens ion  R 

such that R and Q satisfy the hypo theses  of  (I)  and R and Q have the same 

terms of  orders  _<-n. Part (b) is the case  n --0.  

Case (2) is proved by taking the transit ive c losure  o f  the relat ions ~ and 

o on the terms of  P U Q, closing under  subst i tut ion requi rement  (3.3 g), and 

in t roducing (~z) be tween different classes at the same level. 

Both of  the above  a rgument s  require cons iderable  checking,  the details of  

which we defer  to [171. 

3.8. Forcing. As in (2.4) it suffices to state what  is s t rongly  fo rced  ( I- *) to 

be a member  of  a new constant .  

(a) P~ *"c E f "  iff P F*"c  = (p,g)" for  some  p E to and fp  (~)g ~ P. 

(b) P F * "c E I" iff P k * "c = f"  for  some  f. 

The usual (weak) forc ing relation discussed in [ i 3] and [20] is deno ted  by I-, 
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3.9. Forcing automorphisms. Let  7r be an order -preserv ing  permuta t ion  

of  the new funct ion  symbols .  ¢r is ex tended  to terms via 7 r ( f p , . . . p k )  = 

(err)p, • • "pk and to cons tan t s  by letting 7 r ( I ) =  I and o therwise  fol lowing the 

recipe of  I l l .  It is s tandard  that 

P F- ~(c~, " - . .  Cm) ~ 7rP F ~(¢rc, ,  • • -, 7rc,~) 

where  ~ ( x , , - - . , x . )  is parameter- f ree .  7r is called a forcing automorphism. 

LEMMA 3.10. L e t P  I B ( P ) N B ( Q ) a n d Q  p B(P)  n B ( Q ) b e c o m p a t i b l e .  

There is a forcing automorphism ~ such that 7r fixes B (P)  n B ( Q )  and P is 

compatible with wQ. 

PROOF. F rom (3.7) one  can assume Q ~ P t B(P)  n B(Q) ,  and eve ry  term 

of  B(P)  - B ( Q )  has a P class which intersects  a basic Q class. Induct ive ly  one 

can assume ]B(P)  - B ( Q )  I = I and map Q so that the funct ion  symbol  in that 

class coincides  with the one  in the P class. It turns out  that ¢rQ ~ P. Again 

some detail is left to [17]. 

LEMMA 3.1 1. Let ~ have parameters in M U I U B where B is a set of  new 

function symbols. Then 

P ~ - ~ P  r B~-~.  

PROOF. One  can now car ry  out  an a rgument  of  [ I ,  p. 139]. If  fo r  some 

Q ~ P t B, Q F *--¢P then by (3.9) and (3.10) there is a forc ing  a u t o m o r p h i s m  

¢r such that ¢rQ I B = Q I B and P and 7rQ are compat ible .  I f  R is a c o m m o n  

ex tens ion  of  ¢rQ and P then by s tandard  proper t ies  of  ~- [ I I , R F ~  A --¢P, a 

cont radic t ion .  

3.12. The model. As in Cohen  [1] the a b o v e  set-up leads to a model V of  

Z F  conta in ing M as a transit ive proper  subclass.  F rom the parameter  L one 

can define the s equence /~  via Io = I n 2 ~ and I.+~ = I n I~. F r o m  (3.5),(3.6)and 

(3.8) it fo l lows in a s tandard  wa y  [1] that  each  f E I,+, takes every  value in I ,  

infinitely many  times. 

If  x E V and G c I is finite we say,  as in (2.5), that  x E VG if x is definable in 

V f r o m  parameters  in M U { I } U  G. I f  H well orders  G, T ( H , a )  denotes  the 

otth e lement  in the well order ing of  VG which H induces.  The  s tandard  

proper t ies  o f  V and T listed in (2.5 b-f) hold. 

3.13. Density and continuity. An interval in I .  (n >=0) is a subset  of  the 

f o r m  
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E = { f  ~ ~. :[p, = d ,  A . . .  A f p o  = d ° }  

where d , . . - - ,  dn E In ,. The following two facts  illustrate clearly the sense in 

which V is an to-iteration of the Ha lpe rn-Levy  model [3]. They  should be 

compared  with the corresponding s ta tements  of [3]. and also those of (2.6). 

