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GROWTH IN ENVELOPING ALGEBRAS 

BY 

A. I. LICH'I-MAN 

ABSTRACT 

It is proven that a finitely generated soluble-by-finite Lie algebra has a 
subexponential growth. This implies that in its universal envelope every subring 
is an Ore domain. 

1. Let S be an associative or a Lie algebra over a field K generated by the 

finite subset X, S(X, n) denote the subspace of S spanned by all monomials on X 

of length less than or equal to n. The growth function of S with respect to X is 

ys(n)=dimS(X,n). 

We remind the reader (see [8], [9]) that lim~ ~/" always exists and does 

not depend on X. If_this limit is greater than 1 then S has exponential growth, 

otherwise the growth is subexponential. S has polynomially bounded growth if 

there exists a polynomial p with 7s(n)_-- < p(n) for all n. 

Martha K. Smith has shown in [8] that there exists an (infinite dimensional) 

solvable Lie algebra L whose universal envelope U(L) has subexponential but 

not polynomially bounded growth. It has been proven too in [8] that U(L) has a 

subexponential growth if L does and that U(L) has polynomially bounded 

growth if and only if L is finite dimensional. The existence of subexponential but 
not polynomially bounded growth in soluble Lie algebras shows that the 

situation for enveloping algebras is different from the case of groups where the 

theorem of Milnor-Wolf (see [6], [10]) states that the solvable groups with 

polynomially bounded growth are precisely the nilpotent-by-finite groups and all 

the other soluble groups have an exponential growth. 

The results of the present paper imply that the universal envelope of an 
arbitrary finitely generated infinite dimensional solvable-by-finite Lie algebra has 
subexponential but not polynomially bounded growth. 
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This follows from the following theorem. 

THEOREM 1. Let L be a .finitely generated Lie algebra, H <1 L be a solvable 

ideal. If the quotient algebra [, = L / H has subexponential growth then so does L 

(and, hence, U(L )). 

COROLLARY. Let L be.finitely generated solvable-by-.finite Lie algebra. Then L 
has subexponential growth. [] 

Since an associative free algebra of rank 2 has an exponential growth we 

obtain immediately from Corollary 1 the following fact. 

COROLLARY 2. Let L be a solvable-by-finite Lie algebra. Then U(L ) contains 

no free subalgebras of rank 2. 

COROLLARY 3. Let  L be a solvable-by-finite Lie algebra and R be an arbitrary 
sabring of U(L). Then R is an Ore domain. 

PROOV. Since U(L) is a domain so is R. The theorem of Jategaonkar- 

Kogevoi (see [3], 0.7) states that a domain which is not an Ore ring must contain 

a free subalgebra of rank 2 and the assertion now follows from Corollary 1. [] 

REMARK. The proof of the fact that U(L) is an Ore domain when L is 

solvable-by-finite can be obtained by applying the localization technique. (See 

[5], w The main content of Corollary 3 is therefore in the condition that R is an 

arbitrary subring of U ( L ). [] 

In the last section of the paper we prove (see Proposition 3) that any .finitely 

generated infinite dimensional solvable-by-finite Lie algebra contains a sub- 
algebra which can be mapped homomorphically on the Lie algebra H with basis 
x, y l ,y2 , " "  such that 

(1) [y,,x] = y,+,,[y, yjl = 0 (i, j E Z ) .  

One can then use the formulae for the growth in U(H) (see [9], p. 252 or [2], 

2.7) and to obtain some lower bound for TulLe(n), where L is solvable-by-finite. 

This bound would be similar to the one obtained by Borho and Kraft for an 

enveloping algebra of an arbitrary Lie algebra (see [2], 2.9). 

I would like to express my gratitude to Martha Smith for interesting 

conversations on the subject. In fact, the article could not have been written 

without these conversations. 
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2. Let S be Lie or associative algebra with a finite system of genera tors  X. 

We remind the reader  (see [8]) that the X-length of the e lement  s E S is 

l~(s) = min{n ]s E S(X,n)}.  

