SPHERICALLY MEAN p-VALENT QUASIREGULAR MAPPINGS

BY RUTH MINIOWlTZ

ABSTRACT

We introduce spherically mean *p*-valent quasiregular mappings. Using the method of modulus of path families we prove a distortion theorem and describe the boundary behaviour of this class of mappings.

I. Introduction

We derive first a lower bound for the modulus of a certain path family in the unit ball $Bⁿ$ in \mathbb{R}^n . We also introduce spherically mean p-valent quasiregular mappings (s.m. p-valent). The latter class reduces to the classical circumferentially mean p-valent for $n = 2$. Then using the lower bound for the modulus of a certain path family, we get a distortion theorem for s.m. p-valent quasiregular mappings in B^n .

Finally we show that if $f : B^n \to \mathbb{R}^n$ is s.m. p-valent and quasiregular then, as for $n = 2$, $|f(x)|$ can not grow too rapidly near too many points of ∂B ⁿ.

2. Notation and terminology

Notation and terminology are in general as in [4]. When writing $f: D \to \mathbb{R}^n$, we assume throughout that D is a domain in \mathbb{R}^n , f is continuous, and $n \ge 2$. If $A \subset D$, $y \in \mathbb{R}^n$, we define the multiplicity (possibly infinite) functions

$$
N(y, f, A) = \text{card}\{f^{-1}(y) \cap A\},
$$

\n
$$
N(B, f, A) = \sup_{y \in B} N(y, f, A),
$$

\n
$$
N(f, A) = N(\mathbf{R}^n, f, A),
$$

\n
$$
N(f) = N(\mathbf{R}^n, f, D).
$$

Received January 14, 1980 and in revised form August 5, 1980

200 R. MINIOWITZ Israel J. Math.

If $f: D \to \mathbb{R}^n$ is sense-preserving, discrete and open then every $x \in D$ has arbitrarily small normal neighborhoods U (i.e. domains U with $U \subset D$, $f(\partial(U)) = \partial(f(U))$ and $U \cap f^{-1}(f(x)) = \{x\}$ with connected complement in **R**ⁿ [4, 2.9]. The local topological index of f at a point $x \in D$, denoted $i(x, f)$, may be defined as

$$
(2.1) \qquad \qquad i(x,f) = N(f,U)
$$

where U is any normal neighborhood of x [4, theorem 2.12].

We denote

(2.2)
$$
n(y, f, D) = \sum_{x \in f^{-1}(y)} i(x, f).
$$

We also denote

(2.3)
$$
v(s,\tau) = \frac{1}{\omega_{n-1}\tau^{n-1}}\int_{s^{n-1}(\tau)} n(y,f,B^{n}(s))d\Lambda(y)
$$

where $d\Lambda(y)$ is an element of spherical Lebesgue measure on $S^{n-1}(|y|)$, and

(2.4)
$$
L(r) = \max_{|x|=r} |f(x)|.
$$

Let Γ be a family of non-constant paths in \mathbb{R}^n . The modulus of Γ is denoted by $M(\Gamma)$. $\Gamma(A, B, D)$ denotes the family of all paths which connect A and B in D.

The modulus of a ring domain, i.e. a domain $R \subset \mathbb{R}^n$ such that CR has exactly two connected components D_1 and D_2 , is defined as

(2.5)
$$
\mod R = \left(\frac{\omega_{n-1}}{M(\Gamma(D_1, D_2, R))}\right)^{1/(n-1)}.
$$

The conformal capacity of R is

$$
\operatorname{cap} R = \inf_{u} \int_{R} |\nabla u|^n dm_n
$$

where ∇ denotes the gradient, and where the infimum is taken over all real-valued C¹-functions u in R with boundary values 0 on ∂D_1 and 1 on ∂D_2 . It can be shown that

cap
$$
R = M(\Gamma)
$$
 where $\Gamma = \Gamma(\partial D_1, \partial D_2, R)$.

Therefore we obtain that mod $R = (\omega_{n-1}/\text{cap } R)^{1/(n-1)}$.