(a) Density. Every  interval of In is nonempty  (hence infinite). 

PROOF. This is a density s tatement  since it shows that I, is dense in the 

natural topology on I'~_,. I ts  truth is established by standard arguments  [11 f rom 

the following clear consequence  of (3.5) and (3.6). 

FACT. For every  condition P and every new function symbol  f not occuring 

in P there is an extension of P which contains an arbitrary finite set of 

equations of the form [p = t where no p E to occurs  twice and each t occurs in 

P. 

(b) Continuity. Let ~ ( x , , . - - , x ~ )  have parameters  in M U { I } U  U m<,lm- 

Assume ~ ( [ , , - - " , / k )  is true in V for  distinct f , , . - " . h  E In. There are disjoint 

intervals E , . . .  -, Ek ~ I, such that ~ @ E,  all i, and qb([',. • . . f~,)  is true for  any 

f ' , - . . . [ ~ ,  with [ ;@E,  all i. 

PRoov. Let q t (x , , . . - , x~)  be the result of replacing each ~ - p a r a m e t e r  in 

U ,,<~ I,, by a term x ,p , . . . p~  where the given parameter  is f , p , . . .  Ph. This is 

possible since every g E I,, is onto I,, ,. I f  we include in E, all the equations 

fp, = g, which arise in this way then for any f ' ~  E,, f ' P , ' ' ' P h  = f , p , ' ' ' p h .  

Thus solving the problem for qr automatically solves the problem for  ~ .  

Therefore  we need only allow ~ to have parameters  in M U {I}. 

Since ~ is true there are now constants  f , . - . . , j ~  and a condition P with 

B(P) = {/~,,'' ",fk} such that 

Take  

ere(t, . . . . .h).  

E~ = { / E  I , :  (Vp E ¢o)[~p occurs in P---,fp =~p]} ;  

Ei is clearly an interval and f~ EEi .  Assume f ' , .  -.,  f~, are distinct members  of L 

with f', E E,. all i. P is true of the f', since terms at level m < n have the same 

values for f;, as for ~. At level n we have guaranteed f'~ = f ~ f ~  6~[i ~ P and 

f ' ~J f ;o[~  ~f~  E P by choosing t h e / ' i s  distinct. 

Refine the E~s as needed to make them disjoint and continue to satisfy 

~ El. This is possible since the f~ are distinct. The new E, satisfy the 

conclusion of continuity. 
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REMARK 3.14. G C I is level if for  some  n, G c I,. E v e r y  x ~ V is in VG for  

s o m e  level  G. In f ac t  if x ~ VG then  x E V(G n I , )  fo r  the  h ighes t  n w h e r e  

G U I , ~ ; J .  

PROOF. E a c h  f C / ~  exp l i c i t ly  def ines  an e n u m e r a t i o n  of  U , , < , I , .  T h e  

e l e m e n t s  g,, = f 0 -  - • 0 (n - m - 1 t imes)  each  map  to on to  I,,. T h e s e  maps  can  

be  m a d e  in to  e n u m e r a t i o n s  of  I ,  by  leas t  p r e i m a g e  and  these  e n u m e r a t i o n s  can  

be  m e s h e d  into an e n u m e r a t i o n  of  U , ,< ,L, .  

REMARK 3.15. I f  G C I  is finite and  G E V G '  for  G ' c I ,  then G C G ' U  

U .~.t.. 

PV.~F. I has  a na tura l  l inear  o r d e r i n g  def ined  induc t ive ly  by  o r d e r i n g  Io as  a 

subse t  of  2 ~, I , . ,  as  a subse t  of  I7, and  I by  le t t ing I , . ,  d o m i n a t e  I , .  T h u s  each  

f E G is a l so  in VG'  (def ined as  the  k th  e l e m e n t  of  G unde r  < ) so  it suffices to  

a s s u m e  tha t  G = {.f}. 

F i r s t  a s s u m e  f E I ,  - G. Le t  G = {g,,-  - ".gk}. I f  .f E VG then  fo r  s o m e  a,  

f = T ( < g , , . .  ".gk > . ~ ) .  