We will need the following relation, which is true in an arbitrary Lie algebra: 

(2) [S(X, n,), S(X, n:)] C_ S(X, n, ~- n,). 

The proof  is easy. 

If S is an arbitrary Lie algebra then E~ is defined as a subset of X, which gives 

a basis of S(X,I),  E2 is an arbi t rary subset of the set of the products  [X,X] ,  

which gives a basis of S(X,2)  modulo  S(X, 1), etc. I.et 

E'"'= U E,. 
I I 

Clearly, the set E c~ forms a basis of S ( X , n )  and it is worth remarking that 

s imultaneously for arbi t rary n, =< n the subset 

n I 

E ( " " =  U El 
/ = 1  

forms a basis for S(X,n~). Finally, the basis of L is given by the set 

E = U E , .  
i=l 

We order  the e lements  of Ej in arbi t rary way and then extend the order  to E 

assuming that the e lements  of Ei, precede the elements  of /_:~., if j, < j2. The 

s tandard monomials  on the set E 

ei, e,," �9 �9 e,, (i, < i, ~ . . .  _<- i, ) 

form a basis of the universal envelope U(S). It is proven in [8], section 4, that the 

length of such a standard monomial with respect to any system of generators of 
U(S) is given by 

(3) lv~s~(e~,e,,...e,,)= ~ 1,(%). 

Lr.MMA 1. Let L be a Lie algebra, generated by the elements x, y,, y2 . . . . .  yk, S 

be a subalgebra, generated by the system of elements Y = {y,, y: . . . . .  yk} and let u, 
be an arbitrary element of S( Y, nj) (j = 1,2 . . . . .  s) where 

n~+n:+. . .+n~<=n. 
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Then the elenzent 

(4) Ix, u, ,  u~_ . . . . .  u, l 

is a linear combinat ion  o[ the e lements  

(5) [x,e,,.e,:, . . . .  e,,] ( l<- i , -<_- i2_<=. ' .~=i ,~m) 

where {e~,e: . . . . .  e,,} = E ~''' is a basis o f  S ( Y , n )  a nd  

(6) ~ ,  1, (e,,,) <= n.  
l~  = I 

PROOf:. First of all, since the basis of S ( Y , n ~ )  is given by the set E ~" 

(j = 1,2 . . . . .  s) we can assume that  for every j the e lement  uj is a monomia l  of 

length ~ n, in the set E " C _  E"" .  

If u~ .-<_ u_,~ . , -  <- u, (in part icular ,  when s = 1) the asser t ion is obvious.  We 

apply indtxction on s, using the same type of a rguments  as in the proof  of the 

Po inca re -Bi rkhof f -Wi t t  T h e o r e m  (see [4], V.2). 

Let s, be the first natural  number  such that 

U.~> U~,+ 1. 

We say that the part  [x, uj ,u2 . . . . .  u~,] of the e l emen t  [x,u~,u2 . . . . .  u,,,u,,,~ . . . . .  u~] 

is tame and apply the relat ion 

[x,u,,u~ . . . . .  u~,,u,,., . . . . .  u , l = l x ,  u,,u2 . . . . .  l u , , ,  u , , , , l  . . . . .  ~ , 1  

(7) +[x ,  ul,u,_ . . . . .  u, , .1 ,u . . . . . . . .  u,] .  

We will consider  separa te ly  every  term in the right side of (7). 

Relat ion ( 2 ) i m p l i e s  that  [ u ~ , , u , , , , ] E S ( Y , 2 s ~ +  1 ) a n d  hence [u,, ,u, , , f] is a 

l inear combina t ion  of monomia l s  f rom E "~: ' '~.  We conclude there fore  that  the 

first s u m m a n d  in the right side of (7) is a linear combina t ion  of e lements  of the 

form 

(s) lx,  v, ,v,_ . . . . .  v~ ,] 

where  v~, v2 . . . . .  v,_L are e lements  f rom E ('J such that the sum of their length is 

less than or equal  to n and the induction hypotheses  imply that any e lement  of 

the form (8) has a represen ta t ion  (5). 

