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THE BANACH-MAZUR DISTANCE
BETWEEN SYMMETRIC SPACES

BY
NICOLE TOMCZAK-JAEGERMANN'

ABSTRACT
We show that the Banach-Mazur distance between N-dimensional symmetric
spaces E and F satisfies d(E, F)=< ¢ VN, where ¢ is a numerical constant. If E
is a symmetric space, then d(E,l3™5)=<2V2max(M™(E), M,(E)), where
M®(E) (resp. M,,,(E)) denotes the 2-convexity (resp. the 2-concavity) constant
of E. We also give an example of a space F with an 1-unconditional basis and
enough symmetries that satisfies d(F,[5™") = MP(F)M(F).

§0. Introduction

In this paper we investigate the Banach-Mazur distance within the class of
finite-dimensional symmetric spaces. Our main theorem says that

() diam S, = max{d(E,F) E,F € S.}~ V&,

where S denotes the class of all k-dimensional symmetric spaces. The role of
the symmetry assumption can be seen comparing (*) with the recent result of
E. D. Gluskin [4], which says that max {d(E, F)]dimE =k =dim F} ~ k. Our
estimate improves earlier, independently obtained results of E. D. Gluskin [3]
and the author [10], where estimates diam S; = ¢ V'k(log (k + 1))°, where ¢ is a
positive constant, were shown (with @ =4 in [3] and « =2 in [10]).

In the case k = 2" our proof of (*) is constructive. In §2 we construct a certain
family R of orthogonal 2" X 2" matrices. In §3 we show that given spaces E,
F € S»» one has the estimate min| T|| || T7'||=2"""", where the minimum is
taken over all operators T : E — F, such that T is determined by a matrix from
R or T is a formal identity operator. This shows the main estimates in (*) for
k =2". The case of general k follows by a formal argument. Our proof also
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formally implies a version of (*) in terms of p-convexity and p’-concavity
constants of spaces involved.

In §4 we investigate the distance from a normed space to an euclidean space.
We show that if E €S, then d(E, I5)=2V2max(M®(E), Mu(E)), where
M®(E) and M,(E) denote respectively the 2-convexity and 2-concavity con-
stants of E, thus essentially strengthening in this case the classical estimate of
Kwapien [6]. To conclude §4 we give an example of a finite-dimensional normed
space F, which has 1-unconditional basis and enough symmetries and for which
Kwapief’s estimate is, up to a numerical factor, the best possible.

During the preparation of this paper the author held a visiting position at the
Department of Mathematics, Texas A & M University. The author would like to
thank the Department for its hospitality. The author is also grateful to W. J.
Davis, T. Figiel, W. B. Johnson and J. Lindenstrauss for stimulating discussions.
The author would like to thank the referee for the short and elegant proof of
Proposition 1.

§1. Notation and preliminary results

Let us recall some notation from the theory of finite-dimensional normed
spaces. If E, F are finite-dimensinal real normed spaces and dim E = dim F, the
Banach-Mazur distance d(E, F) is defined by

d(E,F)=inf{| T| | T™"|| | T anisomorphism from E onto F}.

Let X be a k-dimensional real normed space. A basis {e;}i-, in X is called
1-unconditional, if
k

z X(i)ei

i=1

ie.-x(i)e,»

»

for every sequence {x(i)}i~; of real numbers and every &; = +1,fori =1,---, k.
Let 1< p <. The p-convexity (resp. p-concavity) constant of X, denoted by
M®(X) (resp. M,(X)) is the least M (resp. M’ >0) such that

L (Shxlt) =] (S1x ) = M(Shxe )

for all finite sequences {x..} in X. Here (2. | x, |")"? € X is a vector whose i-th
coordinate with respect to the basis {e}f_; is equal to (=, |x.(i)]")"" for
i =1, k. For further details concerning convexity and concavity the reader is
referred to [7], section 1.d.

1/p
’
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A k-dimensional real normed space X is called symmetric, if there is a
normalized basis {e;}i-, in X such that

Z x(i)e 2 £x (i)exq) " ,

for every sequence {x (i)}~ of real numbers, every &; = = 1fori=1,---, k and
every permutation 7 of the set {1,---, k}. A symmetric space X will be always
identified with R*, endowed with a norm ||-||, and the basis {e:}{_; with the
standard unit vectors basis in R . In particular, if it is not specified otherwise,

5= (R%[-|,),  where ||x||2=(2x(i)2)"2 for x =(x(1), - x(k)) € R

The symmetry group of X is denoted by %, or by ¥, if no confusion on the
dimension of X can occur. The orbit of a vector x € R* under the symmetry
group is denoted by {Sx}ses. If x € R, then x * is defined as the unique element
in {Sx}ses such that x*(1)= x*Q2)=---=x*(k)=0.

Let 2=mo=k and a(1)=--- = a(mo)> 0. Define a norm ||| - ||| on R* by
(1.1) filx [l =2 x*@a@@) forx €R"
Then (R, [[|- |Il) is a symmetric space, in fact it is the Lorentz space d(1,a). We

shall need information about a form of extreme points of the unit ball in this
space. To formulate the result, let us define vectors

fm=(i]a(i))—lie,- for 1=m < m,.

= i=1

m=(Ze0)

k
€;.
is i=1

We have the following

LemMma 1. Every extreme point of the unit ball {x €R" ||| x || =1} is of a
form Sf., for some SESF and m =1, my.

