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A NEW COUNTABLY DETERMINED 
B A N A C H  SPACE 

BY 

MICHEL T A L A G R A N D '  

A B S T R A C T  

We construct a Banach space which is weak*-countably determined in its 
second dual, but which is not K-analytic for its weak topology. 

I. Introduction 

We briefly recall some definitions. For more details, the reader is referred to 

Ill or [21. 
If A and B are Hausdorff topological spaces, a map f from A into the 

compact sets of B is said to be upper semi-continuous if for each neighbourhood 

V of f(a) there is a neighbourhood U of x such that f (b )C  V for b ~ U. 

A topological space A is called K-analytic (resp. countably determined) if it is 

the image of a Polish space (resp. a separable metrisable space) under a compact 

valued upper semi-continuous map. (The reason for the name eountably 
determined is that if A is countably determined and is a subset of a compact 

space K, there exists a sequence (K,) of closed subsets of K such that for x E A 

and y ~  A there is n with x ~ K~ y ~  K~.) 

A Banach space E is called WCG if it contains a weak compact set which is 

total. 

Consider the following properties of a Banach space E. 

(1) E is subspace of a WCG space. 

(2) E is a K,,~ of (E**,w*). 

(3) (E, weak) is K-analytic. 

(4) (E, weak) is countably determined. 

It has been shown in [4] that (1) f f  (2) f f  (3) f f  (4). These properties are very 

close, and they define classes of Banach spaces with very similar properties. 
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However, an example was provided to show that (2) f f  (1). In this paper, we will 

construct an example to show that ( 4 ) ~  (3). We still do not know whether 

(3) f f  (2). The construction will use a general technique, which was introduced 

in [4], and which we describe in the next section. 

II. A general method of constructing Banach spaces 

Consider a topological space (T, r). In this paper, T will be a subspace of a 

Polish space, with the induced topology. 

A family ,~ of subsets of T will be called adequate if it satisfies the following 

conditions: 

(a) Each A ~ ~ is closed. 

(b) For each t E T, {t} E ,ft. 

(c) If A ~ /  and B C A ,  then B ~ , f f .  

(d) If B C T is such that for each finite subset F of B, F E ,if, then B ~ ,ft. 

Note that (a )and  (c) together imply that each A E ,ff is discrete. 

Consider a point toe  T, and let "/:= TU{to}. Provide T with the topology 

which makes each point of T open, and such that a basis of neighbourhoods of to 

are the sets "]'\B, where B is a finite union of elements of ~.  

The main idea of this construction is that the map t ~{to,  t} from (T, ~-) into 

the compact sets of "/~ is upper semi-continuous, as is implied by condition (a). 

Hence, 7 ~ is k-analytic if (T, ~-) is Polish, and is countably determined if (T, r) is a 

subspace of a Polish space. 

Consider now the set K = {XA : A E ~/}. Each g E K is a continuous function 

on "]'. Moreover, condition (d) means that K, provided with the pointwise 

convergence topology (that is, the product topology of {0, 1}I), is compact. 

Consider the evaluation map 6 : T---> C(K), which sends t to ~ ( t )E  C(K), 

where for g E K, tS(t)(g)= g(t). Then, as is easily seen (and shown in [4]), 

{0}U ~(T), provided with the topology of pointwise convergence on K, is 

homeomorphic to 7". Moreover, ~(T) separates the points of K. So, we have, as 

shown in [4]: 

PROPOSITION 1. (a) ( C(K), weak) is K-analytic if and only if T is K-analytic ; 
(b) (C(K),  weak) is countably determined if and only if T is countably 

determined. 

IlL A countably determined space which is not K-analytic 

We shall construct a space T as above which is countably determined but not 
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K-analytic. The construction relies on a simple and deep idea of classical 

descriptive theory. 

Consider a Polish space (T,,,I-), and a family s4o of subsets of To, which 

satisfies conditions (b) to (d). Let T~ be the set of points t of T such that there 

exists A E Mo which clusters at t. The quantificator " there  exists A E .fro" gives 

hope to be able to construct Ao such that T~ is an analytic subset of To, but not a 

Borel subset of To. Consider then T = To\ T, and .ff = {A N T : A ~ Jo}. Then 

sg satisfies (a) to (d). Moreover, there is some hope that i" is not K-analytic, 

since (T, I-) is not analytic. 

