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THE BANACH-MAZUR DISTANCE 
BETWEEN SYMMETRIC SPACES 

BY 

NICOLE TOMCZAK-JAEGERMANN* 

ABSTRACT 

We show that the Banach-Mazur distance between N-dimensional symmetric 
spaces E and F satisfies d(E, F)~  c ~/~r where c is a numerical constant. If E 
is a symmetric space, then d(E, l~,mE)____< 2 ~/2 max (Mt2~(E), Mtz~(E)), where 
Mt2)(E) (resp. Mt2~(E)) denotes the 2-convexity (resp. the 2-concavity) constant 
of E. We also give an example of a space F with an 1-unconditional basis and 
enough symmetries that satisfies d(F, l~ 'mF) = Mc2)(F)M~2~(F). 

w Introduction 

In this p a p e r  we invest igate  the B a n a c h - M a z u r  dis tance within the class of 

f ini te-dimensional  symmet r i c  spaces.  O u r  main  t h e o r e m  says that  

(,) 
diam Sk = max { d ( E, F)  E, F E Sk } ~ C'-k, 

where  Sk denotes  the class of all k -d imens iona l  symmet r i c  spaces.  The  role of 

the s y m m e t r y  assumpt ion  can be seen compar ing  (*) with the recent  result  of  

E . D .  Gluskin  [4], which says that  max {d(E,  F)  I dim E --- k = dim F} - k. O u r  

es t imate  improves  earl ier ,  independen t ly  ob ta ined  results of E. D. Gluskin  [3] 

and the au thor  [10], where  es t imates  d iam Sk =< c ~/k( log (k + 1)) ", where  c is a 

posit ive constant ,  were  shown (with a = 4 in [3] and a = 2 in [10]). 

In the case k = 2" our  p roof  of (*) is construct ive.  In w we construct  a cer tain 

family ~ of o r thogona i  2" • 2" matr ices.  In w we show that  given spaces E,  

F E $2- one has the es t imate  minll TII [I T- ' I I  --< 2~2§ where  the m i n i m u m  is 

t aken  over  all ope ra to r s  T : E ---> F, such that  T is de t e rmined  by a matr ix  f rom 

or  T is a formal  ident i ty opera to r .  This shows the main  es t imates  in (*) for  

k = 2". The  case of genera l  k follows by a fo rmal  a rgument .  O u r  proof  also 
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formally implies a version of (*) in terms of p-convexity and p'-concavity 

constants of spaces involved. 

In w we investigate the distance from a normed space to an euclidean space. 

We show that if E E Sk, then d(E, l~)--- 2 X/2 max (M~2)(E), M~2~(E)), where 

M~2)(E) and M~2)(E) denote respectively the 2-convexity and 2-concavity con- 

stants of E, thus essentially strengthening in this case the classical estimate of 

Kwapiefi [6]. To conclude w we give an example of a finite-dimensional normed 

space F, which has 1-unconditional basis and enough symmetries and for which 
Kwapiefi's estimate is, up to a numerical factor, the best possible. 

During the preparation of this paper the author held a visiting position at the 

Department of Mathematics, Texas A & M University. The author would like to 

thank the Department for its hospitality. The author is also grateful to W. J. 

Davis, T. Figiel, W. B. Johnson and J. Lindenstrauss for stimulating discussions. 

The author would like to thank the referee for the short and elegant proof of 

Proposition 1. 

w Notation and preliminary results 

Let us recall some notation from the theory of finite-dimensional normed 

spaces. If E, F are finite-dimensinal real normed spaces and dim E = dim F, the 

Banach-Mazur distance d(E, F) is defined by 

d (E, F)  = inf {11 T l[ II T- '  [[ [ T an isomorphism from E onto F}. 

Let X be a k-dimensional real normed space. A basis {ei}~=l in X is called 

1-unconditional, if 

for every sequence {x(i)}~, of real numbers and every e~ = +- 1, for i = 1 , . . - ,  k. 

Let 1 < p < ~. The p-convexity (resp. p-concavity) constant of X, denoted by 

Mt')(X) (resp. Mtp)(X)) is the least M (resp. M ' >  0) such that 

1 1/p x.,,.) 
for all finite sequences {xm } in X. Here (E,, I xm [~)I/P E X is a vector whose i-th 

coordinate with respect to the basis {e~}~=~ is equal to (Era [xm(i)lP) 'z" for 

i = 1,. �9 k. For further details concerning convexity and concavity the reader is 

referred to [7], section 1.d. 
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A k-dimensional real normed space X is called symmetric, if there is a 

normalized basis {e~}~=~ in X such that 

II  x'i'ell( 
for every sequence {x(i)}~o~ of real numbers, every e, = +- 1 for i = 1 , . . . ,  k and 

every permutation ~- of the set {1,. �9 k}. A symmetric space X will be always 

identified with R k, endowed with a norm I1"11, and the basis {e,}~=~ with the 

standard unit vectors basis in R ~. In particular, if it is not specified otherwise, 

l~ = (R ~, I1" 1[2), where Ilxl12= .= x( i )  ~ for x = ( x ( 1 ) , . . . , x ( k ) ) E R  k. 

The symmetry group of X is denoted by ~k, or by 5e, if no confusion on the 

dimension of X can occur. The orbit of a vector x E Rk under the symmetry 

group is denoted by {Sx}s~.  If x E R k, then x* is defined as the unique element 

in { S x } s ~  such that x* (1 )=  > x * ( 2 ) -  > . . -  = x*(k)>=O. 

Let 2<-mo<=k and a ( t ) =  > . . . = > a ( m o ) > 0 .  Define a norm Ill'Ill on R k by 

m o 

(1.1) lllx I I [ = ~ x * ( i ) a ( i )  f o rx  E R  k. 
i = l  

Then (R k, Ill" Ill) is a symmetric space, in fact it is the Lorentz space d(1, a). We 

shall need information about a form of extreme points of the unit ball in this 

space. To formulate the result, let us define vectors 

f,~ = a(i)  e, 

[~ = a(i e,. 
\ i = 1  i = l  

We have the following 

for 1-<m <too. 

LEMMA 1. Every extreme point of the unit ball {x E R ~ I lll x III ~ 1} is of a 
[orm sire [or some S E b ~ and m = 1 , . . . ,  too. 

PROOF. Let x E R k with II[x lit : 1. Assume that x ~  ~: = {S[,~ IS E 6e and 

m = 1 , . - . ,  too}. We shall show that x can be written as a non-trivial convex 

combination of vectors from ~. Without loss of generality we may assume that 

x = x*. It is easy to check that 
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X = 

k - I  ra k 

~, (x(m) - x(m + 1)1 ~ e, + x(k)  ~, e, 
m = l  I = 1  / = 1  

~ ( x ( m ) - x ( m + l ) )  a(i) f,,,+-~j__~ - x ( j + l ) )  a(i) f,,,o 
m = l  i = 1  

1 ~ (x(j)_x(j+l))(~a(i))d~ i+x(k)(~a(i))f~, 
"dr--2 j=m o \ i = 1  k i = l  

where 

c b s = ( ~ a ( i ) ) - l ( , ~ e , -  k=~s+ e,) for j = too," " , k  - 1. 