PROOF. Let x €R* with [[|x || =1. Assume that x& % ={Sf.. |S € ¥ and
m =1,---,mo}. We shall show that x can be written as a non-trivial convex
combination of vectors from %. Without loss of generality we may assume that
x =x*. It is easy to check that
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x= kz: (x(m)—x(m +I))2e,~+x(k)ie,-

= 3 6m) - xm+ D) Za®) fo+3 S GO=xG+ ) Za®) e

+1 5 - xG+ 1) Fa®) 4+ x00 (3 a))

j=my

where
My -1 i k
d>,~=<2a(i)) ( ei—Ee.-) for j=my,- -,k —1.
i= = P55+
Since ¢; € F for j=m,,---,k —1, this shows that x is a combination of
elements of & with sum of the coefficients equal to

3 wm-xon+ D) ($a0) + 5 )~ x4 1)(Sa0)

+x(k) (3 a®) =lIxll=1.

Finally, since x & %, it is easy to check that at least two coefficients in the
convex combination are different from zero. This concludes the proof.

§2. Main construction

In this section we shall construct a family & of orthogonal 2" X 2" matrices,
which will be used to prove the distance estimate. Each matrix in this family is
determined by three sequences of non-negative integers d = (dy," - -, dx), a =
(ay, -+, ) and b = (by,- -+, b,) such that

ko l
d1+ali--~§dk0+ako, b,—iéb,o and 22dk+a"=2"=;2b‘.
= =

The construction is done in three steps.
First, given a non-negative integer no, define
= (@il
as a multiple of the usual 2" x 2" Walsch matrix. Namely, put W, =[1} and, by
induction, if ne=1,
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(n,—1) L] ~1
Wi, 1=i j=2v,

wio ™, j=E2 4l 1s=i, I=2v,

Q1) 0o = J

w:l;:*l)’ i = 2"0_1 + m, 1 é m, j é 2'!0—1,
L — (U(':;J_l), i = 2'10‘1 + m, ] — 2n—l + l,‘ 1§ m, l ézno-—l.
Graphically,
W —1 W —1
W = o no_~ .
ng [ Wno—l ' - Wno—l]

Next, given sequences of non-negative integers, d =(d,, -, dy) and a =
(ai, -, ay) such that di+e,Z- - Zdy+ay and i, 2% %=2" define a
2" x2" matrix T = T(d, a) =[7;];;=: by induction with respect to ko. If ko =1,
then

247w, i=s2%+m, j=s2%+1l 1=m,
22) Ty = [=2%, 0=s=2%-1,

0, otherwise,
Graphically,

A
A
T=
A

where A =2%"W,,.

Let ko>1 and assume that one can construct the matrices T(d,a) for
sequences d and « of length smaller than k. Let d and a be sequences of length
ko such that d; + a; = - - - = di, + ay, and =i, 2% % = 2", Since ko> 1 and a sum
of at least two powers of 2 can be equal to a power of 2 only if some of the
summands are equal, it follows that there is 1= k; < ko such that

ko

k

1
2 2dk+ak — 2n—1 — 2 2dk+ak.
k=1

k=ky+1

(This is also a consequence of Lemma 3 in §3.) Denote d=(d," -, d),
J = (dkl+1, RN dko) and a = (al, Tty akl), a= (aklﬂ, teey, ako). Let

Ti=T(d &)= [rofos and T,=T(d,&)=[rh]os:
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be matrices constructed by the inductive hypothesis. Then define T = [7;]3;-: by
h o 1=iQ, j=27,

J T j=2""L 1= 1=2,
(2.3) Ty =

This 1=2""4+m, 1=m, j=2"",

| =Ty i=24m, j=22TN0 1=m, Is20N

_| Ti T,
(]

The next lemma states some simple properties of the matrix T.

Graphically,

LemMA 2. Let d=(di, ", dy), a=(a,- ", ay) be sequences of non-
negative integers such that dia,Z- - Z diay, and Zje, 2% =2". Let T=
T(d,a). Then

(1) T is an orthogonal matrix;

@ Lir=2"fori=1,---,2";

(3) for every 1=i=2" the vector T, ;¢; € R*" belongs to the orbit {Suo}ses,
where

Uo = (241/2,. I LI L YL, LWL T -, 0).
: s
2% times 2%, times

4) If o =mina, then, for every s and s' with 0=s, s'<2""°, the 2° xX2°

matrix [t}]};-1 defined by

T’ii= T $2% +i,52% +j for i,j =1,.--,2%
is a multiple of the matrix W,.
Proor. Obvious induction.

Finally, let b = (b;,- - -, b,) be a sequence of non-negative integers such that
by= - = b, and 2, 2" =2". A matrix R = R(d, a, b) = [p;]5j-1 will be defined
by crossing out some entries of the matrix T(d, «) and muiltiplying rows by
appropriate factors. Namely, for i = 2i2}2"% + m, for some m =1,---,2% and
1=1l=1, put

-Ii ___{m,zb, +m,2bl+l+m,2b'+2+m,'“,2" __2bl +m)

and define
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2571, for jeJ,
24) Pi =

0 otherwise.

In the case when b, = min; s sk, @, the matrix R has many useful properties,
which are formulated in the next proposition.

PropoOSITION 1. Letd =(dy,- -, dy), @ =(ay, -+, ax) and b = (b, -, b,) be
sequences of non-negative integers such that di+ a1 = -2 dytay, bz =
b, and Sie,2%* " = 3o, 2% =2" for some non-negative integer n. Assume that
by = min,sx=x, @ Let R = R(d, a, b) be the matrix defined in (2.4). Then

(1) R is orthogonal matrix;

() Zilipi=2"fori=1,---,2";

() for every 1=I1=l, if L={Z2%+1,---,2..,2%}, the vector
Sier (2721 pie;) belongs to the orbit 2°{Suc}sey, where

2.5) uo= (247, - 247 el 2%l 2% (e 0).
\ e )
2% times 2%, times

Before we prove Proposition 1 let us state an important consequence.