The  tame part  of the second s u m m a n d  in (7)is [x, u, ,  u_, . . . . .  u~,~,, u,,]. We now 

apply  the same type of a rguments  to this s u m m a n d  and the represen ta t ion  (5) is 

ob ta ined  in a finite n u m b e r  of steps. [ ]  
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COROLLARY. Every element 

[x ,y , , ,y  . . . . . . .  yo, I (1 _-< ,~, ,,~_, . . . . .  ,~_<- k )  

is a linear combination of the elements of the form (5). 

Paoor .  Follows from Lemma 1 via the fact 

y~ E S ( Y , I )  ( i = 1 , 2  . . . . .  s).  

3. We need now one assertion about embedding of some classes of Lie 

algebras in a wreath product of Lie algebras. This fact is a special case of 

Smelkin's theorem 1 in [7] which deals with the embedding of more general 

classes of Lie algebras into the verbal wreath products. 

Let A be an abelian Lie algebra with a basis a, (i E 1) over  a field K, B be an 

arbitrary Lie algebra over K. Consider a free B-module  ,~ with the basis a, 

(i ~ I). The wreath product A wr B is the split extension of the module A by the 

algebra B. It is worth remarking that the B-module  5. can be considered in the 

usual way as the module over the universal envelope U(B).  

LI-:MMA 2. Let F be a free Lie algebra with free generators x, (i E I), R be an 

ideal of F and let ~, denote the image of the element g C F in the quotient algebra 

F/R.  Consider an abelian algebra A with a basis a, (i E I) and the wreath product 

A wr (F/R) .  Then the map x, --> Y,, + a, can be extended to a monomorphism 

F/R' - - - ,A w r ( F / R ) ,  

where R ' = [ R, R ]. 

PROOF. ~;melkin considered in [7] (Theorem 1) a more general case: a verbal 

ideal of R and the embedding of F / V ( R )  into a verbal wreath product. 

Although his theorem is proven under a restriction that char K = 0 the argument 

(see lemmas 1 and 2 of [7] and the first half of the proof of Theorem I) shows that 

in the case when V ( R ) =  R ' t h e  statement is true when F is a free Lie algebra 

over an arbitrary field K. E 

. 

PROPOSITION 1. Let A be an abelian Lie algebra with a basis a~, a2 . . . . .  al and 

B be a .finitely generated Lie algebra which has a subexponential growth. Then the 

wreath product A wr B has a subexponential growth. 

PROOFS. Let XI = {b,, b2 . . . . .  bk } be a system of generators of B. The system of 

clcments  



Vol. 47, 1984 ENVELOPING ALGEBRAS 301 

X = { a l , a z , . . . , a ,  ;bl ,b2 . . . .  ,bk} 

generates the algebra A wr B and for arbitrary n we have two types of products 

of length less than or equal to n: 

(I) ]-he products which involve only the elements bl ,b2, . . . ,bk.  

(II) The products which may involve the elements a~,a2, . . . ,a~ too. Since 

these elements commute with each other any product of this type either 

coincides with one of the elements aj (j = 1 ,2 , . . . , l )  or has a form 

(9) [aj,b,,,,b,, . . . . . .  b~,] ( / '=1 ,2  . . . . .  l ; l < - a ~ a 2 , . . . , a s < - k ; s < = n - 1 ) .  

The first products belong to the subalgebra B and the number of linearly 

independent among them thus does not exceed y,(X~,n).  

To find the number of linearly independent among the products of type (II) we 

apply the Corollary of Lemma 1. For arbitrary n ~ l  the set E t"-~= 

{e~ ,e2,. . . ,e, .} forms a basis of B ( X , n  - 1) and, hence, the element (9) is a linear 

combination of the element of the form 

[aj, e,,,e, . . . . . .  e,,] (l <=il<=i2<-_'." <=i,<-_m) 

which satisfies the condition E;=~ lL(G)<= n - 1. 

Consider now the one-to-one correspondence 

(10) [at, e,,, e, . . . . . .  e,, ] & e,, ei~'" e,,. 

