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SPHERICALLY MEAN p-VALENT 
QUASIREGULAR MAPPINGS 

BY 

RUTH MINIOWlTZ 

ABSTRACT 

We introduce spherically mean p-valent quasiregular mappings. Using the 
method of modulus of path families we prove a distortion theorem and describe 
the boundary behaviour of this class of mappings. 

I. Introduction 

We derive first a lower bound for the modulus of a certain path family in the 

unit ball B" in RL We also introduce spherically mean p-valent quasiregular 

mappings (s.m. p-valent). The latter class reduces to the classical circumferen- 

tially mean p-valent for n = 2. Then using the lower bound for the modulus of a 

certain path family, we get a distortion theorem for s.m. p-valent quasiregular 

mappings in B ' .  

Finally we show that if f : B" ~ R" is s.m. p-valent and quasiregular then, as 

for n = 2, If(x)t can not grow too rapidly near too many points of c~B'. 

2. Notation and terminology 

Notation and terminology are in general as in [4]. When writing f :  D --~ R', we 

assume throughout that D is a domain in R", f is continuous, and n >-2. If 

A C D, y E R', we define the multiplicity (possibly infinite) functions 

N(y, f, A)  = card{/-~(y) N A}, 

N(B,f,A )= sup N(y,f,A ), 
yEB 

N(f,A)= N(R~,[,A), 

Nff)  = N(R", f, D). 
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If f :D---~R" is sense-preserving, discrete and open then every x E D has 

arbitrarily small normal neighborhoods U (i.e. domains U with U CD, 
f(O(U)) = Off(U)) and U n f-~(f(x))= {x}) with connected complement in R" 

[4, 2.9]. The local topological index of f at a point x E D, denoted i (x, f), may be 

defined as 

(2.1) i(x,f) = N(f, U) 

where U is any normal neighborhood of x [4, theorem 2.12]. 

We denote 

(2.2) n(y, f ,D)= ~ i(x,f). 
x~y ~(y) 

We also denote 

(2.3) v(s, "r) 1 fs n(y,f,B"(s))dA(y) 
OJn_l"l "n-I  n-I(~r) 

where dA(y)  is an element of spherical Lebesgue measure on S"-~(]y I), and 

(2.4) L(r) = Max If(x )l. 

Let F be a family of non-constant paths in R". The modulus of F is denoted by 

M(F). F(A, B, D)  denotes the family of all paths which connect A and B in D. 

The modulus of a ring domain, i.e. a domain R CR ~ such that CR has exactly 

two connected components D~ and D2, is defined as 

= [  to,_~ ,~,,,-z, 
(2.5) mod R \ M(F(D,,  D2, R ) ) ]  

The conformal capacity of R is 

capR = inff. IVul"dm. 

where V denotes the gradient, and where the infimum is taken over all 

real-valued CLfunctions u in R with boundary values 0 on OD~ and 1 on aD2. It 

can be shown that 

cap R = M(F) where F = F(OD~, OD2, R).  

Therefore we obtain that mod R = (to._dcap R)' t"- ') .  
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3. Distortion theorem for spherically mean p-valent quasiregular mappings 

LEMMA 3.1. Let f : B" ~ R" be a non-constant K-quasiregular mapping. Let 

r,, > 0, ro < r < 1 and r < s < 1. Let 

(3.1) F = I - ' C ( B ' ( L ( r ) ) )  

where L(r)  is defined in (2A), and let 

r = r ( B "  (to), F, B" (s)). ( 3 . a )  

Then 

(3.3) M(F)=> to._, 
[ Aor(S - '~  

2~log ro(s 2_ r 2) ] 

where A, is a positive constant that depends only on n. 

PROOf. Denote by F* the symmetric image of F n B"(s)  by reflection in 

S ' - ' ( s ) ,  and denote by B* the symmetric image of B~(ro) by reflection in 

S~-'(s). Then by a Lemma of Gehring's [2, lemma 1], it follows that 

M ( r )  = ~M(F*) 

where F* = F(B"(ro) U B * , ( F  N B ' ( s ) )  U F*, R"). 

Consider the condenser 

(P, Q) = (CB'(ro), (F N B"(s))  U F*). 

From the definitions it follows that 

cap(P, Q) = M(F(S"-'(ro), (F n B"(s))  O F*, CB'(ro))), 

and therefore 
M(F*) --_ > cap(P, Q). 

Let Sym be a cap symmetrization with center at the origin. Then by [6, 7.5] 

cap(P, Q) >_- cap (Sym (P), Sym(Q)).  