Since t h j E f f  for ] = m o , . . . , k - 1 ,  this shows that x is a combination of 

elements of ,~ with sum of the coefficients equal to 

( x ( m ) - x ( m  + 1 ) ) ( ~ a ( i ) ) +  ~ (x(j)~x(l" + 1)) a(i) 
m =1 i = 1  j=m 0 \ i = 1  

+ x(k ) ( ~ a(i)) = [[I x lll = 

Finally, since x ~ ~, it is easy to check that at least two coefficients in the 

convex combination are different from zero. This concludes the proof. 

w Main construction 

In this section we shall construct a family ~ of orthogonal 2" x 2" matrices, 

which will be used to prove the distance estimate. Each matrix in this family is 

determined by three sequences of non-negative integers d = (d~, . . - ,  dko), a = 

( a , , . . . , a ~ )  and b = (b , , . . . ,b~)  such that 

dl + al >= . . . >= dko + a~, b~ >= . . . >= b~ and 

The construction is done in three steps. 

First, given a non-negative integer no, define 

- -  ~ ( n r ) 1 2 n o  
Who - [to q vii,i= 1 

k 0 I 0 

y 2d.+o =2. _-  2b, 

as a multiple of the usual 2 "~ x 2 "0 Walsch matrix. Namely, put Wo = [1] and, by 

induction, if no => 1, 
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f ,.,!%-1) 
(n -1 )  O) il o , 

(2.1) ~"o)-  
, 1 , , ,  - o , , - 0 %  

_ 1 , ,  

Graphically, 

l_ - i ,  i_-<2 "~ 

j=2%-1+/, l=<i, I__<2"o -1, 

i = 2%-1+ m, l <_ m, j=<2 %-1, 

i = 2 % - ' + m ,  j = 2 " - 1 + / ,  l<___m, l ~ 2 %-1 . 

w.=lw.o-, 
W,,o-1 

W,~-1 

- -  W h o _  1 

Next, given sequences of non-negative integers, d = ( & , . . . ,  &o) and a = 

( a l , " ' , a ~ o )  such that dl+ct l>=. . .>=&o+a ~ and s176 define a 

2" • 2" matrix T = T(d, a)  = 2. [z~i]~.j=1 by induction with respect to ko. If ko = 1, 

then 

(2.2) 
f dl/2 (al)  

2 to t ,  i = s 2 ~ , + m ,  j = s 2 ~  

r~s= 1 < 2  ~1, 0=<s--<2d ' - l ,  

0, otherwise. 

Graphically, 

A 

T =  ['. 

where A = 2d'/2W~,. 

Le t  ko> 1 and assume that one can construct the matrices T ( d , a )  for 

sequences d and a of length smaller than ko. Let d and a be sequences of length 

ko such that dl + al =>" �9 �9 > &o + a~o and Z~~ 2 dk+~* = 2". Since ko > 1 and a sum 

of at least two powers of 2 can be equal to a power of 2 only if some of the 

summands are equal, it follows that there is 1-< kl < ko such that 

k] k o 

Z 2dk+% = 2"-1 ~-- Z 2dk+%" 
k ~ l  k ~ k l + l  

(This is also a consequence of Lemma 3 in w Denote  d = ( d , , . . . , & l ) ,  

d = (&,+l,'" ", &o) and ~ = (a l , . "  ", a~,), ~ = (a~,+l,' '  ", a~o). Let  

TI T(d, - - ' 2n-' T(a, a )  t! 2 n - '  - -  , = = a )  - [r.,,],,,=l and T2 
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be matrices constructed by the inductive hypothesis. Then define T = [%]{7=1 by 

(2.3) r~s = 

Graphically, 

n - I  
' 1 < i ,  j < 2  , 

r'~l, j = 2  "-1+1, l_-<i, 1 ~ 2  ~-1, 

' i = 2 "-1 r,~j, + m,  l < m ,  j < ~ , - I  

,, = 2 - - I  9 . -1+~ - r = , ,  i + m,  j = _  , l - m ,  < 2"-t. 

IT1  T2]  
T =  Tt T2 " 

The next lemma states some simple properties of the matrix T. 

LEMMA 2. Let d = ( & , ' . . , & o ) ,  a =(a , , . . . ,ako)  be sequences of non- 

negative integers such that d i a l > ' "  > &oako and E~~ ". Let T =  

T(d ,a) .  Then 

(1) T is an orthogonal matrix; 

(2) X~:l r~ = 2" for i = 1 , . . . ,  2" ; 

(3) for every 1 <= i <= 2" the vector E~l ri~e, ~ R 2" belongs to the orbit {Suo}s~,, 

where 

uo = (2d'a, "" ", 2 d~ a , . .  ", 2%/2,.. ", 2%/2, 0 , - .  ", 0). 

2*' ~imes 2% ~imes 

(4) If a <_ rain ak, then, for every s and s' with 0 <= s, s' < 2"-5, the 2 ~ x 2 ~ 

matrix , 2. [rij]i.j=l defined by 

r{, = r,2- +i.r for i, j = 1,." ", 2 ~ 

is a multiple of the matrix W~. 

PROOF. Obvious induction. 

Finally, let b = (b~," �9 b~) be a sequence of non-negative integers such that 

. . . .  [p~j]~.,=l will be defined b~= > =>b~andEtto_-~2 ~, 2 " . A m a t r i x R  = R ( d , a , b ) =  2. 

by crossing out some entries of the matrix T(d, a )  and multiplying rows by 

Y-,=t + m, for some m = 1,. �9 ",2 ~' and appropriate factors. Namely, for i = ~-~ 2 b' 

1 =< l =< 10, put 

J, = {m, 2 b' + m, 2 b,+~ + m, 2 b,+2 + m,. �9 2" - 2 b' + m) 

and define 
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(2.4) 
f 2b'/2r~j for j E J~, 

P0 [ 0 otherwise. 

In the case when bl =< minl_~k~ko ak, the matrix R has many useful properties, 

which are formulated in the next proposition. 

PROPOSITION 1. Let  d = ( d l , "  ", dk,), a = ( a ~ , . . . ,  a~o) and  b = ( b l , "  ", b 0 be 

sequences o f  non-negat ive  integers such that d~ + 61 >=" �9 �9 >= dko + ako, bl > .  �9 �9 > 

k ~ +~k for some non-negat ive  integer n. A s s u m e  that b~ and  Ek~ 2 k = E~to~ 2 ~' = 2" 

b~ < min~=k=~o ak. Let  R = R (d, a, b)  be the matrix defined in (2.4). Then 

(1) R is orthogonal matrix;  

"" 2 _  2, for i = l , . .  , .  (2) E7=1P,i- ",2 , 
< < ~vt-l.~b E t 2 b'}, the vector (3) for every l = l = l o ,  /f It = / , ~ , = t , . '  + l , ' " ,  ,~t 

2 n bfl2 
Y.i~,(Ej=~ p~jej) belongs to the orbit 2 {Suo}sEs., where 

(2 .5 )  Uo = (2~,'~, . .  ., 2~,'2, . .  ., 2 % L . . . ,  2 ~ o  '~, 0 . . .  0).  