3. Distortion theorem for spherically mean p-valent quasiregular mappings

LEMMA 3.1. Let $f : B^n \to \mathbb{R}^n$ be a non-constant K-quasiregular mapping. Let $r_0 > 0$, $r_0 < r < 1$ and $r < s < 1$. Let

(3.1)
$$
F = f^{-1} C(B^{n}(L(r)))
$$

where $L(r)$ *is defined in* (2.4), *and let*

$$
\Gamma = \Gamma(B^n(r_0), F, B^n(s)).
$$

Then

$$
(3.3) \qquad M(\Gamma) \geq \frac{\omega_{n-1}}{2\left(\log \frac{\lambda_n r (s^2 - r_0^2)}{r_0 (s^2 - r^2)}\right)^{(n-1)}}
$$

where λ_n *is a positive constant that depends only on n.*

PROOF. Denote by F^* the symmetric image of $F \cap B^n(s)$ by reflection in $S^{n-1}(s)$, and denote by B^* the symmetric image of $B^n(r_0)$ by reflection in *S~-'(s).* Then by a Lemma of Gehring's [2, lemma 1], it follows that

 $M(\Gamma) = \frac{1}{2}M(\Gamma^*)$

where $\Gamma^* = \Gamma(B^*(r_0) \cup B^*, (F \cap B^*(s)) \cup F^*, \overline{\mathbb{R}^n}).$

Consider the condenser

$$
(P, Q) = (C\overline{B}^n(r_0), \overline{(F \cap B^n(s))} \cup F^*).
$$

From the definitions it follows that

$$
\operatorname{cap}(P, Q) = M(\Gamma(S^{n-1}(r_0), \overline{(F \cap B^n(s)) \cup F^*}, CB^n(r_0))),
$$

and therefore

$$
M(\Gamma^*)\geq \text{cap}(P,Q).
$$

Let Sym be a cap symmetrization with center at the origin. Then by [6, 7.5]

$$
cap(P, Q) \geq cap(Sym(P), Sym(Q)).
$$

As a K-quasiregular mapping satisfies the maximum principle, for every $r \leq t \leq s$ there exists an $x_0 \in S^{n-1}(t)$ such that $|f(x_0)| = R$ and $R \geq L(r)$, therefore $F \cap S^{n-i}(t) \neq \emptyset$ for every $r \leq t \leq s$. The last fact implies that Sym(Q) contains the line segment $E = \{x \in \mathbb{R}^n : x = ue_1, r \leq u \leq r'_1\}$ where e_1 is a unit 202 R. MINIOWITZ Israel J. Math.

vector in the direction of x_1 and $r'_1 = s^2/r$. But as $\Gamma(\partial(Sym(P)),$ $Sym(Q), Sym(P)) < \Gamma(\partial(Sym(P)), E, Sym(P))$ ($\Gamma_1 < \Gamma_2$ means that Γ_2 is minorized by Γ_1 , see [8, 6.3]), it follows that

$$
cap(Sym(P),Sym(Q)) \geq M(\Gamma_2)
$$

where $\Gamma_2 = \Gamma(S^{n-1}(r_0), E, C(\overline{B^n(r_0)})).$

As the modulus of a path family is a conformal invariant, it follows that

$$
M(\Gamma_2)=M(\tilde{\Gamma}_2)
$$

where $\tilde{\Gamma}_2 = \Gamma(T, S^{n-1}, B^n)$ and $T = \{x \in \mathbb{R}^n : x = ue_1, 0 \leq u \leq r_1\}$ and

$$
r_1=\frac{r_0}{r}\bigg(\frac{s^2-r^2}{s^2-r_0^2}\bigg).
$$

Thus

$$
M(\Gamma_2) = M(\tilde{\Gamma}_2) = \text{cap } R_G\left(\frac{1}{r_1}\right) = \frac{\omega_{n-1}}{\left[\text{mod } R_G\left(\frac{1}{r_1}\right)\right]^{n-1}}
$$

where $R_G(a)$ is a Grötzsch' ring domain with complementary components $\overline{B^n}$, and

$$
\{x\in\mathbf{R}^n\,;\,x=ue_1,\,a\leq u<\infty\}\cup\{\infty\},\qquad a>1.
$$

Using an estimate for $R_G(a)$, see [1, p. 235], we have that

$$
\mod R_G(a) \leq \log \lambda_n a
$$

where λ_n is a positive constant that depends only on n. Therefore we have

$$
M(\Gamma) \geq \frac{1}{2} \frac{\omega_{n-1}}{\left(\log \frac{\lambda_n}{r_1}\right)^{n-1}}
$$

and (3.3) follows by substituting the value of r_1 .