COROLLARY 1. Letd, a and b be as in Proposition 1. Let uo € R*" be defined
by (2.5) and let vo=(2""--:,2%",0---0)€ R*. Let U:R> — R™ be the
operator such that Ue, =273, pye; (i =1,+-+,2"). Then U acts as a unitary
operator on l5". Moreover, if X and Y are 2"-dimensional symmetric spaces then

(2.6) 1Uxly =27 [ wolly lvollx-l % lx ~ forx € R
Proor. Consider a norm ||| |||l on R* defined by
lD
it Jif= % sup [x(i)[2"*  for x ER™,
=1 iel

where I, are the subsets defined in condition (3) of the proposition. Since the
extreme points of the unit ball in [[|-|| are of the form [27**Z.c *e¢;
(I=1,--, 1), it follows from the proposition that if y is an extreme point, then
| Uy lly =27 uo|lv- Therefore,

IUxlly =27 wollv Ililx [lll, ~ forx € R™.

On the other hand, for every x € R™ there is & in the orbit of v, such that
(Il x [I{l = {x, ). Therefore,

[l fll=¢x, 8) =l wollx-l| % [lx, ~ for x € R,

Combining these two inequalities together one derives (2.6).
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ProOF OF ProposITION 1. First note that property (3) follows directly from
Lemma 2, (3) and (4). To prove (1) and (2), fix sequences d and a. Denote by %
the set of all sequences of integers, b = (by,- -, by), such that

lo

min e ZbZh,z -2 h,z0, > 2"=2"

1=k =k =

For b € B as above, denote [,=|b]|.
We shall proceed by downward induction on | b |, i.e. starting with | b |=2"
Clearly, there is only one element b € B with |b | =2", namely

0=(0,---,0).
[

2" times

Since R(d, a,0)= T(d, @), (1) and (2) are satisfied by Lemma 2.
Let now b = (b, - -, b,) € B with |, <2" and assume that for all b’ € B with
| b'| > | b | the conditions (1) and (2) are satisfied. Let I; = max {! | b, > 0} and let

b'=(by, b, +, by = 1,b,= 1, by, -+, by).

Thus | b'|={b |+ 1 and, by the inductive hypothesis, R’ = R(d, a, b’) satisfies (1)
and (2). Let

R=R(d a,b)=[p;]ij-1 and R'=[pi]ij-..

We claim that, for every 1=k, m =27,

an 2n
2.7 Zl PiPim = Zl P s ime

This, obviously, implies that R satisfies (1) and (2) since R’ does. Set B = Zi{ 2"
and B = b, Since p; = p’; unless B<i =B +2° (1=i,j=2"), (2.7) is equival-
ent to

B+28 B+28
(28) 2 PikPim = z P:'kp:m-
i=B+1 i=B+1

Let T(d,a)=[;]ij=1. For j=1,---,2" define vectors C, A, Aj€ R by
Cj = (TB+1,,', TB+2,js " ' "y ’TB+25,,'),
Aj = (PB+1,,', PB+2jy* " s PB+2",j):

R ! ! 1
A= (P51, PBs2js" "5 P B+28.))-
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Fix 1 =k, m =2". By Lemma 2, (4), there exist integers 1 =i, i,= 2¢ (actually,
iy = k mod 2®, i,= m mod2”) and positive numbers K, and K, such that
G = Ki(ofl, 0f, -, 0B)),
Co = Ky, 08, -+, 0 $)).
By the definition of matrices R(d, a, b),
A =270, -,0, T+i 40, - -, 0),
A, =270, -0, Tg+iym, 0, - -, 0).

Consequently, <Ak, Am> =0 if i] 7£ iz and <Ak, Am> = 2BK1K2 if il = iz.
The case of A}, A, is slightly more complicated. Let ij =i mod2°™" and
i}=i,mod2?”". Then

Ak=2%72%0,++,0, 7511106 0, - 1, 0, 52814114, 0, -+, 0),
AW=2%20, - 0, T5i3m 0, , 0, To42811izmy 0, - - +, 0).
Thus (A}, A =0if i}# i} If iy =i, then
(Al AL =2P"2K,K; = (Ai, Am).

Finally, if ij=i} but i;#i,, then |i,—i;|=2°"". Assume, without loss of
generality, that i, < i, thus i, = i; + 27", By the definition of the Walsh matrices
one has
TB+ij.k = TB+2P1+ijk and  Tiigm = — TB42PVyigm.
Therefore, (AL, A.)=0.
It shows that for every 1=k, m =27,

B+28

z pikpim = (Ak, Am>
i=B+1
=(AkAn
B+28
= 2 Puplm
i=B+1

concluding the proof.

§3. The distance between symmetric spaces
The main theorem in this section says

THEOREM 1. Lef n be a non-negative integer: Let E, F be symmetric spaces
with dim E = dim F =2". Then
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3.1) d(E,F)s2""",
The case of general dimension is a formal consequence of Theorem 1.
THEOREM 2. Let E, F be symmetric spaces, dim E =dim F = N. Then
(3.2) d(E, F)=2**2" - 1) VN.

PrOOF OF THEOREM 2. Write N =Zi2,2% with k,>k,>--->k, =0. Let
{1,2,---,N}=LU---UI, be a decomposition into disjoint subsets such that
|L|=2% (i=1,---,io). Define

E; = (span (em)mes, || [[e) and F = (span (en)mes, || [IF)
and let T; : E; — F, be an isomorphism such that | T; | =|| T;'|| = Vd(E, F), for
i=1, -, i, Then define an isomorphism T:E — F by

Tx =;T(m2 x(m)em),

€5

for x = 2., x(k)ec € R". Obviously, for y =2, y(k)ex ER",

T-ly = 2 T,—l ( 2 y(m)e,,.) .
i=1 mel;
Therefore, by (3.1),
” T “ é 2 " T‘; “ é 26 2 Zki/t‘ § 225/4(21/4 _ 1)N”4.

i=1 i=1

Similarly,
” T—l “ é 225/4(2114 — 1)~1N1/4.
So
d(E,F)=|T| | T|=2*"2"-1)*VN.