2*t times 2*k0 times 

Before we prove Proposit ion 1 let us state an important  consequence.  

COROLLARY 1. Let  d, a and  b be as in Proposition 1. Le t  Uo ~ R 2. be defined 

by (2.5) and  let Vo = (2b'/2, "" " ,2%/2 ,0 ' ' '  0) E R2". Let  U : R2" ~ R2" be the 

_ o-,/2v2- (i = 1 , . . . , 2 " ) .  Then U acts as a unitary operator such that Ue~ - ,. ~j=~ ptjej 

operator on l]". Moreover, i f  X and  Y are 2"-d imensional  symmetr ic  spaces then 

(2.6) IIUxllY<-2-"'211uoll~llvollx.llxllx f o r g e R  =". 

PROOF. Consider a norm IIIl" Illl on R ~" defined by 
t o 

IIIIx IIII = ~ sup I x ( i )12  ~,/2 f o r x  E R  ~", 
i e l t  

where It are the subsets defined in condit ion (3) of the proposition. Since the 
12-b~/2 V extreme points of the unit ball in Ill'Ill are of the f o r m ,  ..i~,-+e~ 

(l = 1," �9 ", 1o), it follows from the proposit ion that  if y is an extreme point,  then 

II Uy I1,, --- 2 -"'~ II no II~. Therefore,  

II Ux llY <_ 2-"'~ll uoll~ llll x llll, f o r g E R  z'. 

On the other  hand,  for every x E R2" there is t5 in the orbit, of Vo such that  

lilt x till = <x, ~>. Therefore,  

Illlxllll=(x,~><=llvollx.llxllx, f o r x  E R  2" . 

Combining these two inequalities together  one derives (2.6). 
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PROOF OF PROPOSmON 1. First note that  property (3) follows directly from 

L e m m a  2, (3) and (4). To prove (1) and (2), fix sequences d and a. Denote  by 

the set of all sequences of integers, b = (b~,-" ", b~), such that  

I o 

min ak- ->b~=>b2>-- ' "Nb~=O,  2 b ' = 2 L  
l <=k <=ko = 

For b E ~ as above, denote  lo= ]b 1. 

We shall proceed by downward induction on I b I, i.e. starting with [ b [ = 2". 

Clearly, there is only one element  b ~ ~ with [ b 1 = 2", namely 

0 = ( 0 , . . . ,  0 ) .  

2n t imes 

Since R (d, a, 0 ) =  T ( d ,  a ) ,  (1) and (2) are satisfied by L e m m a  2. 

Let  now b = (bl," �9 ", b~) @ ~3 with l0 < 2" and assume that  for all b' E ~3 with 

I b'l  > I b I the conditions (1) and (2) are satisfied. Let  11 = max{ / t  b, > 0} and let 

b' = (bl, b2,'" ", bl, - 1, b l , -  1, bl,+. " " ", b~). 

Thus I b'I = I b I + 1 and,  by the inductive hypothesis,  R '  = R ( d ,  c~, b ' )  satisfies (1) 

and (2). Let  

R = R ( d , . a , b ) -  2, R ' =  , 2 .  - [p,,]ij=~ and [p,j],,j=l. 

We claim that, for every 1 < k, m =< 2", 

2 n 2 n 

(2.7) E p,kp,,. = • P',kO:,.. 
i~-I  i = 1  

t X~/I - - I  ~ b  This, obviously, implies that  R satisfies (1) and (2) since R does. Set B = ,-,~=t ,- �9 

and/3  = b~,. Since p~j = p'~, unless B < i =< B + 2  8 (1 = i , j  <_-2"), (2.7) is equival- 

ent to 

B + 2 0  B + 2 0  

(2:8) = o : w : - .  
i = B + I  i ~ B + l  

= �9 " A j a R  by [~'~i],,j=~. For j 1 , . . , 2  define vectors Q, Aj, ' 2~ Let  T ( d , a )  = 2. 

Q = (r~+~,~, rB+~,j, �9 �9 ", ~B+~o,j), 

Ai = (PB+Lj, ps+2,j, " " ", pB+z~,j), 

t _ _  , t t 
A j - (p e+~.i, t9 s+2.i, " " ", P B+2".i). 



48 N. TOMCZAK-JAEGERMANN Isr. J. Math. 

Fix 1 _-_- k, m _-< 2 ". B y  L e m m a  2, (4), t h e r e  exis t  in tegers  1 _- it, i2 _-< 2 a (ac tua l ly ,  

it = k rood  2 a, i2 -- m m o d  2 ~) and  pos i t i ve  n u m b e r s  K,  and  /(2 such  tha t  

Ck = tttol.*~, w2.i,, " " ", t02~,,), 

K "  '~) o, '~) �9 o,~!,~). Era = 2tttot.i2, 2.i2," ", . 

B y  the  def in i t ion  of  m a t r i c e s  R(d,  a, b) ,  

Ak = 2~/2(0, " '  ", 0, r~§ 0 , ' "  ", 0), 

Ara = 2w2(0, "" ", 0, r~§ 0 , ' "  ", 0). 

C o n s e q u e n t l y ,  (Ak, A , , ) =  0 if it ~ i2 a n d  (A, ,  A , ) =  2aKtK2 if i~ = i2. 

T h e  case  of  A [ ,  A "  is s l ight ly  m o r e  c o m p l i c a t e d .  L e t  i[ = it m o d 2  a-~ a n d  

i~' = i 2 m o d 2  ~- ' .  T h e n  

A ~ = 2~-t)/2(0, �9 �9 ", 0, rB§ 0,'" ", O, ZB§ 0 , ' "  ", 0), 

' - 2(~-~ ", 0, rs.,~.ra, 0, �9 ", 0, zB+2~-'+,~,m, 0 , ' "  ", 0). A r a - -  ~  ~ 

T h u s  ( A  ~, A ' ) =  0 if i'~ ~ i~. I f  i, = i2, t h e n  

(A 'k, A ") = 2 ~ - t 2 K I K 2  = (Ak, A,,). 

Fina l ly ,  if i[ = i~ / bu t  i t ~  i2, t h e n  l i 2 - i t l  = 2  ~-t.  A s s u m e ,  w i t h o u t  loss of  

g e n e r a l i t y ,  t ha t  it < i2, thus  i2 = i~ + 2 ~-~. B y  the  def in i t ion  of  t he  W a l s h  m a t r i c e s  

o n e  has  
" l 'B+i l ,k  = "l 'B+213-1+il ,k  a n d  

f ! T h e r e f o r e ,  ( A  k, A ra) = 0. 

I t  shows  tha t  fo r  e v e r y  1 < k, m ___ 2 ,  

B +2J a 

p,kp,m = (Ak, A,,,) 
i = B + I  

c o n c l u d i n g  the  p roo f .  

"l 'B+i~,m = - -  "l 'B+2Aa-l+i~,m. 

= ( A  ~, A ")  

B + 2 O  
~ ' , = p ikp ira, 

i = B + I  

w The distance between symmetric spaces 

T h e  m a i n  t h e o r e m  in this s ec t ion  says  

THEOREM 1. Let n be a non-negative integer: Let E, F be symmetric spaces 

with d i m  E = d i m  F = 2". Then 



Vol. 46, 1 9 8 3  BANACH-MAZUR DISTANCE 49 

(3.1) d (E, F) < 2 '2§ 

The  case of general  d imension is a formal  consequence  of T h e o r e m  1. 

