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AN A N A L O G U E  OF THE PRIME NUMBER 
THEOREM FOR CLOSED ORBITS OF SHIFTS 
OF FINITE TYPE A N D  THEIR SUSPENSIONS 

BY 

WILLIAM PARRY 

A B S T R A C T  

Following the classical procedure developed by Wiener and Ikehara for the 
proof of the prime number theorem we find an asymptotic formula for the 
number of closed orbits of a suspension of a shift of finite type when the 
suspended flow is topologically weak-mixing and when the suspending function 
is locally constant. 

Introduction 

In this note we count the number of closed orbits of a suspension of a shift of 

finite type and obtain asymptotic formulas by following the Wiener-Ikehara [9] 

proof of the prime number theorem. A dynamical zeta function, one of many 

which have been studied in recent years in connection with the foundations of 

statistical mechanics (cf. [8]), plays the role of Riemann's zeta function in the 

proof. 

The suspending function we consider, a positive function assuming only a 

finite number of values, is perhaps unnecessarily restrictive. It should be clear 

that once enough information is gathered about the zeta function of more 

general functions, our proof should extend to the associated suspensions. 

The formula in Corollary 3 occurs in Margulis's study of closed geodesics for 

compact manifolds of negative curvature [6]. One should also notice Bowen's 

results for Axiom A flows [3] and [4], [5], for recent work on zeta functions. In 

this connection it is to be expected that a generalisation of our result will 

subsume Bowen's approximate asymptotic results. 

I wish to thank C. Series, R. Spatzier and P. Waiters for various enlightening 

comments and references. 
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Let A be a k • k irreducible zero-one matrix and define 

X a = { x  ~.=_=l~I {1 ,2 , . . . , k } :A ( x , , ,X ,+ l ) = l } .  

We denote by T the shift (of finite type) defined by (Tx),  = x,. , .  Throughout 
will be a continuous function defined on XA assuming only finitely many value, 
By considering blocks of symbols in place of symbols, if necessary, there is n 

loss in generality in assuming, as we do, that f is a function of two variables, i.~ 

f (x)  = f(xo, Xl). 
The Perron-Frobenius theorem assures us that the matrix {exp f(i, j ) .  A (i, j 

has a maximum positive eigenvalue/3 with an associated positive eigenvector r, 

Hence the matrix 

exp f ( i , j ) .  A(i,j)r~ = fir,. 
1 

P(i, j) = exp f( i , j )  . A (i, j)rj/fr, 

is stochastic and compatible with A (i, j). We refer to P as the stochastic matr 

associated with f. 
The pressure of f is 

~ ( f ) = s u p  ( f  fd~ + h ( t ~ ) ) = l o g f  

where the supremum is taken over all T invariant probabilities/.t on XA. (h (/~) 
the entropy of T with respect to /~.) The supremum is attained only for tt 
Markov probability me defined by the stochastic matrix P. 

Now let us suppose that f is strictly positive. The f suspension XtA of Xa is tt 
compact space consisting of {(x, t): x ~ Xa, 0 <= t <- f ( x )} with ( x, f ( x )) and (Tx, ( 
identified. The f suspension flow T r, is the one-parameter group of homeomo 

phisms of X :  defined by T: , (x , s )=(x , s+t )  for O<=s<-g(x) and O<=s+t 
g(x). 

If /~ is a T invariant probability then we obtain a T~ invariant probabilit' 

locally, by taking a direct product of/.t with Lebesgue measure on lines and 
dividing the resulting measure by the measure of X~. The resulting probability 
denoted/~r. Every T~ invariant probability is obtainable from some T invarial 

probability in this way. 
The entropy of T,: with respect to/~I (which by definition is the entropy of T 

is given by 
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(cf. [1]). 

It is not difficult to show that there is a unique K > 0 such that P(  - r f )  = O, 

and therefore 

h ( m ) -  K f f dm = 0 

for a Markov probabili ty m and 

h ( / z ) -  K f fdlz < 0  

for all other  T invariant probabilities /~. Hence  

K = sup h ( ~ )  = sup h(tzr). 

f 
However ,  the latter quantity is the topological entropy of T{, which we denote by 

h(TO.  We therefore have 

PROPOSITION 1. [8] ~ ( -  h ( T t ) f )  = O. 