As a K-quasiregular mapping satisfies the maximum principle, for every 

r_<- t-<_ s there exists an xoE S"-~(t) such that If(xo)l= R and R ~ L(r), 
therefore F n S" - i ( t )~  ~ for every r =< t =< s. The last fact implies that Sym(Q) 

contains the line segment E = {x E R"; x = ue ,  r ~ u <= r'~} where e~ is a unit 
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vector in the direction of x, and r'~=s2/r. But as F(a(Sym(P)), 

Sym (Q), Sym (P)) < F(c~ (Sym (P)), E, Sym (P)) (F, < F2 means that F2 is minor- 

ized by F1, see [8, 6.3]), it follows that 

cap (Sym (P), Sym (Q)) _-> M(F2) 

where F2 = F(S"-'(ro), E, C(B"  (ro))). 
As the modulus of a path family is a conformal invariant, it follows that 

M(G)  = M(F2) 

where f'2 = F(T, S"-' ,  B")  and T = {x E R ~ ; x = ue,, 0 <= u <- r,} and 

r , -  r \ s : -  r~,]" 

Thus 

O ) n - -  I n - -  I 
M ( F 2 ) = M ( I ' 2 ) = c a p R e ( 1 ) - [ m o d R c ( 1 ) ]  

where Re (a) is a Gr6tzsch' ring domain with complementary components B", 

and 

{ x E R " ; x = u e , , a < = u < ~ } U { o o } ,  a > l .  

Using an estimate for Re(a) ,  see [1, p. 235], we have that 

mod Re (a)  _-< log h.a 

where h. is a positive constant that depends only on n. Therefore we have 

1 w .  _ ,  M(r) > 

and (3.3) follows by substituting the value of r,. 

Under the same assumptions as in Lemma 3.1, if s = C O R O L L A R Y  3 . 1 .  

(1 + r)/2 then 

(3.4) M(r)_-> 
COn - 1 

r r (] -I- r}l"-' 
2[l~ r) ] 

where A. is a positive constant that depends only on n. 
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THEOREM 3.1. Let [ : B "'--+ R ~ be a non-constant K-quasiregular mapping. If  

ro > 0, then for r, < r < 1 

, 

where s -- (1 + r)/2, ~, is a positive constant that depends only on n, v(s, r) is 

defined in (2.3) and L (r) is defined in (2.4). 

PROOF. Let ro< r < 1, denote L0 = L(ro), and L = L(r). Let x ~ S"-'(r) be a 

point such that I f (x ) l  = g and define 

r = F ( B " ( r , , ) , f - ' C ( B " ( L ) ) ,  B " ( s ) ) .  

From Corol lary 3.1 it fol lows that 

M ( F ) =  > 

where )t, is a positive constant that depends only on n. In order to find an upper 

bound for M(F) ,  define 

log )IYI if y e B " ( L ) \ B " ( L o ) = D ,  
p(Y)= 

0 elsewhere. 

One can easily show that p is an admissible function for / (F) .  As in the proof of 

theorem 3.2 [4] we can get 

M(F) _-< Ko(f) f o n  (y, f, B" (s))o (Y)"din (y) 

= L , .  dA(y)dr 
.-, log ~o 

o 

= < Ko(f)to,-, o r. 
o 

Combining the upper and lower bounds we get the desired inequality. 

DEFINITION 3.1. [5] Let f : D  ~ R "  be a sense-preserving discrete and open 

mapping; f is said to be spherically mean p-valent (/7 > 0) if 

p ( R ) = p ( R , f , D ) -  1 _ ,  I , n(Y,I,D)dA(y)<=P 
(0.-11~ .Is"- (R) 

for every 0 < R < oo. 
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COROLLARY 3.2. Let f : B" --~ R" be a spherically mean p-valent quasiregular 

mapping. Then 

J l l 
I f(x)-f(~ / 1 -1x l /  

where C is a positive constant that depends on f, [3 = (N/KI(f))  ~l~'-~ with 

N = i(O,f) and 3, = (2pK,,(f))'""-". 

PROOF. By theorem 5.2 in [7], there exists a r,, > 0 such that 

I f (x ) - f (O)]<=Alx lZ;  x ~ B"(r,,) 

and therefore it is easy to see that 

I f (x)- f (O)]<=U]x ~l_-U-~);  xeB"(r , , ) .  

In particular L(ro) <= Ar~ + If(O)l. 
Since f is spherically mean p-valent, v(s,r)<=p, and by Theorem 3.1 

p log = 2K,,(f) log A. r,, (1 - Ix I)] 

for x ~ B~\B~(r,), simple calculation then gives the desired inequality. 