THEOREM 2. Let E, F be symmetric spaces, dim E = dim F = N. Then 

(3.2) d(E, F) <= 22s/2(2 ' , 4 -  1)-2 V'-N. 

PROOF OF THEOREM 2. Write N = Y.I~ 2 k' with kl > k2 > �9 �9 �9 > k~_-> 0. Le t  

{1, 2 , . . . ,  N} = 11 U .... U I~ be a decomposi t ion  into disjoint subsets such that 

I/~ I = 2 k, (i -- 1 , . . . ,  io). Define 

Et = (span(em)mex,, n']l~) and Fi = (span(e,~)m~l,, n'l[v) 

and let T, : E~ ~ F~ be an isomorphism such that II 7;, II = II T; 1 II = ~ ) ,  for  

i = 1 , . . . ,  io. Then  define an isomorphism T : E ~ F by 

rx=~.= x m e,  , 

for  x = E~-I x(k)e~ E R N. Obviously,  for  y = 2 ~ 1  y(k)ek E R N, 

o ( ) 
T-1y = ~ T? E y(m)em . 

�9 ~ r a E l  i 

There fo re ,  by (3.1), 

Similarly, 

So 

i 0 i 0 

11Zll <-- E l l  T, 11~2 6 ~ 2k'/4 ~ 225/4(21/4- 1)N 1/4. 
i l l  i l l  

II T-1 l[ =< 225/4( 21/4 1) -1N'/'  

d(E, F) =< II T II tl r - '  II =~ 225'2(21'4- 1) -2 VN. 

Before  we prove T h e o r e m  1 we need some nota t ion  and a few technical  

lemmas on sequences  of positive numbers .  

LEMMA 3. Let k be a positive integer and let bl >=" �9 >= b,, >= 0 be integers such 

that 2~12 b' ~ 2 k and bl <= k. Then there exists 1 <= lo <= M such that 2~12 b' = 2 k. 

In particular, if 2~12 b' = 2 k§ and bl <= k, then there exists 1 <= lo < M such that 
21ol 2 b, 2 k M = = E~fto§ 2 ~'. 

PROOF. Obviously,  it is enough  to prove  only the first par t  of the lemma.  Put  

lo=max{llE~ffi125=<2k}. If one  had YJ~ k, then 2b'o § would divide 
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2 k l b I b 
- -  E?~ 2 '. In particular, 2% § <= 2 k - E ? I  2 ,, which would contradict the defini- 

tion of lo. Therefore  E~o~ 2~ = 2 k. 

In the sequel we fix a non-negative integer n. We define 

{ u = (2b,/2, -. ., 2 b,,/2, 0 , . . . ,  0) E R 2, [ b, _>. . .  => b~ -> 0 are integers 9 

and ~ 2  b~=2" . 
/ = 1  

For u = ( u ( 1 ) , . . . , u ( 2 " ) ) E 9  let h ( u )  be the positive integer such that 

E~5] ) u( i )  2= 2 "-~. Then we define vectors u'  and u" by 

(3.3) 

u'  = V~((u (1)), �9 �9 u (h (u)), 0 , . -  -, 0) C R 2n, 

u" = V ~ ( u ( h ( u ) +  1) , . . . ,  u ( 2 " ) , 0 , . . . , 0 )  E R 2~. 

Obviously, u '  and u" belong to 9 .  

Finally, we introduce on 9 a relation > .  If u = ( 2 b ' / 2 , ' ' ' , 2 b ' / 2 ) E 9  and 

v = (T'/2, ' '  ", 2 ~/2, 0 - . .  0) E 9,  we say that u > v, if b ,  => c~. 

LEMMA 4. Let  u, v E 9 .  Then either u'  > v" or v '  ~ u". 

PROOF. It is easy to see that the condition u(h(u))>= v ( h ( v ) )  implies u ' >  v" 

while the condition u(h(u))<-_ v ( h ( v ) )  impIies v ' >  u". 

An importance of the set 9 lies in the following easy lemma. 

LEMMA 5. Let  x(1)  >= . . .  _-->x(2n)=>0 satisfy E~=lx(i) 2 =2".  Then there exists 

u = ( u ( 1 ) , . . . , u ( 2 " ) ) E  9 such that u ( i )<=2x( i )  for i = 1 , . . . , 2 " .  

PROOF. Put io = max{/ I x ( i ) =  > 1/V~}. Then EI~ x(i)2=>2 n-1. For every 1 < 

i _  -< io let c~ be the integer such that x ( i ) 2 < 2  c, _-<2x(i) 2. Since EIo_-IT , > 2  "-~, 

there exists i~ such that EI%2 ' = 2  "-1. Put u ( i ) = 2  (',§ for 1 ~ i =< i~ and 

u ( i ) =  0 for i~ < i  < 2L Obviously u = (u (1 ) , . . . ,  u(2")) satisfies the hypothesis 

of the lemma. 

Now we are prepared to prove Theorem 1. 

PROOF OF THEOREr~ 1. Pick vectors ~o, )70, io, f f o E R  2n such that 11,~o112-- 
II g0112 = II io 112 = II ~o112 = 2"/2 and 

(3.4) 

][ xe [[~ = min  {l[ x [[~ Ix E R ~~ [] x [[2 = 2"/2}, 

I[ ;oll~" = min{ [ [y  I1~* ] Y ER2",  [[Y I1~ = 2"'~} ; 
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II ~o11~ = min  {ll z I1~ ]z  e R 2~ II z 112 = 2"'2}, 

(3.5) II ~o11~" -- min{l l  w I1~" [w ~ R 2~ II w I1~ - 2"'2}. 

These vectors will be used to estimate the norms of some operators. 

LEMMA 6. Let  ~o, ~o, eo, r E R 2, satisfy II ~oll = II Yoll --- II Coil = II ~oll = 2 "'2 
and (3.4) and (3.5). Let  V : R 2" ~ R 2" act as a unitary operator on l~ ~ Then 

II v :  f - - .  E II ~ 2"/11 yo I1~. Ileo I1~, 

II V :  E - - , f l l  < - 2"/ll ~o11~ II ~oll~.. 

PROOF. Obviously it is enough to prove the first estimate only. The second 

will follow by changing the role of E and F. 

Clearly, if Id denotes the formal identity operator, then 

[[ Id : E* ~ l~ ~ II ---- 2"'/II yoll~., 

II Id: F--~ l~ ~ II = 2~ ~o II~. 

Therefore, 

II V:F~Ell<=llld:f~l~]l II V:  l i ~  I~11 ]l ld: I~~ 

=< (2"/2/II Po II~.)(2"'~I II ~o ll~) 

= 2"III  ~olI~. II lleoli,:. 

This concludes the proof. 

By Lemma 5 there exist vectors s Yo, go, v~o in ~ such that 

~o(i) _-< 2~o(i), go(i) =< 2~o(i), 

(3.6) ~o(i)-<_2~o(i), #o(i)_-<2~o(i) for i 1 ,2 , . . . ,  ~___ 2 r 

By Lemma 4 one has ~ >  yg or y~> g~. Since d ( E , F )  = d ( E * , F * )  and one 

may consider, if necessary, the pair E*,  F* instead of E, F, then without loss of 

generality one may assume that ~>-Yg.  