The element in the right side of (10) is a standard monomial in U ( B ) .  The 

comparison of (10) and (3) shows that 

G e~2.., e,, E U ( B ) ( X I , n ) ,  

and hence the number of different products of the form (9) for all 1 _-< j _-< l does 

not exceed l~u,.~(X~,n ). We obtain thus that 

(11) 7,, w~ , (X ,n )  <- 7, (X,  , n ) +  l + l y u , m ( X , , n ) .  

The function "ys (X , ,n )  has a subexponential growth by the conditions of the 

assertion; this implies via section 4 of [8] that the same is true for the growth 

function 7v(m(X~,n) of U ( B ) .  

One of the ways to obtain the assertion from (11) is the following one. First, 

remark that it is easy to verify that 

B(x,,n)c u(B)(X,,n), 

and hence, the right side of (11.) is not greater than 
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Hence, 

1 + (l + 1 ) yv(B)(XI, n ) --< (1 + 2) yu~B)(X,, n ). 

!iln (TA wrB(X,n) 1/" ~ !ira ((l + 2)yu(B,(X, ,n)) '/" = 1. [] 

. 

PROOF OF THEOREM 1. We remark first of all that it is enough to consider 

the case when H is abelian: the truth of the assertion would follow from this 

special case by an obvious induction on the length of the derived series of H. 

Let thus H be abelian and let/7. = L/H. Take a free Lie algebra F with the 

same number of generators as/7. and find an ideal R <~ F such that F/R =/T.. It is 

easy to see that the algebra L is a homomorphic image of the algebra F/R' .  

(This follows from the observation that all the relations of the algebra F/R '  are 

satisfied in L. This fact is true too in the categories of associative algebras and 

groups.) It is enough therefore to verify that F/R '  has a subexponential growth 

since a homomorphic image of an algebra with subexponential growth has 

subexponential growth too. 

To prove that F/R '  has a subexponential growth we apply Lemma 2 and 

embed F/R '  into the wreath product Awr(F/R)~-Awr f_ . ,  where A is a 

finite-dimensional abelian Lie algebra. Since/[  has a subexponential growth we 

obtain Proposition 1 that so does the algebra A wr(F/R)  and its subalgebra 

F/ R '. [] 

. 

that 

Let K be a field. We consider the Lie algebra H with basis x, y~, yz,.. such 

(12) [yl,x] = y,+1,ly,, yj] = 0 (i, j E z ) .  

Clearly, y,+~ = [y ,x , . . . ,x] .  

PROPOSmON 2. Let L be a finitely generated infinite dimensional abelian-by- 

.finite Lie algebra over a field K. Then L contains a subalgebra isomorphic to H. 

PROOF. Let L0 be an abelian ideal of a finite codimension and /S = L/Lo. 
Since L has an infinite dimension, L0 can not be finite dimensional: otherwise, L 

would be a finite-dimensional-by-finite-dimensional Lie algebra which would 

imply that L is finite dimensional itself. 

The Lie operation in L defines on Lo a structure of a right L-module. We have 

thus for u E Lo, h E L, 

u ' h  = [u,h] .  
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Since the elements of Lo act in a trivial way on the module Lo we see that Lo is in 

fact a i - m o d u l e ;  this/S-module is finitely generated by corollary 11.1.8 in [1]. If 

vj, v2 . . . . .  v, is a system of generators of the module Lo then the fact that L,, has 

an infinite K-dimension implies that there exists v E {v~, v2 . . . . .  v,} such that the 

cyclic /s-module v c, generated by v, has an infinite K-dimension. 

Let e~, e 2  . . . .  , e, be a system of elements in L which gives a basis g~, g2 . . . . .  ~, of 

i .  By the Poincare-Birkhoff-Witt  Theorem the elements 

(13) e,,e~2""~,~ (l<=i~<=i2<="'<=i,,<-_i,,<=n) 

form a basis of U(/7). 