We shall be considering the flow T{ and our results will depend on whether  or 

not T, t is (topologically) weak-mixing. T r, is weak-mixing if there are no 

continuous eigenfunctions other than the constants, i.e., there is no a > 0 and no 

continuous function g #  0 such that 

(0.1) g(Trtx) = e2=a'g(x) all t E R. 

In this connection one should note 

PROPOSITION 2. [7] (0.1) has a solution g # 0 for some a > 0 if and only if there 

is an integer valued continuous function M and a continuous function 0 assuming 

only finitely many values such that 

(0.2) af  = M + O o T - O. 

If f is a function of two variables and r = {x, Tx,. �9 T"- lx}  (T"x = x, n >= 1 

least) is a closed orbit  of T we define the weight of ~- with respect to f as 

w(~') = w(~', f )  = e x p ( f ( x ) + . . .  + f ( T " - l x  ) - n ~ ( f ) )  

= P(xo, xO"" P(x._,, Xo) < 1. 
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The norm of r is defined as N ( z )  = w (~-)-'. If f is also strictly positive and if (0.2) 

holds then 

w('c, - h ( T r ) f )  = e x p ( -  h( Tr ) ( f ( x  ) + . . .  + f (Tn - l x  ))) 

is an integral power of e x p ( - h ( T I ) / a ) .  Conversely if w ( z , - h ( T r ) f )  is an 

integral power of a single number for each closed orbit then the same is true of 

e x p ( f ( x ) + . . .  + f ( T " - l x ) )  from which one can conclude that there exists an 

integral valued function M of two variables and a > 0 such that 

af( i , j )  = M ( i , j ) +  O q ) -  O(i) 

for some 0. Hence we have 

PROPOSmON 3. I f  f is positive then T i, is not weak-mixing if and only if 

wO', - h ( T i ) f )  is an integral power of a single number for all closed orbits ~'. 

For a function f of two variables (positive or not) we shall say that f is 

exceptional if w (z, f )  is an integral power of a single number. We shall say that f 

is general if it is not exceptional. For a function - h ( T ~ ) f  with f positive, 

generality is the same as weak-mixing for T, I. 

It is not difficult to,show that f is exceptional if and only if the stochastic 

matrix P associated with f has the property that for some 'positive' diagonal 

matrix ApA -1 has powers of a single number a-1 for its non-zero entries, a > 1, 

a least. 

In the following T is the shift (of finite type) defined by the irreducible 0-1 

matrix A and f is a function of two variables. We denote by zrr (y) the number of 

closed T orbits of norm less than or equal to y, and when f > 0, we denote by 

7rr(y) the number of closed T r orbits of length less than or equal to y. ~-(y) 

denotes the number of closed T orbits z of period A (~-) less than or equal to y. 

THEOREM. 

(a) Exceptional case : 
, , log c~ 

7ri~Y)--logy ~ a" as y--->~. ~n~y 

(b) General case: 

COROLLARY 1. 

(a) Exceptional case : 

~ Y asy--->oo. 
r (Y) log y 

1OgOt E Or" 
# {z : h ( z ) ~  (f) - ( / (x)  + " "  + f ( T  ~ ~ - lx  )) --< log y} ~ log y ~ n~y as y -o oo. 
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(b) General case : 

Yg as y ---~ oo. # {~" : Z ( r ) ~ ( f ) -  (f(x) + - - "  + f (T~") - ' x ) )  <= log Y} ~ lo y 

The sums above are over the points of the closed T orbit ~-. 

When f =0 ,  ~ ( f ) =  h(T) ,  the topological entropy, and f is an exceptional 

case with loga  = h(T) .  Hence 

COROLLARY 2. rr(y)--  (1/y)Y.,_<y exp nh(T) .  