LEMMA 7. Let  ~o, go, Zo, Wo be vectors in ~ such ihat s > ~g. Then there exist 

vectors Xo, yo, Zo, Wo E ~ such that 

xo(i) <= 2~o(i), yo(i) =< 2~o(i) for i = 1 , . . . ,  2", 

(3.7) zo(i) <= 2:~o(i), wo(i) <-_ 2#o(i), 
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and satisfying at least one of the following conditions: 

(3.8.i) xo>yo  and zo> wo and yo>wo,  

(3.8.ii) xo > yo and Zo > Wo and wo>yo,  

(3.8.iii) Xo > yo and Wo > Zo. 

PROOF. If ffo(h(g,o))_ -> 2o(h(z.o)), then the vectors xo= s yo = )Tg, zo= ~g, 

wo=f f~  obviously satisfy (3.7) and (3.8.iii). Assume now that ~?o(h(~?o))_--- 

ffo(h(ffo)), then ~?~>ffg. Consider the vectors uo=]g  and Vo=ffg. If 

uo(h(uo))>= vo(h(vo)), then u~> vg. In this case define Xo=2~, Zo = ~ ,  where 

~o = 2~, and yo = u~, Wo = vg. Clearly, these vectors satisfy (3.7) and (3.8.i). If 

vo(h(vo))>=uo(h(uo)), then the vectors xo=x~, z o = z ~  and yo = u~, Wo=V~ 

satisfy (3.7) and (3.8.ii). This concludes the proof of the lemma. 

Case L 

(3.9) 

o r  

(3.10) 

xo(h (Xo))wo(h (Wo)) =< 2 t"-'u2 

zo(h (Zo))yo(h (yo)) =< 2 t"-'v2. 

Observe first that by relabelling we may assume that (3.9) holds. We shall 

construct an operator U : R Z " - ~  R ~", which acts as a unitary operator on l~", 

such that 

(3.10) II u :  F ~ E II ~ 2r ~o I1~ II wo II~,. 

Then we shall complete the proof applying Lemma 6 to the operator V = U -1: 

d(E,F)<=ll U:F--,EII II U-' : E- - ,  Fit 

( 2''1-n)12 II ~o I1~ l[ ~o 11~.)(2"/II ~o I1= I1 ~o I1~') 
2 (n +11)/2" 

The required operator U will be constructed by means of Corollary 1. To 

apply this corollary, we need the following lemma. 

LEMMA 8. Let (~ E ~ and assume that fi (1) _-< 2 r Then there exists a subset 

I C{1,-- -,2"} such that 

(i) Z,~,a( i )  2 = 2"-'; 

(ii) if fi~ ~ R :" is defined by 
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f ~/2 (~(i) if i E I, 
~,(i) I 0 i f i ~ . I ,  

then a certain rearrangement Uo of (~ can be written in a form 

. .  2 d,12,.. ", 2d,,/2,.. ", 2~,,12, 0 ' ' "  0), Uo=(2 d'/2, ", 

2"~ ~imes 2*N times 

with dl + at >=" �9 �9 >= dN + a~ and 

(3.11) 2"-2/ti(1) 2 =< min 2 =-. 

Assuming the truth of Lemma 8 we complete the construction of U as follows. 

Let u = xg and let I C{1,. �9 .,2"} and Uo be as in Lemma 8. Put Vo = w~. By (3.9) 

one has 

Vo(1) = ~ Wo( h (Wo)) =< 2 t"-2v21 ti ( 1 ). 

It follows from (3.11) that u0 and v0 satisfy the assumptions of Corollary 1. Let 

U be the operator defined in this corollary. Notice that since 

(~,(i)<=X/2x'~(i)<=2xo(i) and vo(i)<=X/2wo(i) f o r a l l i = l , . . . , 2 " ,  

it follows that 

II nolle = II aolle ~ 2 II xolle and 11 voile, ~ v~] l  woll~., 

hence, by (3.7) and (3.6), 

Iluoll~811~olle and Uvoll~._-<nv~ll~ollF.. 

Therefore, by (2.6). 

II ux  lie --< 2 -"'2 II uo lie II vo IIF. II x I1~ 

--< 2"-"~211 ~ollB II ~o11~. II x I1~, 

for all x 6 R 2". This shows (3.10). 

PROOF OF LEMMA 8. Write ti in a form 

2',/2, ., 2 'w2, ., 2 'w2, 0 , . . . ,  0), ti = (2",/2,.. ", . . . .  
v v 

2~ times 2~ times 
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with s, >--". >= SM >=0 and if s, = s,.+~, then 13. >fl,.+, for all 1 =</x =< M. Put 
J / '  = {1 =< I* -<- M [2 ~- => 2"-2/ti(1)2}. We shall show that 

(3.12) ~ 2"-% > 2 "-~. 

Therefore, by Lemma 3 applied to bj =s,. +/3,, there exists At C ~ '  such that 
E,.~, 2 s-% = 2 "-l. It is easy to see that the set 

I =  U 2 ~ + 1 ,  ~ 2 ~ + 2 ,  . . . ,  2~ 
~EAId t~=l t ,= l  

satisfies the conclusion of the lemma. 

It remains to prove (3.12). Let K E { 1 , ' . . . , M } \ ~ '  he a set such that: 

(1) for every v ~ {1,. �9 M} \ rig' there exists /z E K such that s~ = s~, 
(2) if/x,, /x~ ~ K and p,~ ~/x2, then s,, ~ s~. 

For every g E K  let X , = { v ~ ' ] s . = s , } .  Notice that { 1 , . . . , M } \ ~ t ' =  

U~,~r,3/'~ and that if v~, v2 ~ .N'~ and v, / v2, then/3,, ~ fl~ and both/3~, and/3~ 
are smaller than 2"-2/fi(1) 2 (/x E K). Thus, since 2"-2/fi(1) 2 is a diadic number, 

one has 

Therefore 

~ , 2 " . + 0 , = Z 2 " .  Z 2~. 
. ' ~ e l ~ "  ~ e . ~ ,  

< ~ 2"-(2"-2/ti(1) 2) 
* E K  

< \(2 max 2"-),E~c (2"-21ti (1)2) 

-< (2fi (1)2)(2 "-2/fi (1)~) 

= 2 --1. 

M 

t~ U , ~ '  gt =1 ~ . ~ '  

> II fi [[2 _ 2"-' 

= 2 n-1. 

This shows (3.12) and concludes the proof of Lemma 8. 

Case 11. Assume that 

(3.13) xo(h(xo))wo(h(wo))>2 ~"-"Ja and zo(h(zo))yo(h(yo))>2 ~"-")a. 
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LEMMA 9. Let u, v E 9.  Assume that v > u. Then for any 2"-dimensional 

symmetric space X one has 

IIv"llx< (h(v))/u(h(u)), 
II u'llx 

where u' and v" are defined by formula (3.3) applied to the vectors u and v 

respectively. 