Before we prove Theorem 1 we need some notation and a few technical
lemmas on sequences of positive numbers.

LEMMA 3. Let k be a positive integer and let b1 = - - - = by = 0 be integers such
that 22,2% 2 2* and b, = k. Then there exists 1 = I, = M such that Zl,2" =2"
In particular, if 1,2% =2**" and b, = k, then there exists 1=1l,< M such that
Sh 2% =2 =M, 2%

ProoF. QObviously, it is enough to prove only the first part of the lemma. Put
lo=max{l | Z\-,2% =2*}. If one had Zl,2% <2* then 2%~ would divide
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2% — =0, 2% In particular, 2%+ =2 — Sl 2% which would contradict the defini-
tion of l,. Therefore Zjo, 2% = 2%
In the sequel we fix a non-negative integer n. We define

@ = {u =%, 2%"0,---,00€ R™ | by= -+ - 2 by 20 are integers

M
and > 2" =2"} )
=1

For u=(u(), -,u2")€% let h(u) be the positive integer such that
St u(iy =2""". Then we define vectors u’ and u"” by

u'=V2((u()), -, u(h(u)),0,---,00E R,
(3.3)
u"=V2uh)+1), -, u@"),0,---,00E R

Obviously, u’ and u” belong to 9.
Finally, we introduce on 9 a relation >. If u =(2"",---,2*?)€ 9 and
v=02%7---,2%"0---0)€ P, we say that u > v, if by = c;.

LEmMMA 4. Let u, v € %. Then either u'>v" or v' > u".

PrOOF. It is easy to see that the condition u(h(u))= v(h(v)) implies u’ > v”
while the condition u(h(u))= v(h(v)) implies v’'> u".

An importance of the set & lies in the following easy lemma.

LEMMA 5. Letx(1)Z---=x(2")Z0 satisfy 22, x(i)* = 2". Then there exists
u=w), -, u")ED such that u(i)=2x(i) fori=1,---,2"

PROOF. Put io=max{i |x(i)=1/V?2}. Then i, x(i}*=2""". For every 1 =
i =ip let ¢; be the integer such that x(i)*<2% =2x(i)’. Since Zie,2% = 2",
there exists i) such that i, 2% =2""", Put u(i)=2%" for 1=i=i} and
u(i)=0 for i;<i=2" Obviously u = (u(l),-- -, u(2")) satisfies the hypothesis
of the lemma.

Now we are prepared to prove Theorem 1.
PrOOF OF THEOREM 1. Pick vectors %o, Jo, Zo» Wo € R” such that | %ol =

|| )~’OH2 = ” 20”2 = ” ‘;;0”2 — 2n/2 and

| % [le = min{]| x |l | x € R?,

x “2 = 2n/2},

34
( ) y ||2 — 2n/2} ;

Il olle» = min{|| y |- | y € R,
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| 2]l = min{|| z |- | z € R, || 2 |. = 2"},
(3.5)

“ WO”F' = mln{” w ”F‘ ’ w e RZ"’ W ||2 = 2n/2}'
These vectors will be used to estimate the norms of some operators.

LEMMA 6 Let io, )70, fo, Wo (= Rzn satisfy " fo“ = “ )‘50” = “ 20” = ” Wo” = 2"/2
and (3.4) and (3.5). Let V:R* — R” act as a unitary operator on 15'. Then

| V:F=E|=2"] Jolle-|Zolle,
[V:iE—F|=2"|Zole || wole-.
PrOOF. Obviously it is enough to prove the first estimate only. The second

will follow by changing the role of E and F.
Clearly, if Id denotes the formal identity operator, then

1d: E*— 15[ = 2"/ || o le-,
|Id: F— 15

=2""/]| Zo|lr-
Therefore,
IV:FoE|s|ld:F-> || V: =5 [[1d: 15> E|

= Q"M Folle-)2™?I | Zor)
= 2"/l Yolle- i Zolir.

This concludes the proof.

By Lemma 5 there exist vectors Xo, ¥o, Zo, Wo in & such that

Xo(i) = 2%0(i), yoli) = 2y4(i),

(36) T(i)=22(i),  Wo(i)S2Wo(i) fori=1,2,-++2"

By Lemma 4 one has %4> y; or yo> X¢. Since d(E, F)=d(E*, F*) and one
may consider, if necessary, the pair E*, F* instead of E, F, then without loss of

oY

generality one may assume that o> yo.

LEMMA 7. Let %o, Yo, Zo, Wo be vectors in & such that £, > yu. Then there exist
vectors Xo, Yo, 20, Wo € D such that

xoli)=2%0i),  yoli)S2§oi)  fori=1,-+-,2",

37) 20())=22o(i),  woli) = 2Wali),
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and satisfying at least one of the following conditions:

(3.8.1) Xo>Yo and 2zo>wo and  ys> wg,
(3.8.i1) Xo>Yo and zo>wo and wo> Yo,
(3.8.ii1) Xo>yo and wo> zo.

PROOF. If wo(h(Wo)) = Zo(h(Z0)), then the vectors xo= %o, Yo = ¥6, 2o= 28,
wo = Wwo obviously satisfy (3.7) and (3.8.iii). Assume now that Zy(h(Z,))=
wo(h(Wo)), then Z;>wg. Consider the vectors uo=ys; and vo=wi. If
uo(h(uo)) = vo(h(vo)), then uo> vo. In this case define xo = X4, zo = £§, where
Zo=Z¢, and yo = ug, wo= vg. Clearly, these vectors satisfy (3.7) and (3.8.i). If
vo(h{vo)) = uo(h(uo)), then the vectors xo=1x¢, zo=zo and yo= ub, wo= vl
satisfy (3.7) and (3.8.ii). This concludes the proof of the lemma.