COROLLARY 3.1. *Under the same assumptions as in Lemma* 3.1, *if s =* $(1 + r)/2$ then

(3.4)
$$
M(\Gamma) \geq \frac{\omega_{n-1}}{2\left[\log \lambda_n \frac{r(1+r)}{r_0(1-r)}\right]^{n-1}}
$$

where λ_n *is a positive constant that depends only on n.*

THEOREM 3.1. Let $f: B^n \to \mathbb{R}^n$ be a non-constant K-quasiregular mapping. If $r_0 > 0$, then for $r_0 < r < 1$

$$
\left(\log \frac{L(r)}{L(r_0)}\right)^{-n}\int_{L(r_0)}^{L(r)} \frac{v(s,\tau)}{\tau}d\tau \geq \frac{1}{2K_0(f)}\left\{\log \lambda_n \frac{r}{r_0} \cdot \frac{(1+r)}{(1-r)}\right\}^{1-n}
$$

where $s = (1 + r)/2$, λ_n *is a positive constant that depends only on n,* $v(s, \tau)$ *<i>is defined in* (2.3) *and* $L(r)$ *is defined in* (2.4) *.*

PROOF. Let $r_0 < r < 1$, denote $L_0 = L(r_0)$, and $L = L(r)$. Let $x \in S^{n-1}(r)$ be a point such that $|f(x)| = L$ and define

$$
\Gamma=\Gamma(B^n(r_0),f^{-1}C(B^n(L)),B^n(s)).
$$

From Corollary 3.1 it follows that

$$
M(\Gamma) \geq \frac{\omega_{n-1}}{2} \bigg\{ \log \lambda_n \frac{r}{r_0} \cdot \frac{(1+r)}{(1-r)} \bigg\}^{1-n}
$$

where λ_n is a positive constant that depends only on n. In order to find an upper bound for $M(\Gamma)$, define

$$
\rho(y) = \begin{cases} \left[\left(\log \frac{L}{L_0} \right) |Y| \right]^{-1} & \text{if } y \in B^n(L) \setminus \overline{B^n(L_0)} = D, \\ 0 & \text{elsewhere.} \end{cases}
$$

One can easily show that ρ is an admissible function for $f(\Gamma)$. As in the proof of theorem 3.2 [4] we can get

$$
M(\Gamma) \leq K_0(f) \int_D n(y, f, B^n(s)) \rho(y)^n dm(y)
$$

\n
$$
\leq K_0(f) \int_{L_0}^{L} \int_{S^{n-1}} \frac{n(\tau y, f, B^n(s))}{\left(\log\left(\frac{L}{L_0}\right)\right)^n} \frac{1}{\tau} d\Lambda(y) d\tau
$$

\n
$$
\leq K_0(f) \omega_{n-1} \left(\log\left(\frac{L}{L_0}\right)\right)^{-n} \int_{L_0}^{L} \frac{v(s, \tau)}{\tau} d\tau.
$$

Combining the upper and lower bounds we get the desired inequality.

DEFINITION 3.1. [5] Let $f: D \to \mathbb{R}^n$ be a sense-preserving discrete and open mapping; f is said to be spherically mean p-valent $(p > 0)$ if

$$
p(R) = p(R, f, D) = \frac{1}{\omega_{n-1}R^{n-1}} \int_{S^{n-1}(R)} n(y, f, D) d\Lambda(y) \le p
$$

for every $0 < R < \infty$.

204 R. MINIOWITZ Israel J. Math.

 \overline{a}

COROLLARY 3.2. Let $f : B^n \to \mathbb{R}^n$ be a spherically mean p-valent quasiregular *mapping. Then*

$$
|f(x)-f(0)| \leq C |x|^{\beta} \left\{ \frac{1+|x|}{1-|x|} \right\}^{\gamma}
$$

where C is a positive constant that depends on f, $\beta = (N/K_1(f))^{1/(n-1)}$ with $N = i(0, f)$ and $\gamma = (2pK_0(f))^{1/(n-1)}$.