COROLLARY 3. I f  f > 0 (a function of two variables) then: 

(a) I f  T I, is not weak-mixing then 

log a 
r # ( y ) -  h (Tr)y ~'~ a n. 

n ~ y h  (T l ) / I og  cl 

(b) I f  T r, is weak-mixing then 

e h(Tf)y 
rrr(Y) - h ( Tr )y �9 

Corollaries 1 and 2 follow immediately from the theorem. Substituting 

- h ( T r ) f  for f in Corollary 1 and remembering that ~ (  - h ( T r ) f )  = 0 we have 

(a) # { ~ ' : h ( T r ) ( f + " . + f ( T  ~ )  'x))=< y} - l ~  ~ a " ;  
y n~(y/Ioga) 

(b) # {~" : h (Tr ) ( f  + . . .  + f (T~ ' ) - l x ) )  <= y} - e r /y 

and replacing y by h(Tr)y gives Corollary 3. 

The density theorem of prime number theory gives an asymptotic formula for 

the number 7r,(y) of primes congruent to a rood m: 

7ra ( y ) -  y/(~b(m)log y) as y ---~ oo 

if (a, m) = 1 (Tra (y) = 0 otherwise) where q~ is Euler's function. Whilst there is no 

additive structure to provide us with congruence classes for the objects studied 

here (a multiplicative structure can be provided formally) we can view regions of 

a suspension space as rough substitutes. On the other hand, it is not reasonable 

to ask whether or not a closed orbit is present in a region of space. The 

appropriate question concerns the length of time the orbit spends in such a 

region. With this understanding an approximate analogue of the density version 

of Dirichlet's theorem can be presented as 
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COROLLARY 4. I f  f > 0  is a function of two variables and if U =  
B x I C {(x, y): 0 ~ y  =<f(x)} where B is closed-open and I is an interval then, 

with I/I = length of I, we have 

err(y) = #{~': sojourn time in U <= y} 

= 

with the latter given by Corollary 3 (case (a)) where ot = e I'l. ( h (T  II% ) is defined 

by ~ ( -  h(Tm~")] I IXB) = 0.) 

For a proof we simply note that 

for we may substitute for U the region under the function l l I x s .  

CONJECrtmE.* Let f be strictly positive on Xa and suppose that for some 

0 < 0 < 1 and some K > O, I f(x)  - f (y) l  --< KO" whenever x, = y, ([i [ _--- n). If T t 

is weak-mixing then 

f f ( s ) : e x p  ~ 1 ~, e x p - s ( ~ f ( T ' x ) )  h(T ' )  
n = l  n T n x = x  \ i = 0  

is analytic in ~ ( s ) >  1 (see [8]) and has a continuous extension to ~ ( s ) =  1 

( s  1) .  

If the conjecture is true then, for such [, 

q'[f (y ) ~ e h(Tt)y/h(Tt)y as y ---> 0% 

by the Wiener-Ikehara method as illustrated in this paper. 

1. The zeta function 

In [8] Ruelle considers a very general zeta function given by 

~ ( z , f ) = e x p  - -  ~ e x p ( [ ( x ) + . . . + f ( T " - ' x ) ) .  
= n x E F i x  T "  

Here  we define 

(1.1) ~(s) = exp ~ e x p s ( [ ( x ) + . - . + f ( T " - ' x ) )  
n = l  n x E F i x  T a 

* This, and more, has now been proved by M. PoUicott. A joint article extending the results of this 
paper to Axiom A flows is in preparation. 
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for s complex and f, /3 as defined in the introduction. Evidently 

i ( s ) = e x p  ~ 1 Z P(xo, x,) ~ ' ' 'P (x . - , , xo )  s 
n=l  n x ~ F l x T  n 

where non-zero entries of the matrix P are raised to the power s. 

Clearly 

i ( s )  = exp ~, _1 Tr(PS)(, ) 
n=l  n 

(1.2) 1 

- det( I  - P~) ' 

where (ps)( ,) is  ps iterated n times. Hence i ( s )  converges for R ( s ) >  1. 

Moreover,  it is easy to verify that i ( s )  has an Euler  product representation 

1 = I ~ .  1 1-I (1.3) i(s) 
_ (1 - w(z)  ~) (1 - N(r)  -~) 

valid for R (s) > 1. 