Case I
(.9) xo(h (x0))wolh (wo)) = 207
or
(3.10) 2ok (20))yolh (y0)) = 2.

Observe first that by relabelling we may assume that (3.9) holds. We shall
construct an operator U: R” — R¥, which acts as a unitary operator on /3",
such that

(3-10) IU:F— E|=2""* | %le || Wolle-.

Then we shall complete the proof applying Lemma 6 to the operator V = U™":
d(E,F)=|U:F—E||U":E—F|

= | Zolle | Wolle-)2" 71 £olle |l wolle-)

= Qin+102

The required operator U will be constructed by means of Corollary 1. To
apply this corollary, we need the following lemma.

LEMMA 8. Letii € 9D and assume that i (1) = 2", Then there exists a subset
Ic{1,---,2"} such that

Q) Sy =2""

(i) if & € R* is defined by
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V2a(i) ifi€l,
a(i)=
0 if igl
then a certain rearrangement u, of i; can be written in a form

d /2 d 2 d,/2 d,,/2
u0=(21/,...,21/,...,2 N/’---,z N/’O...O)’
\ — \ ]

2™ times 2°n times

with d1+a|Z"'§dN+aN and
n—2y~ 12 : na,
(3.11) 2" la(l) = 115111;1)‘12 .

Assuming the truth of Lemma 8 we complete the construction of U as follows.
Let u =xjandlet I C{l,---,2"} and u, be as in Lemma 8. Put v, = wg. By (3.9)
one has

vo(1) = V2 wo(h (wo)) = 2" 27/ii(1).

It follows from (3.11) that u, and v, satisfy the assumptions of Coroliary 1. Let
U be the operator defined in this corollary. Notice that since

()= V2xy(i)=2x(i) and wve(i)=V2wo(i) foralli=1,---,2"

it follows that

luolls =lldollz =2l ol and |l volle- = V2| woll-,

hence, by (3.7) and (3.6),

luolle =8| %olle and | volle- =4 V2| Wolle-.
Therefore, by (2.6).
I Ux lle = 27| uolle | volle- 1l x Il

=2 ol | o

el % lle

for all x € R”. This shows (3.10).

PrOOF OF LEMMA 8. Write & in a form

~ s /2 s, /2 Sy /2 5,12
u_(2| ,...’21 ’...,2M ,...,21\4 ,0,...,0),
[. J N J

v

-
2% times 2% times
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with s, =---Z sy =0 and if s, = 5,1, then B, > B,., for all 1 =pu =M. Put
M ={1=p =M|2% =2"?a(1)?}. We shall show that

(3.12) > 2wt >

=t
Therefore, by Lemma 3 applied to b, = s, + B., there exists # C.#’ such that
S,eu 2P =2""" Tt is easy to see that the set

. w1
1=y { 2% +1, 2 2% 42,0, iz‘&}
weM L o=t s=1 v=1
satisfies the conclusion of the lemma.

It remains to prove (3.12). Let K €{1,~--, M}\.#' be a set such that:

(1) for every v €{1,---, M}\ M’ there exists u € K such that s, =s,,

(@) if py, u. €K and p, # p,, then s, #s,,.
For every n €K let N, ={v&M'|s, =s5.}. Notice that {1,--- M}\ M =
U,.cx N, and that if v, v, €N, and », # v,, then B, # B., and both B,, and B.,
are smaller than 2"7/ii(1)’ (u € K). Thus, since 2"*/ii(1)’ is a diadic number,
one has

;, 25,‘4’5“ — z 2:“ 2 2ﬁ"
nEM

w€K vEN,
< EK 2°%(2" G (1))
< (2 max 2’#) @ *1ay)

= a1 a1y’

=2,
Therefore
) M
23“+B — 25“+8“ - 2s“+8“
#;ﬂ’ “2:1 n;a’
> i -2
= 2n—1

This shows (3.12) and concludes the proof of Lemma 8.
Case II. Assume that

G.13)  xo(h(xo)wo(h(wa)>2%" and  zo(h(z0))yo(h(yo))> 277",
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LEmMMA 9. Let u, v €9. Assume that v > u. Then for any 2"-dimensional
symmetric space X one has

< oot

u'[lx
where u' and v" are defined by formula (3.3) applied to the vectors u and v

respectively.

ProoF. Notice that since v > u then, given 1=m =27, if v{(m)#0, then
v(m)=Z u(i)for all 1 =i =2" It follows that u’ has more non-zero coordinates
than v” has. Moreover, for all 1 =i m =2" if u'(i)#0, then

w02

It follows that if X is a 2"-dimensional symmetric space, then

D e = 2Dy
= v(h(v)) '

This concludes the proof.

We are ready now to prove the theorem in Case II. We shall show that in this
case the estimate for the distance d(E, F) can be obtained by considering the
formal identity operators. Recall that at least one of conditions (3.8) of Lemma 7
is satisfied. Assume first that either (3.8.1) or (3.8.ii) holds. Then, by relabelling,
one may assume that (3.8.1) holds.

Let x and w{ be vectors defined by formula (3.3) applied to the vectors x, and
wo respectively. Consider a Lorentz norm ||| - ||| defined on R* by

lxll= S x*(ewick)  forx € R™.

Since wi(k)= V2 wo(k)=4 V2 wo(k) for k=1,- , one obviously has
314 lx 1=l wéllellx e =4 V2] olle- | x [l forx €R™.