PROOF. By theorem 5.2 in [7], there exists a $r_0 > 0$ such that

$$
|f(x)-f(0)|\leq A|x|^{\beta}; \qquad \overline{x\in B^{n}(r_0)}
$$

and therefore it is easy to see that

$$
|f(x)-f(0)| \leq B |x|^{\beta} \Big(\frac{1+|x|}{1-|x|} \Big)^{\gamma}; \qquad x \in \overline{B^{\prime\prime}(r_0)}.
$$

In particular $L(r_0) \leq Ar_0^{\beta} + |f(0)|$.

Since f is spherically mean p-valent, $v(s, \tau) \leq p$, and by Theorem 3.1

$$
p\left\{\log\frac{L(r)}{L(r_0)}\right\}^{1-n}\geq\frac{1}{2K_0(f)}\left\{\log\lambda_n\frac{|x|\left(1+|x|\right)}{r_0\left(1-|x|\right)}\right\}^{1-n}
$$

for $x \in B^{\prime\prime}(\overline{B^{\prime\prime}(r_0)},$ simple calculation then gives the desired inequality.

REMARK. Corollary 3.2 may be viewed as a generalization of a classical result about circumferentially mean p-valent analytic functions [3, theorem 5.1].

4. Boundary behaviour of spherically mean p-valent quasiregular mappings

LEMMA 4.1. *Let* $f : \Delta \rightarrow \mathbb{R}^n$ *be a K-quasiregular and spherically mean p-valent mapping (p > 0). Suppose* Δ *contains k disjoint balls Bⁿ(x_i, r_i)* $1 \leq j \leq k$ *and in every ball there exists a point* x'_i *such that* $|f(x_i)| \le R_i$ *and* $|f(x'_i)| \ge R_2$; $j = 1, 2, \dots, k$ where $0 < eR_1 < R_2 < \infty$. If $f(x) \neq 0$ for $x \in \bigcup_{i=1}^k B^n(x_i, r_i/2)$, then

$$
\sum_{j=1}^k \left[\log \left(\frac{2\lambda_n^2}{\delta_j} \right) \right]^{(1-n)} \leq 2pK_0(f) \{ \log R_2/R_1 \}^{(1-n)}
$$

where $\delta_i = 1 - |x_i - x_i|/r_i$, $1 \leq i \leq k$.

PROOF. Define $B_i = B^n(x_i, r_i)$, $E_i = f^{-1}(B^n(R_1)) \cap B_i$, $F_i = f^{-1}(C(B^n(R_2))) \cap B_i$, $\Gamma_i = \Gamma(E_i,F_i,B_i), 1 \leq j \leq k$ and $\Gamma = \bigcup_{j=1}^k \Gamma_{j}$.

As the Γ_i lie in disjoint Borel sets it follows that $M(\Gamma) = \sum_{j=1}^{k} M(\Gamma_j)$. In order to find an upper bound for $M(\Gamma)$, define

$$
\rho(y) = \begin{cases} \left\{ \left[\log(R_2/R_1) \right] |y| \right\}^{-1} & \text{if } y \in B^n(R_2) \setminus \overline{B^n(R_1)}, \\ 0 & \text{elsewhere.} \end{cases}
$$

As in the proof of Theorem 3.1 we get

$$
M(\Gamma) \leq pK_0(f)\omega_{n-1}\{\log(R_2/R_1)\}^{(1-n)}.
$$

In order to find a lower bound for $M(\Gamma)$ we shall prove that

(4.1)
$$
M(\Gamma_j) \geq \frac{\omega_{n-1}}{2\left(\log\left(\frac{2\lambda_n^2}{\delta_j}\right)\right)^{(n-1)}}, \qquad 1 \leq j \leq k,
$$

and therefore

$$
M(\Gamma) \geq \frac{\omega_{n-1}}{2} \sum_{j=1}^k \left(\log \frac{2\lambda_n^2}{\delta_j} \right)^{(1-n)}.
$$

Combining the upper and lower bounds we obtain the desired inequality. Now we turn to the proof of (4.1).

We shall use a similar argument to the one in the proof of Lemma 3.1.

Let E_i^* be the symmetric image of E_j by reflection in $S^{n-1}(x_j, r_j)$ and F_i^* the symmetric image of F_i by reflection in $S^{n-1}(x_i, r_i)$.

By [2, lemma 1] it follows that

$$
M(\Gamma_i) = \frac{1}{2} M(\Gamma_i^*)
$$

where $\Gamma_i^* = \Gamma(E_i \cup E_i^*, F_i \cup F_i^*, \mathbb{R}^n)$.