REMARK. Corollary 3.2 may be viewed as a generalization of a classical result 

about circumferentially mean p-valent analytic functions [3, theorem 5.1]. 

4. Boundary behaviour of spherically mean p-valent quasiregular mappings 

LEMMA 4.1. Let f : A ~ R" be a K-quasiregular and spherically mean p-valent 
mapping (p > 0). Suppose A contains k disjoint balls B" (xj, rj) 1 <= j <= k and in 

every ball there exists a point x~ such that If(xj)l <-_-R, and I f (x ; ) l=  > R2; 

j = 1, 2 , "  ", k where 0 < eR~ < R2 < ~. I f  f (x) ~ 0 for x E I..J~ B" (xj, r,/2), then 

[log [2A 2"'~] "-~' / j _-< 2pKo(D{log R#R,}"-"' 

where ~j = 1-1x;-x,I/r,, l<-j<=k, 

PROOF. Define B, = B"(x,, rj), E, = f - ' (B"(R , ) )  0 B ,  E=f - ' (C(B"(R2) ) )  n B,, 

F, = F(Ei,~,Bj),  l<=j<=k and F =  U~.~F~. 

As the Fj lie in disjoint Borel sets it follows that M ( F ) =  E~'=~ M(Fj). In order 

to find an upper bound for M(F), define 
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! {[log(R2/R,)] lY I}-' if y E B"(R2)\Bn(R,), 
P(Y) 

l 0 elsewhere. 

As in the proof of Theorem 3.1 we get 

M (F) <= pKo(f)to._, {log ( R d R 1)}~'-"'. 

In order to find a lower bound for M(F)  we shall prove that 

(4.1) M ( F , )  =-> ' ~ ~  2 ~ ,~, l<=j<--k, 

and therefore 

M(F)_  -> ,og--~-i, ] �9 

Combining the upper and lower bounds we obtain the desired inequality. Now 

we turn to the proof of (4.1). 

We shall use a similar argument to the one in the proof of Lemma 3.1. 

Let E* be the symmetric image of Ej by reflection in S ~ '(xj, rj) and F* the 

symmetric image of ~ by reflection in S" ~(xj, rj). 

By [2, lemma 1] it follows that 

M(F,) = '  * ~M(F~) 

where F* = F(Ej U E~,Fj  U F*,Rn).  

Consider the condenser 

(P,, O,)= (C(Ej u E;),F, UFT). 

Let Sym be a cap symmetrization with center at xj. Then by [6, 7.5] 

cap(P i, Qj) => cap (Sym (P~), Sym (Qj)). 

Again by the maximum principle, for every I x ~ - x j l <  t <= r, there exists an 

x,,i E S"-'(xi, t) such that If(x,,)] = R0~ and R0~-> R2; thus Sym(Qj) contains the 

line segment 

s  x ~ R O ; x = _ u e . ] x ; l < u < i x ~ l +  r~ 
' = = I x ; - x ~ l  

As f ( x ) ~  0 for x E B"(xj, rfl2) and [ is K-quasiregular it satisfies the minimum 

principle, therefore S y m ( g )  contains the line segments 

F~= {x ~ R " ; x  = (Ixjl + u)e , ;0  = u <= rfl2or2ri <- u <~}.  
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Therefore F(a (Sym (~)) ,  Sym (Q j), Sym (P~)) < f',, where It'; = F(E,  iff;, R" ). But 

I'~ D ['j where l~j = F(/~i,/~,, R") and ~ = {x E R" ; x = (1 xi I + u)e,;  2rj <= u < oo}. 

As the modulus of a path family is a conformal invariant it follows that 

M(Fi) => 1 ~cap RT(bi)  -- oo,-i 
[mod RT(bj)] ("- ') 

where Rr(bi) ,  bj > O, is the Teichmfiller ring bounded by the segment {x E R"; 

-l=<x,=<0, x2 . . . . .  x . = 0 }  and the ray { x E R " ;  b j - < x , < ~ ,  x2 . . . . .  

x, = 0}, with 

r, i x , - x ; {  r, " 

The modulus of Teichmiiller's ring domain and the modulus of Gr6tzsch' ring 

domain are related; see for example [1, p. 232]. Using the relation between the 

moduli, see [1, p. 235], and the estimate for Gr6tzsch' ring domain one obtains 

(4.1). 

S , DEFaNmON 4.1. Let f : B"  --->R" be a K-quasiregular mapping. Let a @ "-' 

if there exists a path 3' :[0, 1]--* B" such that 3'([0, 1])C B" and 3'(1) = a, and a 

positive 6 such that 

!ira ( 1  - t y(t)l Y [[(y(t))l > 0. 