We shall show that
(3.15) Ixlle =22 %l | x| forx €R™.
Assuming the truth of (3.15) and combining it with (3.14) we shall get
[1d: F— E | =2"|| %olle [| Wol|r--
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Therefore, by Lemma 6,
d(E,F)<||ld: F>E | |1d: E— F|

= @7 Zolle [l wolle)2"/ [l Zolle || o le-)

- 2(16+n w2

In the proof of (3.15) one needs an estimate for the norm ||+ || in terms of a
new Lorentz norm |-|. Define

2n
lu|=D u*()xi(j) forueR™

i=1

Analogously to (3.14) one has

|u|=4V2|%|e|ulles foru€R”
Therefore

(3.16) | x|le =4 V2| %olle sup{|(x,u)|| u € R7,

u|=1} forx €R™.

The advantage of using norms ||| - ||| and || lies in the fact that the form of
extreme points of the unit balls in these norms is known. Observe that

io = max {i I xo(i)#0}=h(xo) and mo=max{m | wo(m) # 0} = h(wy),
and define
0

3

m

-1
w(,(k)) e forl=m<mg
1

k=1

and

—1 2n

foo = (:2; w6(k)> k2=1 ex.

Similarly, define

i -1 i
g,»=(2x6(j)) Ze,- forl=i<i,
j=1 j=1
and

ig -1 2n
g"o=(_2x’(j)) zei'
i=1 j=1
Fix m with 1=m < m,. Let 1=i = i,. Then, since wi(m)= V2 wo(m,) and
x5(i) = V2 xo(io), one has
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(m/ki wz,(k)) (;xé(i))_l

%lwo(mo)xo(lo)

1-n/2
2

G| = (3 with)) " (Z @) minim, i)

A

1A

IIA

Therefore, from (3.16) and Lemma 1 it follows that
(317) ”fm "E = 2(7_")/2 ” io”E fOI' l=m< Mmo.

Notice now that by the definition (3.4) of y,, one has
llx|l= ” “ lx|lze  forallx € R™.
Thus, by duality,
X e = X
lx e = ” “ 1 |

Therefore, if yg is defined by formula (3.3) applied to the vector y,, then
Yo(i))=4V2joj) for all j=1,---,2" and

n+5 2

”f"to"E—“y ” ”f"'o“2

On the other hand, if x5 € & is defined by (3.3) applied to the vector x,, then
I x4lx = V2|xo]x =4 V2| %ol|lx, for any 2"-dimensional symmetric space X.
Therefore,

(3.18) 2" = || x§ =l x5l | xS lle =4 V2] x5 |- || £olle

Combining this inequality with the estimate for || f.. [z and with Lemma 9 one
gets

1 froll =257 fo | X 4 V2] 8 le- | £o e /Iy -

m, .—1
<nS-n2) 2 y "lzm
=2 k(3 witk) x2 ol (yo))

Since

My My

,; w:,(k)g,; wi(k)/ws(1)=2"/V2we(1) and wo(l)= yo(h(yo))
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(because y,> wo), the last expression is smaller than or equal to

- ~2 Xo(h (X0)) 5c11-
95nl2|| £ i oli2-n " 2 Xy 0 ot DTN
“ xOUE WO( ) )’o(h()’())) “x()“E

This shows that || f, |le = 2" || % ||z and, combined with (3.17) and Lemma
1, concludes the proof of (3.15).

Finally, to complete Case II assume that condition (3.8.ii) holds. It follows
from Lemma 6 that

d(E,F)=<|1d: F>E|[|1d: E—>F]|
=2/l Jolle- Il Zo e [l o e [| Wolle-.
By (3.18) one has 1/| %z =2 " || x§||e- and, similarly, 1/ || wolle- = 277" [ Wi lr.

Since || Joller = 27| yolle- and || Zollr Z27°*|| 26l then combining all these
estimates with Lemma 9 and conditions (3.8.ii) and (3.13), one obtains

d(E, F)=2"2"" (|| xslle-/ ||y’ [l=)2" (I wile /| 26 [l)
= 2°xo(io)Wo(mo)/ Yo(jo)zo( ko)
_—<_— 2102n/22u!2/2(n—4)12
- 212+n/2.
This shows Case II and concludes the proof of Theorem 1.

To conclude this section let us prove a “p-convex, p’-concave version” of
Theorems 1 and 2.

COROLLARY 2. Let 1<p=2,letp’=p/(p—1). Let E, F be symmetric spaces.
If dim E =dim F =2", with a non-negative integer n, then

(3.19) d(E, F)= M2@+p-12,

where

M = M®(E)MAEYMP(F)MAF).

In general, if dim E =dim F = N, then
(3.20) d(E, F)=s 22 'PQi2e-1i4 — 1y 2MNP~12,

PROOF. The proof of (3.19) is a slight modification of the proof of Theorem 1.
First we need some renorming. It is well-known (see [7], proposition 1.d.8) that
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there exist norms |||+ [l and ||| |l- on R* such that E =(R?,|||-|ll¢) and
F=(R™,]||-|l¢) are symmetric spaces such that

M®(E) = Mo(E) = MP(F) = M(F) =1
and
d(E,E)= M"(E)Myy(E) and d(FF)= M7(F)M(F).