Consider the condenser

$$
(P_i, Q_i) = (C(\overline{E_i \cup E_j^*}), \overline{F_i \cup F_j^*}).
$$

Let Sym be a cap symmetrization with center at x_i . Then by [6, 7.5]

$$
cap(P_i, Q_i) \geq cap(Sym(P_i), Sym(Q_i)).
$$

Again by the maximum principle, for every $|x_i - x_i| < t \le r_i$ there exists an $x_{0i} \in S^{n-1}(x_i, t)$ such that $|f(x_{0i})| = R_{(i)}$ and $R_{(i)} \ge R_2$; thus Sym(Q_i) contains the line segment

$$
\tilde{E}_j = \left\{ x \in \mathbf{R}^n \, ; \, x = -ue_1; |x'_j| \leq u \leq |x'_j| + \frac{r_i^2}{|x'_j - x_j|} \right\}.
$$

As $f(x) \neq 0$ for $x \in B^{n}(x_{i}, r_{i}/2)$ and f is K-quasiregular it satisfies the minimum principle, therefore $Sym(P_i)$ contains the line segments

$$
F'_{j}=\{x\in\mathbf{R}^{n}; x=(|x_{j}|+u)e_{1}; 0\leq u\leq r_{j}/2 \text{ or } 2r_{j}\leq u<\infty\}.
$$

Therefore $\Gamma(\partial(Sym(P_j)), Sym(Q_j), Sym(P_j)) < \overline{\Gamma}_j$, where $\overline{\Gamma}'_j = \Gamma(\overline{E}_j, \overline{F}'_j, \mathbb{R}^n)$. But $\tilde{\Gamma}'_j \supset \tilde{\Gamma}_j$ where $\tilde{\Gamma}_j = \Gamma(\tilde{E}_j, \tilde{F}_j, \mathbf{R}^n)$ and $\tilde{F}_j = \{x \in \mathbf{R}^n; x = (\vert x_i \vert + u)e_j; 2r_j \leq u < \infty\}.$ As the modulus of a path family is a conformal invariant it follows that

$$
M(\Gamma_i) \geq \frac{1}{2} \operatorname{cap} R_{\tau}(b_i) = \frac{\omega_{n-1}}{[\operatorname{mod} R_{\tau}(b_i)]^{(n-1)}}
$$

where $R_T(b_i)$, $b_i > 0$, is the Teichmüller ring bounded by the segment $\{x \in \mathbb{R}^n\}$; $-1 \le x_1 \le 0$, $x_2 = \cdots = x_n = 0$ } and the ray $\{x \in \mathbb{R}^n; b_i \le x_1 < \infty, x_2 = \cdots = 0\}$ $x_n = 0$, with

$$
b_i = \left(2 + \frac{|x_i - x'_i|}{r_i}\right) \bigg/ \left(\frac{r_i}{|x_i - x'_i|} - \frac{|x_i - x'_i|}{r_i}\right).
$$

The modulus of Teichmüller's ring domain and the modulus of Grötzsch' ring domain are related; see for example [1, p. 232]. Using the relation between the moduli, see [1, p. 235], and the estimate for Grötzsch' ring domain one obtains (4.1) .

DEFINITION 4.1. Let $f : B^n \to \mathbb{R}^n$ be a K-quasiregular mapping. Let $a \in S^{n-1}$, if there exists a path γ : $[0, 1] \rightarrow \overline{B}$ " such that $\gamma([0, 1]) \subset B$ " and $\gamma(1) = a$, and a positive δ such that

$$
\lim_{t \to \infty} (1 - |\gamma(t)|)^s |f(\gamma(t))| > 0.
$$

Then define the lower order $\alpha(a)$ of f at a point a as

$$
\mathrm{Sup}\bigg\{\delta>0;\lim_{t\to 1}\left(1-|\gamma(t)|\right)^{\delta}|f(\gamma(t))|>0\bigg\}.
$$

If no such path γ and a positive δ exist, we put $\alpha(a)=0$.