PROOF. Notice that since v > u then, given 1 =< m -<_ 2", if v (m) / 0, then 

v ( m )  >-_ u( i )  for all 1 _-< i _-< 2". It follows that u'  has more non-zero coordinates 

than v" has. Moreover, for all 1 ~ i, m _-< 2", if u'(i)  / O, then 

u'(i)  >-_ u (h (u ) )  v"(m). 
v (h (v ) )  

It follows that if X is a 2"-dimensional symmetric space, then 

[I u'l[x > u(h(u))l[ v"l[,,. 
= v (h (v ) )  

This concludes the proof. 

We are ready now to prove the theorem in Case II. We shall show that in this 

case the estimate for the distance d(E,  F) can be obtained by considering the 

formal identity operators. Recall that at least one of conditions (3.8) of Lemma 7 

is satisfied. Assume first that either (3.8.i) or (3.8.ii) holds. Then, by relabelling, 

one may assume that (3.8.i) holds. 

Let x~ and w~'~ be vectors defined by formula (3.3) applied to the vectors Xo and 

w0 respectively. Consider a Lorentz norm II1" II1 defined on R 2" by 

2 n 

I1] x II1 = ~, x * ( k ) w ; ( k )  for x E R 2~ 
k = l  

Since w~(k)_- < X/2 wo(k)_-<4V~ fro(k) for k = 1 , . . . ,2" ,  one obviously has 

(3.14) I[Ixlll<-_llw lI .llxllF<-ev211 olIF.Ilxll  forx  e R  =" . 

We shall show that 

(3.15) fix [[~ --< 2(11-"":11 ~01l~ lllx !11 forx  E R z~ 

Assuming the truth of (3.15) and combining it with (3.14) we shall get 
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Therefore ,  by L e m m a  6, 

d(E,F)<=llId: F ~ E II I[Id: E-~ FH 

--< (2"~ ~ II  ,ollF.)(2"/ll, oll  II  ollF.) 
= 206+")I 2. 

In the proof  of (3.15) one needs  an est imate for the norm I1" in terms of a 

new Lorentz  norm I" {- Define 

2 n 
l u ]=  ~ u *(j)x~(j) for u E R 2". 

i=l 

Analogous ly  to (3.14) one has 

[ u r < 4 x/21[ ~o II~ 11 u lit. for u E R 2-. 

Therefore  

(3.16) II x 11~ --< 4 x/2  I1~o lie sup {I (x, u) l  [ u E R 2,, I u I =< 1} for x ~ R 2,. 

The advantage of using norms [[1-Ill and 1. [ lies in the fact that the form of 

ex t reme points of the unit balls in these norms is known. Observe  that 

io = max{ilx~(i)# 0} = h(xo) and mo = max{m [ w;(m)# 0} = h(wo), 

and define 

and 

Similarly, define 

and 

fm = ( k=l~ W o ( k  ))--1 ~k=l e~ for 1 =< m < m o  

[,,,o = w~(k ek. 
\ k=l = 

g~ = x e~ for 1 < i < io 1=1 "= 

g~=  x '  ej. 
\ ]=1  j=l 

Fix m with 1 =< m < too. Let  1 =< i =< io. Then,  since w~(m)>= X/2 wo(mo) and 

x~(i)>= X/2 xo(io), one has 
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I (f,,, g,)[ = (k~= I w~(k))-' (j~x~(i))-Imin(m,i) 

( / ) (  ) '  <-_ m ~w~(k) ~x~(i) 
k = l  /= l  

<= �89 iwo( mo)xo( io) 
~___ 21-"/2. 

Therefore,  from (3.16) and Lemma 1 it follows that 

(3.17) II fm lie =< 2 '7-")'2 II ~oilE for 1 _-< m < mo. 

Notice now that by the definition (3.4) of ~o, one has 

,'~n/2 

I1 x 112--< ~ II x liE. for all x E R 2.. 
I[ liE. yo 

Thus, by duality, 

57 

2,,/2 
II x lie ~ II ~olle. II x 112. 

Therefore,  if y~ is defined by formula (3.3) applied to the vector 
y~(j)_-< 4 V ~  ~7o(j) for all ] = 1 , . . . , 2 "  and 

2(n+5)/2 

II f.~llB =< tl y;ll~. II f.JI2. 

On the other hand, if xg E ~ is defined by (3.3) applied to the vector Xo, then 

Ilxgll,,_-<X/-EIIxoll,,~av211~oll,,, for any 2"-dimensional symmetric space X. 
Therefore,  

__  tt  2 < tt X g  (3.18) 2"-Ilxoll2=llxollB.II IIB----<4VSIIxglIB'II~olIB- 

Combining this inequality with the estimate for [[ [,,olIB and with Lemma 9 one 
gets 

II f,.oll--< 2'~-"~'~ II fMI x 4 x/2 II XSlIB" II eoll,~ / II Y'IIB" 
#t0 1 

yo(h(yo))" 

ra o m o 

k~ w~(k ) >- k~=~ w~(k )2/w~(1) = 2~Pv/2wo(1) and woO)--< yo(h(yo)) 

Since 

yo, then 
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(because yo > wo), the last expression is smaller than or equal to 

25-"/211- ' 2m-"w qx2"-2x~176 m-"':  "2o]1~. Xo E o~ ) yo(h(yo)) 

This shows that II f-,oll~ --< 2'"-")'~ II ~o11~ and, combined with (3.17) and Lemma 

1, concludes the proof of (3.15). 
Finally, to complete Case II assume that condition (3.8.ii) holds. It follows 

from Lemma 6 that 

d(E, F) <-_ II Id : F---~ E[I [IId : E ~ F II 

<= 2 5~ ~o I1~. II ~o t1~ II ,~o It~ II ~o I1~.. 

By (3.18) one has l/ll~oll~ =< 2 ~'= "Ilxgll~. and, similarly, l/ll ~'ot[~'-<- 2sa-" II wall,:. 

Since II ~o11~. => 2-~'~ II y;ll~* and tl eoll~ --> 2 "~11 z;ll~, then combining all these 
estimates with Lemma 9 and conditions (3.8.ii) and (3.13), one obtains 

d(E, F) <= 2~" 2~-" (I I xa I1~./II y' 11~.)2~-" (11 wall~/II z;Ib) 

<= 2m xo( io)wo( mo)/ yo(jo)zo( ko) 

=< 2m2"a2-a/2t"-~ a 

212+"/2" 

This shows Case II and concludes the proof of Theorem 1. 

To conclude this section let us prove a "p-convex, p'-concave version" of 
Theorems 1 and 2. 

COROLLARY 2. Let 1 < p < 2, let p'  = p/(p - 1). Let E, F be symmetric spaces. 
I f  dim E = dim F = 2", with a non-negative integer n, then 

d (E, F) <= M 2  ~z4+")~t;p-l/2), (3.19) 

where 

M = MtP)(E)M~p.)(E)Mt~(F)M~p,)(F). 

In general, if dim E = dim F = N, then 

(3.20) d (E, F)  =< 22'~ - 1)-~MN "p-l'2. 

PROOF. The proof of (3.19) is a slight modification of the proof of Theorem 1. 