It follows from the interpolation theorem of Pisier [8) that there exist spaces
with 1-unconditional basis, say E, and F,, such that E is isometric to the
Calderon interpolation space [Eo, 3]s and F is isometric to [Fi, 13]s where
6 =2—-2/p. Since E and F are symmetric, E,, F, are symmetric t0o, so we can
repeat the proof of Theorem 1 for the spaces E, and F,. In particular, let %o, yo,
Zo, Wo be vectors in R* such that || %]l =] Yol = Zo|l. = ol = 2" which
satisfy conditions (3.4) and (3.5) for the spaces Eo, F, and let xo, yo, zo, wo € & be

defined by Lemmas 5 and 7. Assume that E,, F, satisfy the assumptions of Case I
and let U: R* — R™ be the operator constructed in this case. In particular,

1 U < Fo> Eo|| = 287 | Zo e | Wo les,

1U™: Eo—= Fol =2"/|| %ol [l Wollr-

Therefore, since E and F are interpolation spaces,
1U: F—Ef=@" " folla ] wolle)™",
IU™: E = Fll= @/ %ol | Wolles)' "
It follows that
d(E' F) =< (2(11+n)/2)1—0 = 2(11+n)(1/p—1/2)'
Assume now that E and F satisfy the assumptions of Case II. The same
interpolation argument shows that
d (E F) é 2(24+n)(1/p—1/2).
Therefore,
d(E,F)< d(E, E)d(E, F)d(F,F)= M2,

This concludes the proof of (3.19). Inequality (3.20) follows from (3.19) in exactly
the same way as in the proof of Theorem 2.
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§4. The distance from a symmetric space to an euclidean space

If X is a k-dimensional real space with an 1-unconditional basis, then it is
well-known that

@.1) d(X, 15 = MO(X)Me(X).
Indeed, for x = 2k, x(i)e; € X, define x,, = x(m)en, (m =1,---, k). Then

(3=)"

It follows from the definitions of M®(X) and M¢(X) that

1/2
(zxzm) ()=|xG)| fori=1,--~k so

=lx.

k

1 , , 1/2<
Mo (X) ( 2 x(myen ) =|x]|

m=

1/2
’

= M(X) ( mﬁk) x(my| en “2)

=1

for every x € X. This obviously implies (4.1).
Estimate (4.1) can be viewed as a particular case of the well known theorem of

Kwapien ([6] cf. also [2], chapter 6), which says that for any k-dimensional
normed space X one has

4.2) d(X, 15 = Tox(X)Cax(X),

where Ty)(X) and Cp(X) denote the Gaussian type 2 and cotype 2 constants of
X (the definition of these constants can be found, e.g., in [2], chapter 6, where
they are denoted by sup, . (X) and sup, B.(X) respectively).

As we shall show in this section, for symmetric spaces inequality (4.1) can be
essentially improved, while in the general case, both estimates (4.2) and (4.1) are
asymptotically, as dim X — o, the best possible .

The positive result states

THEOREM 3. Let E be a k-dimensional symmetric space. Then

(4.3) d(E, 15)=2 V2 max (MP(E), M(E)).

In the proof we shall need the following lemma, which is a generalization of
Lemma 4.

LEMMA 10. Let u(1)=z---zu(k)z0, v(1)=---Zv(k)Z0 be such that
Siau(i)=1=3%,0v(j). Then at least one of the following conditions holds:
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(i) there exist positive integers io, jo such that u(ic)Z v(jo) and Tl u(i)=3,
E;‘=,‘0+l U(]) < % = 2:}=io U(j),

(i) there exist positive integers i, jo such that v(jo) Z u(io) and Zj.v(j) =3,
S u(i)<3=SE u(i).

PROOF. Set io=inf{k |S5,u(i)>% and jo=inf{k |S%,v(j)=3. Then
either u(ip) = v(jo), which gives (i), or v(jo) = u(io), which gives (ii).

PrROOF OF THEOREM 3. Pich x, yo€ R* such that | x,.=1=]yo. and
Ixolle = min{|x e | x € R%, [x|o=1}, | yolle- = min{lly l=- [y € R, lly =1}
Then similarly, as in Lemma 6, |Id: E — I5[|=1/||xollz and ||Id: ;> E| =
|1d: E*— I5]|=1/{ yolle+- Therefore,

4.4) d(E, 15 =1/{| xolle || yolle-.

Put u(i)==x%() and v(j)=y$() for i, j=1,---,k and apply Lemma 10.
Assume first that condition (i) of the lemma is satisfied. Put X,=
(x3(1), -+, x3i0),0, - ,0)ER* and o= (y3(jo), - y3(k),0,--,0)€ R",
Then %o(i)= x (i) and Fo(j)= y¥(j) for i, j =1,- - -, k, hence || Fofle = xo]e and
| Folles = yolle+. Notice that

1= Jolk =1 Yolle | Folle- =1 Jolle Il yolle-.

It follows that 1/ || yo|le- = 2| Jo|le. Combining the obtained inequalities with (3.4)
one gets

@.5) d(E, 13y =2{ Jolle /|| Zolle.
Define now vectors & € R* and § € R* by
(4.6) G() =%} and #(i)= (i) fori=1,--- k.

The conclusion of (i) implies, in particular, that 2%, 5(j) =2 212, i(i) for all
m =1, -, k. From the well known theorem of Hardy, Littlewood and Polya (cf.
[5]) it follows that there exist positive numbers a. with 2.a, =1, permutations
. of the set {1, -+, k} and &.(i)= =1 such that

5(i) =22 aen(i)i(m (i) fori=1,-++ k.
Therefore,

1/2
yo(i) = (Za,.x..(i)z) fori=1,---,Kk,
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where x, € R* is defined by x.(i)= V2 %o(m.(i)) for i=1,---,k and n=
1,2, . Clearly || . [l = V2| %l for n =1,2,---, so

) 1/2
7= ” ( 2 anxn>

172
= MOE) (S a5 )

E

= V2 M®(E)| folle.