THEOREM 4.1. *Let* $f : B^n \to \mathbb{R}^n$ *be a K-quasiregular spherically mean p-valent* $(p>0)$ mapping. Let E be the set defined as $E = \{x \in S^{n-1}; \alpha(x) > 0\}$. Then

(4.2)
$$
\sum_{a \in E} \alpha(a)^{n-1} \leq 2pK_0(f).
$$

PROOF. It is enough to show that if a_1, \dots, a_k are disjoint points on S^{\cdots} then

(4.3)
$$
\sum_{j=1}^{k} \alpha(a_j)^{n-1} \leq 2pK_0(f).
$$

Letting $k \rightarrow \infty$, in (4.3) this yields (4.2).

Suppose the theorem is false. Then we can find a finite number of points a_1, a_2, \dots, a_k and $\varepsilon > 0$ such that

$$
\sum_{j=1}^k \alpha(a_j)^{n-1} = 2K_0(f)(p+k\varepsilon).
$$

For every a_i there exists a path γ_i such that $\gamma_i : [0, 1) \rightarrow B$ ", $\gamma_i(1) = a_i, a_i \in S^{n-1}$ and $(1 - |\gamma(t)|)^{\eta_i} |f(\gamma(t))| > 1$, where

$$
\eta_i^{n-1} = \alpha (a_i)^{n-1} - \varepsilon, \qquad 1 \leq j \leq k.
$$

Therefore $\sum_{j=1}^{k} \eta_j^{n-1} > 2K_0(f)p$, and there exists $R_0 > 0$ such that for every $R_2 > R_0$ we can find x'_i on $\gamma_i(t)$, $0 \le t < 1$ such that

$$
|f(x'_j)| = R_2 > \left(\frac{1}{1-|x'_j|}\right)^{n_j}; \quad 1 \leq j \leq k.
$$

Choose δ so that the following two conditions are satisfied:

(i) $f(x)$ is free of zeros in $B^n\sqrt{B^n(1-2\delta)}$,

(ii) $4\delta < \text{Min}_{1 \leq m, j \leq k} |a_m - a_j|$; $m \neq j$.

Take $r_0 = 1 - \delta$. If R_2 is sufficiently large $|x'_m - x'_j| > 4\delta$, $1 \leq m, j \leq k$. As $x'_i \rightarrow a_i$ when $R_2 \to \infty$, the balls $B''((r_0/|x_i|)x_i, \delta)$ are disjoint for $1 \leq j \leq k$. Also $|f(x_i)| \leq$ $R_1 = \max_{|x|=r_0}|f(x)|$ and $|f(x)| = R_2$ thus by using Lemma 4.1 with $\delta_i =$ $(1-|x_i|)/\delta$ we can complete the proof as in [3, theorem 2.7].

REMARK. This chapter contains known results for areally mean p -valent analytic functions. The proofs of the results are different in major parts from that in [3, theorems 2.6 and 2.7] mainly by using Lemma 3.1.

ACKNOWLEDGEMENTS

The author wishes to thank Professor S. Rickman for his useful remarks, especially for suggesting Lemma 3.1 and Theorem 3.1 as a basic tool. The author also wishes to thank Professor F. W. Gehring for his useful remarks while preparing this paper.

REFERENCES

1. Petru Caraman, *n-Dimensional Quasiconformal Mappings,* Abacus Press, Tunbridge Wells, Kent, England, 1974.

2. F. W. Gehring, *A remark on domains quasicon[ormally equivalent to a ball,* Ann. Acad. Sci. Fenn. Ser. A I 2(1976), 147-155.

3. W. K. Hayman, *Multivalent Functions,* Cambridge University Press, 1967.

4. O. Martio, S. Rickman and J. Väisälä, *Definitions for quasiregular mappings*, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969).

5. R. Miniowitz, *Distortion theorems [or quasiregular mappings,* Ann. Acad. Sci. Fenn. Ser. A 14 (1978/1979), 63-74.

6. J. Sarvas, *Symmetrization of condensers in n-space,* Ann. Acad. Sci. Fenn. Set. A 1 522 (1972).

7. U. Srebro, *Quasiregular mappings,* in *Advances in Complex Function Theory,* Lecture Notes in Math. 505, Springer, Berlin, 1976, pp. 148-163.

8. J. Väisälä, Lectures on n-dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer, Berlin, 1971.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MICHIGAN ANN ARBOR, MI 48109 USA

Current address DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY LEXINGTON, KY 40506 USA