The meromorphic extension i ( s ) =  l / d e t ( I -  P~) vanishes nowhere and has a 

pole at s = 1 since P is stochastic. Since 1 is a simple eigenvalue of P the pole at 

s = 1 is simple. To see this one considers the eigenvalues/3~(s),/32(s), �9 �9 �9 of ps in 

a small neighbourhood of s = 1 and writes det(I  - ps)  = II~=~ (1 -/31 (s)). We may 

suppose that/31(1) = 1, that/31(s) is analytic and I1 -/31 (s)l > e > 0 for j ~  1 and 

all s in a small neighbourhood of 1 (cf. [2]). Hence if d e t ( I -  p s ) =  (s -1)24~(s) 

where 4) is analytic then 

so that/3 ~(1) = 0. However,  one can show (cf. [7], [8]) that 13 I(1) is the entropy of 

T, with respect to the Markov measure defined by P, which is certainly not zero. 

We deduce, therefore, that the zero of det(I  - p s )  at 1 is simple, i.e., the pole of 

i ( s )  at s = 1 is simple. 

Let  us suppose that if(s) has a pole elsewhere on R ( s ) =  1, i.e., that 

det(I  - P ' )  has a zero at s = 1 + ito with ] t0l least. Then 

(1.4) ~'~ P(], k )P(], k )"o(dk = ~,~ 
k 

for some non-zero vector ~, and 

P(j,k)J6 
k 
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so that, using the Perron-Frobenius theorem, equality must obtain, with I~ 

independent of j. 

We may suppose I~J [ = 1 and (1.4) says that a convex combination of points oi 

the unit circle is a point on the unit circle. This means that 

e(J, k)"~ = 6 

whenever P(j, k) ~ O. By the definition of the weight of a closed orbit we see tha 

w(r = 1 

for all closed orbits. In other words 

w ( ' r )  = e -2"`m/'~ = o~ - ' n  (O~ = e 2=/'o) 

for some integer m depending on ~-. We therefore have 

PROPOSITION 4. ~'(S) has a pole on R ( s )  = 1 (other than s = 1) if and only if 

is exceptional in which case ~ ( s ) is simply periodic with period ito (and we can tak 

t0>O). 

We therefore have two cases to consider: 

Exceptional 

~(s) is non-vanishing and simply periodic with least period ito, to > O, and i 

analytic in R ( s ) > l - e  ( e>O)  except for simple poles at l+ni to ,  n 

0,_+1, - . . .  

General 

~'(s) is non-vanishing and analytic in an open neighbourhood of R ( s )  >- 

except for one simple pole at s = 1. 

Exceptional case 

In this case, using simple periodicity, and noting that ~'(s) /~(s)  has simpl 

poles at 1 +nito, n = 0, - 1 , . . .  with residue - 1 we have 

~'(s) _ - 2zr/to 
~'(S) 1 -- e -~2'~/'~ + ~b(s) 

where 4' (s) is analytic and simply periodic (period ito) in R (s) > 1 - e. Hence i 

the same region 

(1.5) ~"(s)= 27r 2 e2~"~'e-2"~/'~+qb(s) �9 
~ ( s )  to .~o 
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General case 

In this case 

(1.6) 
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(1.7) 

A(r ')  x;' 

NO-')" �9 

These identities are valid in R(s )>  1. 

Exceptional case 

By (1.3) we have 

~"(s) = _ ~ l ogN(z )  �9 N(r)-s  
~'(s) (1 - N ( T ) - ' )  

= - E log N('r)  ~ N('r)  -''s 
"r m ~ l  

In this case there exists a = e 2~/'o such that N ( z ' )  is a positive integral power of 

or. Thus 

n-, ,N(,.)=o- 

in a neighbourhood of R(s)>= 1 in which ~(s)  is analytic. 

At this point it is convenient, for the purpose of computation only, to 

introduce fictitious orbits and an analogue of yon Mangoldt's function. By a 

fictitious orbit we mean a formal product r '  of closed orbits 

where r , , . . . ,  rm are genuine closed orbits and l , , . . . ,  lm are positive integers. 