To implement this idea, one needs an explicit example of an analytic 

non-Borel set. The standard example is the set of "trees with an infinite branch" 

which we describe below. 

We denote by I the set of all finite (strictly) increasing sequences on N. If 

s = (s,,-" . , s , ) E  I and u = ( u , , . . . ,  u , . )E  I, we say s - u if n <= rn and if s~ = u~ 

for i _-< n. 

A tree X on I is a subset of I which is hereditary, that is, such that if u ~E X 

and s <_- u, then s E X. Trees will be denoted by the letters X, Y, Z. We denote 

by To the set of trees on I. It is a closed subset of {0, 1}', hence a compact metric 

space. We denote its topology by r. 

We say that X has an infinite branch if it contains an increasing sequence s" 

with the length of s" going to infinity. We denote by T, the set of trees with an 

infinite branch. It is a classical result that T, is analytic non-Borel. (We shall not 

need this result explicitly.) 

Given a tree X, we denote by V, (X) the set of trees Y such that X n I, = 

Y O I,, where I, denotes the set of finite increasing sequences of integers less 

than or equal to n. The sets V, (X) form a basis of neighborhoods of X. 

We denote by sgo the set of finite subsets B of T, which are of the following 

type: B can be expressed as { Y , . . - ,  Y.}, where, for some X E To and 

( s l , . . . , s , ) ~ X ,  we have Yi E Vs,(X) for all i =< n. 

We denote by ~1, the smallest set of subsets of To which contains ~1o, and 

satisfies (c), (d). (One sees easily that ~o satisfies (b).) The following lemma 

contains the crucial fact. 

LEMMA 1. Let A E ~-~1. Then, each cluster point of A belongs to T1. 

PROOF. Let Z be a cluster point of A. Let (Yn) be a sequence in A which 

converges to Z, with Y , ~  Z. For each n there is an integer p(n) such that 

Y, ~ Vp~.)(Z)\Vp~,)+,(Z). We can assume p(n) -> n and the sequence (p(n))  

increasing. 
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Let us fix n. Then,  there is B E .if,, such that Y~,. �9 Yo E B. By definition of 

~ff,,, we can write B = { Y[," �9 ', Y;,}, where there exists X E T, and a sequence 

( s , , " ' , s k ) ~ X  such that for i n k ,  we have Y ' , E % , ( X ) .  We can write 

Y~ = Yq~., where q(i)<=k. For i / i ' ,  we have q ( i ) / q ( i ' ) .  Since s,>=i and 

p(i)  >= i, there exists j _-< n such that p(j), sq~n >= n/2. Let m = Inf(p(j) ,  Sqcn). We 

have ~ E %, (Z)  and Yj = Yq~n E V,, (X). This forces Vm (X)  = V,, (Z).  Let 

r(n) = sup{i : p ( i ) 5  n / 2 -  1}. Let i <= r(n). We have 

v~,,, = Y,r v p . . , ( z ) =  G , , , , , ( x ) .  

This implies s~(n <= p(i). 
In particular, there are at least i of the s, that are =<p(i). Since s, < st < " ' �9 < 

sk, we have shown that for i <= r(n), we have s, <= p(i). Moreover ,  the sequence 

(s~,. �9 ", s,~,~) belongs to X and consists of elements  less than or equal to n/2, so it 

belongs to Z. Since the terms of the sequence ( s , , . . . ,  s,~,~) depend on n, let us 

denote  them by (s?,'..,sT(,~). Since s; '-< p(i)  for each i<= r(n), there exists a 

sequence nk such that each s7 ~ is eventually equal to some s~. And,  for each n, 

the sequence ( s , , . . . ,  s ,)  belongs to Z, which proves the lemma. 

We now set T = T~,\T~ and d = {A C T :  A @ d,}.  It follows from L e m m a  1 

that .ff satisfies condit ions (a), (b), and (c). We know that the space 7 ~ is 

countably  de termined;  it remains to show that it is not K-analytic.  

The next idea to be needed is the classical idea of order  of a tree. Given a tree 

X we define its derivative X m by: 

X m = {s E X ,  there exists t E L s < t, t / s ,  t E X}. 