Combining this estimate with (4.5) one gets d(E, l§)§2\/§ M®(E).
Assume now that condition (ii) of Lemma 10 is satisfied. Put

%o = (x%(io), - - -, x ¥(k),0,- - -,0)E R"

and
Jo=(y5(1), -, y (o), 0, --,0)ER".

A similar argument as before shows that
4.7) d(E, 15) =2 %olle- /1| § ofle--

If i € R* and § € R* are defined by (4.6), then the conclusion of (ii) implies, in
particular, that =2, 4(i)<22[~, 6(j) for all m =1, - - -, k. Therefore there exist
positive numbers a, with 3,4, = 1 and vectors y, € R* with || y. [le- = V2] Jolle-
for n =1,2,- -, such that

12
f0(1)§<2an))n(l)2) fOri::l,"',k.

Thus
172
ol = MOE( S au 3. )

=2 Mg(E) “ Yo ”E

Combining this estimate with (4.7) one obtains the estimate d(E,[7)=
2 V2 Muy(E). Together with the first part of the proof it shows (4.3).

The next example shows that the symmetry assumption in (4.3) cannot be
dropped. Before stating the result, let us recall some generalization of symmetric
spaces (cf. e.g. [1], chapter 4). A normed space E is said to have enough
symmetries if the group G of isometries of E has the property that for any
operator T': E — E the condition Tg = gT for all g € G implies T = A1d, for
some A €ER.
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PrROPOSITION 2. Let 1<p=2 and let F= (@Tl;)lp,, where 1/p’+1/p = 1.
Then F has an 1-unconditional basis and enough symmetries, but still

d(F,15) = n*"' = MO(F)MafF)
z (Te(F)CofF)
with some numerical constant ¢ > 0.

ProofF. The norm in F is given by the formula

leli={ 3% ($1ar) "] tor@rer

Obviously F has an 1-unconditional basis and it is easy to see that it has enough
symmetries too. Leta™ =(aj) € F (m = 1,2, - -), then, by Holder’s inequality,

(3 {3 (S (S )y}
(g (g geer) )"
(S (s g1aet) ]

v S (e ) )

1/2
— 1/p—1/2 m |12
w0 (3 lam )

3

il

A

A

This shows that M@(F)=n'?7"2 A similar argument shows that Mu(F)=

p—1/2
n'PT,

It is well-known (cf. e.g. [6]) that there exists a numerical constant ¢ such that
if 1<p=2=gq < then C(z)(l;) =¢ and T(z)(l;') = (. Therefore, by Kahane’s
inequality (cf. e.g. [2], (5.3)), one has

ColF)= d(t3, 15)Co((D 1), )
1 2

<n 12~1/p’ C(z)(l:)

- 1/p—-1/2
=én'’®
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and

To(F)= cTo(lpys éd(ly, Iy s én'™?,
where ¢ is a numerical constant.

To calculate the distance d(F, !3’), consider an ellipsoid € of maximal volume
contained in the unit ball of F, and let ||- |l be the euclidean norm on F = R™
induced by &. Since F has enough symmetries, it folows that

d(F,13)=1d: F—@®R", |- )Ix[1d: (R™, |- )= F]|
= II Id: F'_)(R"z’ " ) ”2)"’

where Id denotes the formal identity operator ([1], lemma 4.6). Since & is
unique, then, obviously, it is invariant with respect to all isometries of F. Hence,
in particular, ||-|. must be of a form [[(a;)| = (-1 Zi-1 | cjay [1)"?, for some
¢ €ER (i,j=1,---,n). Since, given permutation 7 of the set {1,---,n}, the
operators S((a;)) = (d»@,;) and S((a;)) = (@) are isometries of F, then
Cj =+ =Cy for every j=1,---,n and ¢y, =-'-=ci for every i=1,---,n.
Therefore,

“(aii)”2=c(i i la.,l) forsome ¢ >0

j=11i=1

and obvious computation shows that ¢ = n"?""*, Now observe that

fak=rre (35 i1

j=1i=1

n n p'ipy Vip'
e 35S )]
=1\ =t

for all (a;) € R™. Moreover if (b;) € R™ is defined by b; =1,for i=1,---,n
and b; =0, for i, j=1,---,n and j#1, then

1@l = n""=n*"| (By) -

It follows that d(F, I3)=||I1d: F— (R", |- |)]| = n**"". This equality, combined
with the estimates for M®(F), Muy(F), and Ty,(F) and Cp(F), concludes the
proof of the proposition.

Our Theorems 1 and 2 raise the natural question, how essential in this kind of
estimates the symmetry assumptions are. As we mentioned in the introduction,



Vol. 46, 1983 BANACH-MAZUR DISTANCE 65

the recent result of Gluskin [3] shows, that some assumptions on the symmetry
or unconditional structure of spaces involved are necessary.

ProBLEM 1. What is the order of growth, as k — =, of the diameter of the set
of all k-dimensional normed spaces with an 1-unconditional basis?

PrOBLEM 2. What is the order of growth, as k — o, of the diameter of the set
of all k-dimensional normed spaces with enough symmetries?

Finally let us mention problems related to Schatten ideals of operators on a
Hilbert space. If E € S,, by C} we denote the space L(13) of all operators on 3,
endowed with the norm || A ||, =||{S:(A )} |le, where {S;(A )}, is the sequence of
eigenvalues of the operator |A |=(A*A)"” € L(I3) (cf. e.g. [2], §3).

ProBLEM 3. What is the order of growth, as k — %, of max{d(C%, C¥|E,F €
Se}?

The answer to this problem would be implied by the positive answer to the
next problem.

PrROBLEM 4. Does there exist a constant ¢ >0 such that for all positive
integers k and all E, F €S, one has d(C%, CP) = cd(E, F)?

For spaces E =1, F=1; 1=p, q =, the answer to Problem 4 is positive

(9D).
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