(Primed symbols will always indicate fictitious orbits. Genuine orbits will have 

no prime.) For such an object we define 

NO-' ) = NO.,)' . . . .  NO.,.)'~ 

and 

A(C) = log N(z)  if C =  ~.l 

for some closed orbit % l a positive integer, and 

A0")  = 0 otherwise. 
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and by (1.5) we conclude 

2 zr e 2~n/L A0-')-T, N ( r ' ) = a  n 

converges to zero exponentially fast. (See also [8].) Hence, defining 

we have 

PROPOSITION 5. 

F ( y ) =  ~ A(z'), 
N(~")~y  

In the exceptional case, 

F(y) - log a ~ a"  as y --* ~c. 
n ~ y  

General case 

In this case, by (1.7), we have 

C(s) 
= - ~ y- 'dF(y)  ~(s) 

where (as before) F(y)  = X,,.T,~y A(z'). By (1.6) 

f~ y *dF(y)= 
1 

s-~_ l - ~ ( s  ) 

where ~ is analytic in a neighbourhood of R ( s )  >- 1. Ikehara's Tauberian 
theorem (cf. [9]) therefore ensures that 

PROPOSITION 6. For the general case we have 

F ( y ) -  y as y - - ~ .  

2. Proof of Theorem 

In all cases we have 

PROPOSITION 7. log y *rl (y)  ~ F ( y )  as y --, ~. 

PROOF. 

F ( y ) =  ~ A(~- ' )=~k(~ ' ) logNO ") 
NO")--<_y 

where k = k(r )  is the non-negative integer such that N(r)  k =<y < NOO TM. 
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H e n c e  
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[ l ogy  ] l o g N ( r  
F ( y ) =  m.)~y ~ [ l o g N ( r  

<= ~ '  l o g y = r  
NO')~y 

For an est imate in the o ther  direct ion we first prove  that  

w: (y) /y~ ---~ 0 as y ---~ oo 

when cr > 1. To  see this note  that  

~'(cr) = I-I (1 + w(z)  ~ + w(~-) 2~ + . . .  ) 
7 

=>- [ I  " ' ' )  
w(T)_->e 

1 
= (1 - e ~  ~ 

where 0 ( e ) =  Ew.)__>~ 1. Hence  

1 
> e~O(e) and log ~'(cr) > 0 ( e ) l o g  (1 - e ~) = 

e~'O(e)--~O as e --~0 if o - '>  cr > 1. 

But  this is equivalent  to err (y) /y  ~'--~ 0 when o r '>  1. 

Put x = ( y / l o g y )  ~ where  0 <  cr < 1; then 

= 1 
x < N ( r ) ~ y  

=<zr/(x)+ ~ l o g N ( r )  
N(~)~y log x 

- - < w ~ ( X ) + l - ~  x ~ A(r ' )  
N(~")~y 

= ~rr (x)  + or(log y F ( y )  - log log y )  

and 

log ycr: ( y )  < ~r:(x). y + l  l ogy  
F(y )  = x t/~F(y) cr (log y - log log y)  " 

51 
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However  

~rr(x)'y _m(x)logy_ ~ r t ( x ) / x  ~+~ 
x " .  F (y )  F (y )  F(y)/(x '+~ log y) " 

The numerator  converges to zero as x --, ~ when e > O. We show that for e > 0 

sufficiently small F(y)/(x 1+~ logy)--~oo as y - - ~ .  This will show that 

- - F o g y m ( y )  1 
lim =<-  for all o- < 1 

F (y )  o" 

and the proposition will be proved. However  

F(y) = F(y) ( logy)""+ ' )  
x ~+" Fogy y"<l+~log y 

F (y )  
- y 1-8 (log y)8 

if e is chosen so that o - ( l + e ) < l  and 8 = l - o ' ( l + e ) > 0 .  Moreover,  by 

Proposition 5 for the exceptional case and Proposition 6 for the general case 

F (y ) /y  is bounded below, so F(y)/y~-8 (log y)8 ~ ~ as y ~ ~. This completes the 

proof. 

Part (a) of the Theorem is proved by combining Propositions 5 and 7. Part (b) 

of the Theorem is proved by combining Propositions 6 and 7. 
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