In o ther  words, we delete f rom X the elements  which are maximal. 

Deno te  by f~ the first uncountable  ordinal. For  a < 1) we define by induction 

X ~) by X ~'+~ = (X(~) I') and X ( ' ) =  ( ' ] , X  ('.~ if y = sup 3',. If there is an ordinal y 

such that X m = Q, we denote  by o(X)  the smallest such ordinal. Otherwise,  we 

set o(X)  = fL Note  that o(X)  = 9 / i f  and only if X E T,. 

Given two sequences s, t ~ L with s = ( s , , - " , s , ) ,  t = ( h , ' "  .,t,,), and t~ > s,, 

we set s ~ t = ( s , , . . . , s , , t , , . . . , t , ) E 1 .  
Given s ~ I  and X E T , , , l e t  s [ X = { t : s ~ t E X } .  

We now embark  on proving that "F is not K-analytic.  Otherwise,  T would be 

the image of N TM by a compact -va lued  upper  semi-cont inuous mapf .  For  a 

sequence t E N "  and o - ~ N  N, we write t < c r  if t ( i )=o ' ( i )  for i=<n. Let 

A, = U .... f(o ') .  

The  main point of the a rgument  is to construct  a sequence t , , . . . , t , ,  of 

integers, an increasing sequence s~,. �9 s,, and a sequence Xo of trees such that if 
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one sets t " = ( t j , . - . , t . )  and s " = ( s l , - . . , s . ) ,  the following conditions are 

satisfied for each n: 

(a) ( s , , - . . , s ,  , ) E X . ;  

(b) V~,(Xp) = V~p(X.) for each p = n; 

(c) {o(siX): X E V~. ( X , ) n  A,.} is unbounded (i.e. has supremum ~). 

The first step proceeds as follows. Since T = U . A , ,  there is a t~ such that o is 

not bounded on A,,. For a tree X, it is easily checked that o(X)<= 
sup, o (n lX)+  1. It follows that there exists st such that {o(sl iX):  X E A,,} is 

unbounded. Finally, since there are only finitely many sets of the type Vs,(X), we 

can find X~ such that the set {o(sl IX): X E Vs,(X~)n A,,} is unbounded. 

Suppose now the construction has been done up to n. Since A,. = UqA,~q~, 

where u(q)=(t")~q,  there exists t,+, such that the set {o(s" ] X ) : X E  

Vs. (X,) n A,.*,} is unbounded. 

For q > s , ,  let v(q)=(s")~q.  Since o(s" ]X)<=sup~o(v(q)iX)+l, we can 

find q = s,.~ such that the set {o(s"*~lX): X E V,. (X,) N A,.+,} is unbounded. 

Finally, since there are only finitely many sets of the type V,~ we can find 

X,.~ such that V,.+,(X,.~)CX,.(X.) and such that the set {o(s"§ X E  
Vs.+,(X,.~) N A,..,} is unbounded. The construction is completed. 

First, we notice that for each n, we have s " E X , ,  for otherwise, for 

X E V~. (X,) we would have (s" I X)  = Q. Moreover,  there exists Y E To such 

that V~,(Y) = V,.(X,)  for each n. Hence for each n, s" ~ Y. 

For each n, let Y, E A , .  n V,~ T. For each k, {Y~,.-. ,  Yk}E~r so 

B = {Y, : n E N} belongs to s4~. It follows that for the topology of T the set B is 

closed and discrete. Let t = (t,). Since f(t) is compact, B n f ( t )  is finite. Let 

C = B\f( t) .  Since C is closed and disjoint from f(t), and since f is upper 

semi-continuous, there exists a finite sequence s with s < t such that for o- @ N TM 

and s < or, we have f(o-) n C = Q. Hence, we have As n C = ~ .  Since s < t, s is 

of the type (t,,. �9 t,). But then all Yk for k => n belong to C\A~, except finitely 

many of them, a contradiction. 

THEOREM. There exists a compact space K such that (C(K), weak) is 
countably determined but is not K-analytic. 

REMARK. In fact, it can be shown using the methods of [4] that (C(K), weak) 

is the image of a coanalytic set of N ~ under a compact valued upper semi- 

continuous map. 
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