An app l i ca t i on  of  con t i nu i t y  shows  f ' =  T ( < g , . . ' ' , g k  > , a )  fo r  any  .f' in a 

su i t ab le  infini te in te rva l  E, a con t r ad i c t i on .  

N e x t  a s s u m e  f C I ,  fo r  s o m e  m > n. Le t  [' be an a rb i t r a ry  m e m b e r  of  I ,  - G. 

f '  = fp ,  - • - p~ for  some  p , ,  • • -, pj C to. Thus  if [ ~ VG, ['  E VG c o n t r a d i c t i n g  the  

a b o v e  pa r ag raph .  

SUPPORT LEMMA 3.16. ( C o m p a r e  wi th  (2.7). I f  G, U G2 C !, and x E VG, n 

VG2 then either 

(a) G, n G2• ~ and x ~ V G ,  n G2. 

(b) G,  n G 2 =  ~ and for some G C I,_,. x C VG. 

PROOF. The  s i tua t ion  is suff ic ient ly  like tha t  in [3, Lem.  24] that  we can  

v i r tua l ly  c o p y  down  the proof .  Le t  G,  n G2 = {I ' , , ' "  ",/'r}, G,  - G2 = {g,, • - ",gs}. 

G 2 - G , = { h , ,  . . . , h , } .  F o r  su i tab le  a and  /3. 

x = T ( < f , , . - . , f r ,  g , . " ' , g s  > , o r ) =  T ( < f , , . . . , f r ,  h , , . . . , h ,  > , [ 3 ) .  

By con t i nu i t y  there  a re  E , , . . - . E s  not  con ta in ing  [ , . . .  ",fr or  h , . . . . , h ,  such 

that  w h e n e v e r  g ~ E E ,  i - -  I . . - . . s ;  

T((I , , . "  .,fr, g',,." ", g's), or) = T ( < f , , - . . . [ , .  h , , . .  .. h,), [3) = x. 

T h e r e f o r e  
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x = { T ( ( f , . . . . . f r .  g ' , . . . . . g ' ) . a ) : g ' , E E ,  a l l / =  I . . . . , s } .  

The parameters  of the above  definition are {f~.---.f,} and the elements  of I, , 

which occur  in the definitions of the Ei. If G, n G2 J ~J these other parameters  

are all in VG, n G, and Case (a) holds. If G, n G2 = ~ there are no f s  and only 

parameters  in I, , come in. This gives Case (b). 

The following three corollaries prove Theorem 6. 

COROLLARY 3.17. A C  fails for a countable family o f  countable sets. 

PROOF. The family { I , } , ~  has no choice function. If cb were such a choice 

function and ~b E VG for some G c I, then 4~(I, ~,) ~ VG contradicting (3.15). 

COROLLARY 3.18. For every x C V there is a unique G~ such that 

(1) x E G ~ ;  

(2) G, C i ,  and n is least such that some G Ci ,  satisfies (I); 

(3) G~ has least cardinality among all G c I, which satisfy (I) and (2). 

PROOF. Clear f rom (3.16). 

COROLL~V 3.19. There is a linear ordering of  V defined in V. 

PROOF. Let  H~ = < I G ,  where < is the ordering of I. Le t  o~ be the 

solution of x = T ( H , , a ) .  The embedding x---~(G~,ax) maps V into the clearly 

orderable class ( U , ~ < ~ ( I o ) )  x On. (3~<~(x) denotes  the set of finite subsets 

of x.) This defines an ordering on V. 

A C( U . ~ < ~ ( I . ) ) ×  On is said to be solid if for each level G, 

p ( A  n ({G}x On)) 

is a well ordered cardinal (p denotes the y-axis  projection). 

L~MMA 3.20. Every x is canonically similar to a solid set. 

PROOF. We begin with the observat ion that the well ordered V cardinals are 

exactly the M cardinals. This follows by standard arguments  [20] once it is 

shown that the collection of conditions satisfies the countable chain condition. 

The collection of conditions is in fact  countable.  