First we need some renorming. It is well-known (see [7], proposition 1.d.8) that 
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there exist norms II1" II1~ and Ill" [[]F on R 2~ such that /~--(n2~ �9 II1~) and 
= ( n ' ,  II1 I1[~) are symmetric spaces such that 

M'P'(E,) = Mo,')(,E)= M(P'(F)= M(p,,(F)= 1 

and 

d(E, E)  <- M'P~(E)M~p,)(E) and d(F,F) _-< M'P)(F)M(p,)(F). 

It follows from the interpolation theorem of Pisier [8] that there exist spaces 

with 1-unconditional basis, say Eo and Fo, such that /~ is isometric to the 

Calderon interpolation space [Eo,/~"]o and P is isometric to [Fo, l~"]o, where 

0 = 2 - 2/p. Since/~ and P are symmetric, Eo, Fo are symmetric too, so we can 

repeat the proof of Theorem 1 for the spaces Eo and Fo. In particular, let io, )~o, 

G, fro be vectors in R 2, such that II 27o 112 = l[ po 112 = II ~o 112 = II ~o 112 = 2"a which 
satisfy conditions (3.4) and (3.5) for the spaces Eo, Fo and let Xo, yo, zo, Wo E ~ be 
defined by Lemmas 5 and 7. Assume that Eo, Fo satisfy the assumptions of Case I 
and let U:R2" _.  R2" be the operator constructed in this case. In padicular, 

It u :  f o ~  Eoll ~ 2m-~)a II goll~oll Wolf.a, 

II u- ' :  Eo~Fol[~2"/ll~oll~oll Woll.,. 

Therefore, since /~ and P are interpolation spaces, 

II u : P - o  ~: II_-< (2'"-~ II ~oll~ I I ~o11~.) '-~ 

II u -l:  t~ --, P II -<- (2"/[I ~o lifo II ,~o II~d -~ 

It follows that 

d (J~, F) ~ (2(11+n)12) l-~ = 2 (ll+n){llp-l,2). 

Assume now that E and F satisfy the assumptions of Case II. The same 

interpolation argument shows that 

a(~, P) _-< 2 '2'+'''p-''2'. 

Therefore, 

u (e, F) <= d(E, F. )a(F_., [?)a(F, F) <= M2 (24+")t~/p-la). 

This concludes the proof of (3.19). Inequality (3.20) follows from (3.19) in exactly 

the same way as in the proof of Theorem 2. 
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w The distance from a symmetric space to an euclidean space 

If X is a k-dimensional real space with an 1-unconditional basis, then it is 

well-known that 

(4.1) d(X, l~) <= Mt2'(X)Mt2)(X). 

Indeed, for x = E~=l x(i)e, E X, define xm = x(m)e,, (m = 1,. . . ,  k). Then 

I1( . t' ll ~X2m) (i)=lx(i)[ for i = 1 , . . . , k ,  so x~ =llx II, 

It follows from the definitions of Mt2)(X) and Mt2j(X) that 

1 x,   lle. 
. z ,  <= II x I1 

<= M'z'(X) (,.~ x(m )Zl[ e., ll2) ''~, 

for every x ~ X. This obviously implies (4.1). 

Estimate (4.1) can be viewed as a particular case of the well known theorem of 

Kwapiefi ([6] cf. also [2], chapter 6), which says that for any k-dimensional 
normed space X one has 

(4.2) d(X, lkO <= T,~,(X)C',2)(X), 

where 7~t2)(X) and t~t2)(X) denote the Gaussian type 2 and cotype 2 constants of 
X (the definition of these constants can be found, e.g., in [2], chapter 6, where 

they are denoted by sup, &, (X) and sup./3, (X) respectively). 

As we shall show in this section, for symmetric spaces inequality (4.1) can be 

essentially improved, while in the general case, both estimates (4.2) and (4.1) are 
asymptotically, as dim X---~ 0% the best possible . 

The positive result states 

THEOREM 3. Let E be a k-dimensional symmetric space. Then 

(4.3) d (E, 12) =< 2 V ~  max (Mt2)(E), Mtz)(E)). 

In the proof we shall need the following lemma, which is a generalization of 
Lemma 4. 

LEMMA 10. Let u(1)>-...>=u(k)>-O, v(1)>-...>-_v(k)>-_O be such that 
Ek,~l u(i) = 1 = Y.~.I v(j). Then at least one of the following conditions holds: 
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(i) there exist positive integers io, jo such that u(io)>= v(jo) and El ~ u(i)>=�89 

(ii) there exist positive integers io, lo such that v(jo)>= u(io) and E~~ v(j)>=�89 
E~-,o+,U(i)<~<--E~=,oU(i). 

PROOF. Set i o = i n f { k  [E,% u(i)>�89 and j o = i n f { k  [z;.,v(j)~>~}. Then 

either u(io)>= v(jo), which gives (i), or v ( jo )=  > u(io), which gives (ii). 

PROOF OF THEOREM 3. Pich Xo, yo E R k such that II xoll~ -- 1 = 11 yoll~ and 

[I Xol[E = min {11 x lie I x ~ R k, II x tl~ = 1}, II yollE, = min {It y liE. ly E R ~, J[ Y I1~ = ~}. 
Then similarly, as in L e m m a  6, IlXd: E-- , /g l l - -1 / l lxol lE and IlId: I~--->E II = 

II Id: f * - o  l~ II -- 1/tl yo liE,. Therefore ,  

k (4.4) d(E,/2) = 1/II XollE tl yollE.. 

Put  u( i )=x*( i )  2 and v ( j ) =  y . ( j )2  for i, j = 1 , . . . , k  and apply L e m m a  10. 

Assume  first that condit ion (i) of the lemma is satisfied. Put  20=  

(x*(1) , . .  ", x*( io) ,0 , ' -  ",0) E R k and 9o = (y*(jo), . .  ., y * ( k ) , 0 , . .  ",0) E R ~. 

Then 2o(0 <-- x*( i )  and Yo(j) <-- Y*(/) for  i, j = 1 , . - . ,  k, hence 1120[IE -- li xo lie and 

II 9ollE-~ II yollE.. Notice that 

�89 ~ II go I1~ ~ II 9o lie II 9o liE, ~ II go lie II yo liE,. 

It follows that 1/II yo liE. ~ 2 II 9o liE. Combining  the obta ined  inequalit ies with (3.4) 
one gets 

(4.5) d(E, I b_-< 2 tl 9vile/112vilE. 

Define now vectors ti E R k and t~ E R k by 

(4.6) fi(i) = 20(02 and t3(i) = 90(02 for i = 1 , . . . ,  k. 

The  conclusion of (i) implies, in particular,  that Xj%l tS(j)-___2ET=l ~( / )  for all 

m = 1," �9 ", k. FrGm the well known theorem of Hardy ,  Li t t lewood and Polya (cf. 

[5]) it follows that there exist posit ive numbers  a ,  with X, a .  = 1, permuta t ions  

7r. of the set {1 , . . . ,  k} and e . ( i ) =  ---1 such that 

~(i) = 2 ~, a.e,(i)fi(~r,(i)) 
n 

for i = 1 , . . . , k .  