Then define the lower order a (a)  of f at a point a as 

Sup{8 > 0; ~ ( l - [  y( t ) ] )  ~ Jf(y(t))] > 0  ) .  

If no such path 3' and a positive 6 exist, we put a ( a ) =  0. 

THEOREM 4.1. Let f : B "  ~ R" be a K-quasiregular spherically mean p-  valent 
n - 1 .  

(t 7 > O) mapping. Let  E be the set defined as E = {x E S , a (x) > 0}. Then 

(4.2) 

PROOF. 

(4.3) 

~'~ a (a).-1 < 2pKo(f). 
a E E  

It is enough to show that if a , -  �9 ak are disjoint points on S ~ then 

k 

ot (a,)"-' --< 2pKo(f). 
./=1 

Letting k --> 0% in (4.3) this yields (4.2). 
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Suppose the theorem is false. Then we can find a finite number of points 

a , , a z , - . . , a k  and e > 0  such that 

k 

c~ (a,) "-~= 2K0(f)(p + ke). 
j = l  

For every aj there exists a path yj such that Yi :[0, 1)---~ B", yi(1) = a~, aj ~ S " - '  

and (1 - I  r ( t ) J )  ~, J / (v( t ) ) l  > 1, where 

n,-' = a(ai)  ~-~- e, 1 <=j <= k. 

Therefore Y~'=~r/~-~>2K0(f)p, and there exists R o > 0  such that for every 

R 2 > R o  we can find x~ on 3'i(t), 0 = < t < l  such that 

J f ( x ; ) l = e 2 > \ ~ ]  ; l<=j<-k. 

Choose 8 so that the following two conditions are satisfied: 

O) f ( x )  is free of zeros in B " / B " ( 1 - 2 6 ) ,  

(ii) 48 < Min~=, , . j~la , , -a iJ ;  m ~ ] .  

Take ro = 1 - 8. If R2 is sufficiently large i x ' -  x;J > 48, 1 =< m,j  <= k. As x~---* aj 

when R2---~ ~, the balls B"((ro/JX;l)x;, 8) are disjoint for 1 -<j =< k. Also If(x,)l---- 
R,=maxpxf=,olf(x)l and J f (x ; ) l=R2  thus by using Lemma 4.1 with 6~ = 

(1- Ix;I)/  we can complete the proof as in [3, theorem 2.7]. 

REMARK. This chapter contains known results for areally mean p-valent 

analytic functions. The proofs of the results are different in major  parts from that 

in [3, theorems 2.6 and 2.7] mainly by using Lemma 3.1. 

ACKNOWLEDGEMENTS 

The author wishes to thank Professor S. Rickman for his useful remarks, 

especially for suggesting Lemma 3.1 and Theorem 3.1 as a basic tool. The author 

also wishes to thank Professor F. W. Gehring for his useful remarks while 

preparing this paper. 

REFERENCES 

1. Petru Caraman, n-Dimensional Quasiconformal Mappings, Abacus Press, Tunbridge Wells, 
Kent, England, 1974. 

2. F. W. Gehring, A remark on domains quasicon[ormally equivalent to a ball, Ann. Acad. Sci. 
Fenn. Ser. A I 2(1976), 147-155. 

3. W. K. Hayman, Multivalent Functions, Cambridge University Press, 1967. 
4. O. Martio, S. Rickman and J. V/iis/ii/i, Definitions for quasiregular mappings, Ann. Acad. Sci. 

Fenn. Ser. A I 448 (1969). 



208 R. MINIOWITZ Israel J. Math. 

5. R. Miniowitz, Distortion theorems [or quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A 14 
(1978/1979), 63-74. 

6. J. Sarvas, Symmetrization of condensers in n-space, Ann. Acad. Sci. Fenn. Set. A 1 522 (1972). 
7. U. Srebro, Quasiregular mappings, in Advances in Complex Function Theory, Lecture Notes 

in Math. 505, Springer, Berlin, 1976, pp. 148-163. 
8. J. V~iis~il~i, Lectures on n-dimensional Quasicon[ormal Mappings, Lecture Notes in Math. 229, 

Springer, Berlin, 1971. 

DEPARTMENT OF MATHEMATICS 
UNIVERSITY OF MICHIGAN 

ANN ARBOR, MI 48109 USA 

Current address 
DEPARTMENT OF MATHEMATICS 

UNIVERSITY OF KENTUCKY 
LEXINGTON, KY 40506 USA 