Let  ~'~ be the designated (by axiom E in M) 1:1 M-funct ions  f rom a onto 

I a 1. If B C On let toe denote  the canonical order isomorphism B ~ Ordinal B. 

Map x to a solid set by the following steps. 

Step 1. Use the mapping qb Ix  where qb is, as in the proof  of (3.19), an 

injection of V into ( U ,Eo~<,o( l , ) )x  On. 

Step 2. For  each level G let B ( G )  denote O(~(x)  n ({B} xOn)).Define q~ on 
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~[x ]  by Jetting tb(G,a)=~bs<G~(a), tboqb maps x to a set y such that 

p(y  n ) { G } x  On)) is a lways an ordinal a ( G ) .  

Step 3. Define ~ on ¢ o 6 I x l  via (G./3) = ~'o~(/3). ~ro#,o¢[xl  is solid and 

s ro# /o~  is I :1 .  

LEMMA3.21. S u p p o s e x  ~ V G ,  a n d y  E V G ,  a r e s o l i d a n d x ~ - y .  T h e r e i s a  

solid z @ V G ,  n V G 2  such that  x ~ y -~ z. 

PROOF. F o r x  @ V and n C~o let 

[x],,={(G, ol)Ex:GE U .::<,,(Im)}. 
n<m 

Evidently x E VG---~[x], E VG. We claim that if x and y are solid and x ~ y 

then for some n, Ix] ,  = [ y ] , .  The claim implies the lemma as follows. 

x - [ x ] , c V G  for any nonempty  G CI, .  Therefore  x - I x ] ,  -~ { ~ } x a  for 

some c~ E On since V G  is well orderable.  Let z = [x],  U ({~} x c~). Evidently 

z ~ x .  z is solid, and z E VG, .  z @ VG2 since also Z = [ y ] ,  U ( { ~ } x a )  so 

z E V G ,  NVG~.  

The claim is established as follows. Let @ be a 1 : 1 onto map f rom x to y. Let  

n be such that 4~ E V G  for G C I,. For ( G * . a )  E [x],  the first coordinate G** 

of @(G*.c~) is in VG*.  By (3.13b), G** C G *  U U ,.<, I,,. Similarly using @-J, 

* C G** U U m<,I,, Since both G* and G** are level, one quickly concludes 

G * =  G** f rom (3.13b). @ therefore  restricts to a 1:1 onto function f rom 

x n ({G*} × On) to y fq ({G*} × On). Hence  p (x n ({G*} x On)) = 

p(y M ({G *} x On)) because  both are similar well ordered cardinals. Thus 

x n ({G*} x On) = y fl ({G*} x On) for  any G* E U ,<,,~<~(I,~). This means 

[x],  = [y],. 

3.22. PROOF oFTHEOREM 1.2. We prove that a class of cardinal representa-  

tives exists in V. For each : / / E  C let A ,  be the unique set A satisfying: 

A is solid and [A I= . / / .  

GA C !, and n is least possible with this proper ty  for  any A satisfying 

( i )  

(2) 
( i) .  

(3) 
(4) 

IGA[ is minimal among those of all A satisfying (1) and (2). 

A = T(GA,a)  for  a least among those A satisfying (1), (2) and (3). 

The above definition is justified by L e m m a  3.20, 3.21, and the Support  

L e m m a  3.16. {A,  :J/t @ C} is a class of cardinal representat ives.  

3.23. PROOF OF THEOREM 1.7. We have already proved Order in V. We 

must now prove Z(~o) and C / I d m  in V. To prove Z(N0) we choose in a 

canonical similarities of L e m m a  3.20 it suffices to do this for  a solid x. If x ¢ Q 
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then x - [ x  ], # Q for some unique least n. ~<~o(I,)x {0} is then a canonically 

chosen countable set which intersects x. 

To prove C # Idm we use the set L Applying the results of L e m m a  3.21 to 

I x { 0 }  and then back to I it follows that if A C I and A ~ I  then 

I - A C U ,<~ lm for some m. Thus I - A is finite or countable.  Since I is not 

countable (by (3.17) it follows that no two disjoint subsets of I are similar to I 

and I I I  Z ldm. 
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