Therefore ,  

90(0<= a.x.(i) 2 for i = 1 , " ' , k ,  
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where x, E R  k is defined by x,(i)=~/2.~o(Zr,(i)) for i = 1 ,  

1 , 2 , ' " .  Clearly [Ix, lIE = X/21[~ol[z for n = 1 ,2 , . . . ,  so 

2 \ 
1/2 II 

~ a , x , ) E  

�9 . . , k  and n =  

= ~/2 M~2~(E) II liE. 

Combining this estimate with (4.5) one gets d(E, l~) <= 2 X/-2 M~2~(E). 
Assume now that condition (ii) of Lemma 10 is satisfied. Put 

~o = (x*(io)," . . ,x*(k ),O,. . .,O)E R k 

and 
)7o = (y*(1),. .  ", y o*(jo),O,." . , 0 ) ~  R k. 

A similar argument as before shows that 

(4.7) d(E, l~) _-< 2 II ~o11~./nl ~ 011~. 

if fi E R k and 6 E R ~ are defined by (4.6), then the conclusion of (ii) implies, in 

particular, that Ei~ fi(i) < 2 Ej~ ~(/') for all m = 1 , . . . ,  k. Therefore there exist 

positive numbers a, with E, a, = 1 and vectors y, E R k with II Y, liE, = x/~ [I 9011 , 
for n = 1 ,2 , - . . ,  such that 

Thus 

\ 1/2 

for i = 1 , . . . , k .  

[[ 2o[[~. <= M(2~(E*) ( ~ a, [[ y, [[~.) ~/2 

= M,2,(E)II  9o liE.. 

Combining this estimate with (4.7) one obtains the estimate d(E,l~)<= 
2 X/-2 Mt2~(E). Together with the first part of the proof it shows (4.3). 

The next example shows that the symmetry assumption in (4.3) cannot be 

dropped. Before stating the result, let us recall some generalization of symmetric 

spaces (cf. e.g. [1], chapter 4). A normed space E is said to have enough 

symmetries if the group G of isometries of E has the property that for any 

operator T : E ~ E the condition Tg = gT for all g E G implies T = AId, for 

some h E R. 
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PROPOSITION 2. Let 1 < p <-_ 2 and let F = (~)~l~)~,, where 1/p' + 1/p = 1. 

Then F has an 1-unconditional basis and enough symmetries, but still 

d(F, l~ 2) = n :/p ~ >-_ Mt2)(F)Mt2~(F) 

>-_ cT]2~(F)(?~2~(F) 

with some numerical constant c > O. 

PROOF. The norm in F is given by the formula 

{ ( "P'/P~'/P' 
[l(a'i)][= ~ ~ [ a ' / l e )  1 f~  

i = l  i = l  

Obviously F has an 1-unconditional basis and it is easy to see that it has enough 

symmetries too. Let a '~ = (a ~) ~ F (m = 1, 2,. �9 �9 ), then, by H61der's inequality, 

m 2 \ p'/2 1/p' 

<=n"p-~'2{i=~(~(,=~[a,Tle)zzP)e"2} ''p' 

{ ( , ~ (  ) ) } ' ~  

= II a II 2 

This shows that M(2)(F)<= n 1/p-~2. A similar argument shows that M~2~(F)N 
I/p--l/2 n 
It is well-known (cf. e.g. [6]) that there exists a numerical constant ~ such that 

if 1 < p <_- 2 _-< q < oo then (?~2~(l~) <= t? and T~2)(I~) ~ t?. Therefore, by Kahane's 

inequality (cf. e.g. [2], (5.3)), one has 
n 

(2) < p', ~ (2) t2 

--<-- n ~/2-~/P'(~t2)(l~) 

~-~ c n  1/p-1/2 
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and 

T~2)(F) = cT~2)(l~,) < cd(lp, 1~) <= ~n 1,,-,,2 

where ~ is a numerical constant. 

To calculate the distance d(F,/~'~), consider an ellipsoid ~ of maximal volume 

contained in the unit ball of F, and let JJ-112 be the euclidean norm on F = R "~ 
induced by ~. Since F has enough symmetries, it follows that 

d(F, l ;  ~) = II Id : F--~ (R "~, IJ" 112)II x II Id : (R "~, I1" 112)--' F II 

--II Id: F-- ,  (R "~, I1" 112)11, 

where Id denotes the formal identity operator ([1], lemma 4.6). Since ~ is 

unique, then, obviously, it is invariant with respect to all isometries of F. Hence, 

in particular, I1" 112 must be of a form II(a,~)l12---(~7=1Y.7-1 I c~ja~j 12) 1/2, for some 
c~j E R  ( i , j = l , . . . , n ) .  Since, given permutation zr of the set {1 , . . . ,n} ,  the 

operators S((a~))=(a,,t,~.i) and S((a~))=(a,.,,o~) are isometries of F, then 

cij . . . . .  c~ for every j = 1,. �9 n and c ,  . . . . .  c~, for every i = 1 , . . . ,  n. 

Therefore, 

I1 (a,i)112 -- c la,, j2 for some c > 0 
i=1 

and obvious computation 

If (a,,)112 = 

shows that 

n ~/p-~/2 (j=~ 

c = n 1/p-~/2 Now observe that 

=< n,/i,-,/= la,j jv 
I . j = l  i = l  

for all (aij) U R"~. Moreover  if (bij) E R "~ is defined by bij = 1, for i = 1, 

and b,i = 0, for i, j = 1 , . . . ,  n and j ~  1, then 

II (b,,)ll - -  n ' '~ = n2 '~- '  II (b,,)112. 

. . . , n  

It follows that d(F, l~ '~) = l[ Id : F--> (R ":, 11" I1=)11 = n 2'~-'. This equality, combined 

with the estimates for Mt2)(F), M~z)(F), and Tt2)(F) and (~t2)(F), concludes the 

proof of the proposition. 
Our Theorems 1 and 2 raise the natural question, how essential in this kind of 

estimates the symmetry assumptions are. As we mentioned in the introduction, 
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the recent result of Gluskin [3] shows, that some assumptions on the symmetry 

or unconditional structure of spaces involved are necessary. 

PROBLEM 1. What is the order of growth, as k ~ o% of the diameter of the set 

of all k-dimensional normed spaces with an 1-unconditional basis? 

PROBLEM 2. What is the order of growth, as k -~ o% of the diameter of the set 

of all k-dimensional normed spaces with enough symmetries? 

Finally let us mention problems related to Schatten ideals of operators on a 

Hilbert space. If E E Sk, by C~ we denote the space L(I~) of all operators on l~, 

endowed with the norm II A ]lc~ = H {Si (A)} liE, where {S, (A)}~=1 is the sequence of 

eigenvalues of the operator I A f -- ( A ' A )  "2 ~ L(l~) (cf. e.g. [2], w 

PROBLEM 3. What is the order of growth, as k ~ o% of max {d (C~, C~ I E, F E 

s~)? 

The answer to this problem would be implied by the positive answer to the 

next problem. 

PROBLEM 4. Does there exist a constant c > 0  such that for all positive 
k k < 9 integers k and all E, F E Sk one has d(CE, C~)= cd(E,F) .  

For spaces E = l~, F = l~, 1 <p ,  q < ~ ,  the answer to Problem 4 is positive 

([9]). 
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