The /S-module L0 becomes in a usual way a module over U(/S) and in 

particular the action of the monomial (13) on the element v is defined by 

I.)" (ei, ei2""" ei.) = Iv, e/i, e/2 . . . . .  dim] = [v,e~,,e,2,... ,ei~]. 

Since the elements (13) form a basis of U(/S) the elements 

(14) [v,e~,,e~2,...,e~m] (l<=il<=i2<:...<=i,,<=n) 

form a system of K-generators  for the cyclic module yr. 

Now we shall show that there exist x E v L, e E{el,e2 . . . .  ,e,} such that the 

elements 

(15) x 'k '= [x,e,e,;..,e I (k = 1,2 . . . .  ) 

k 

are linearly independent. This would imply that the elements x and e generate a 

subalgebra of L, isomorphic to H. 

To show the existence of such elements x, e we take arbitrary x E vC and 

e E {el, e2 . . . .  , e,}. Assume that for this arbitrary pair x, e the elements (15) are 

linearly dependent.  Then for some k0 

x ( k o  +1)  ~___ A l X ( I ) - ]  - A 2 X ( 2 ) - ~  , �9 �9 -{- AkoX(ko ) 

and hence every x tk) is a linear combination of the elements x (1), xt2),..., x (k~ But 

if this is true for arbitrary elements x E v c e @{e~,e2 . . . . .  e,} we can conclude 

easily that all the elements (14) can be expressed as a linear combination of a 

finite number of them, which contradicts the choice of the element v. 

PROPOSITION 3. Assume that L is a finitely generated solvable-by-finite in- 

finite dimensional Lie algebra. Then L contains a subalgebra LI, which can be 

mapped homomorphically on the algebra H. 
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PROOF. Let Q be a solvable ideal of finite codimension in H and k be the 

solvability class of Q. When k = 1 the truth of the assertion follows from 

Proposition 2. Assume therefore that k > 1 and let Qk be the last nontrivial term 

of the derived series of Q. The algebra L/Qk has an ideal Q/Qk of a finite 

codimension and of solubility class k -  1. Applying induction on k we can 

assume that the algebra L/Qk either is finite dimensional or contains a 

subalgebra L1/Qk which can be mapped on H. In the first case we obtain that L is 

an extension of an abelian ideal Qk by a finite dimensional algebra L/Qk and the 

assertion follows from Proposition 2. In the second case the subalgebra Lx _C L 

can be mapped on H. [] 

ACKNOWLEDGEMENT 

I am grateful to the referee for his useful remarks. 

REFERENCES 

1. Ralph K. Amayo and Ian Stewart, Infinite Dimensional Lie Algebras, Noordhoff Int. 
Publishing, 1974. 

2. W. Borho and H. Kraft, Uberdie Gelfand - Kirillov Dimension, Math. Ann. 220 (1976), 1-24. 
3. P. M. Cohn, Free Rings and their Relations, Academic Press, London-New York, 1971. 
4. N. Jacobson, Lie Algebras, Wiley, New York and London, 1962. 
5. A. I. Lichtman, On matrix rings and linear groups over fields of fractions of groups rings and 

enveloping algebras I, J. Algebra, to appear. 
6. J. Milnor, A note on curvature and fundamental groups, J. Differ. Geom. 2 (1968), 1-7. 
7. A. L. Smelkin, Wreath products of Lie algebras and their application in the theory of groups, 

Trans. Moscow Math. Soc. 29 (1973), 247-260 (in Russian). 
8. Martha K. Smith, Universal enveloping algebras with subexponential but not polynomially 

bounded growth, Proc. Am. Math. Soc. 60 (1976), 22-24. 
9. Martha K. Smith, Growth of algebras, in Ring Theory H (Proceedings of the Second 

Oklahoma Conference) (B. R. McDonald and R. A. Morris, eds.), Marcel Dekker, New York, 1977, 
pp. 247-259. 

10. J. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, 
J. Differ. Geom. 2 (1968), 421-446. 

DEPARTMENT OF MATHEMATICS 
BEN GURION UNIVERSITY OF THE NEGEV 

BEER SHEVA, ISRAEL 


