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PROJECTIONS ONTO HILBERTIAN SUBSPACES 
OF BANACH SPACES 

BY 

T. F IGIEL A N D  N I C O L E  T O M C Z A K - J A E G E R M A N N  

ABSTRACT 

In this paper we obtain new est imates for the relative projection constants  of 
subspaces of a Banach space Y in terms of geometrical properties of Y. Our  
method  gives that K-convex spaces are locally ~--Euclidean. We also get a 
version of Maurey ' s  extension theorem for spaces of type p < 2. 

1. Introduction 

In this paper we extend some results of [7] and [2]. 

Let X be a finite dimensional subspace of a Banach space Y. Recall that the 

relative projection constant, A(X, Y), is the quantity 

inf{]]Pll : P is a linear projection of Y onto X}. 

In Section 3 we construct projections of Y onto subspaces X whose norms 

admit good estimates in terms of geometrical properties of X and Y. In fact we 

obtain estimates for the y2-norm of the projections, i.e. the norm of a 

factorization through a Hilbert space. This is done in terms of moduli of 

convexity and smoothness (Theorem 5.1) and of type and cotype properties (cf. 

Proposition 6.2). 
Our approach yields a variant of Maurey's extension theorem [11] for 

operators u : X  ~ l~', where X is a subspace of a space of type p < 2. 

In Section 8 it is proved that, if Y satisfies a natural duality condition, then 

there exist c, a > 0 such that each X C Y has a subspace Z with 

d i m Z  _-> c(dim X) ~, A(Z, Y)< 1/c. 

The duality condition is shown in Section 9 to be equivalent to that of 
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K-convexity considered by Maurey and Pisier [12]. Hence Corollary 8.4 

generalizes the results of [3] and [7]. 

The method of this paper depends on the variational result of D. R. Lewis [6] 

and on the approach developed in [2]. The construction and estimates make use 

of some special properties of the operator norm / introduced in Section 2 and 

studied briefly in Section 4. The norm r on L(E, Z) replaces that used by D. R. 

Lewis (cf. [7]) in the case of order bounded operators. The two norms are 

equivalent if Z is a superreflexive Banach lattice. 

In the final section we compare our results with those obtained recently in [4]. 

Our terminology is standard (cf. [2]). Letters X, Y, Z denote always normed 

linear spaces over the real field and E, F, G, H are Euclidean spaces. The results 

are valid in the complex case as well, only minor changes in proofs are necessary. 

We are indebted to D. R. Lewis who has kindly provided us with a preliminary 

version of [7]. His proofs depended on the lattice structure but they suggested 

our more general approach. 

2. The norms C and ~* 

Let E be a finite dimensional Hilbert space. Let 3' denote the canonical 

Gaussian probability measure on E. If Z is a normed space then the L2-norm of 

a linear operator T E L(E,Z) is defined by the formula 

The normed space (L(N,Z),~) is isometric to a linear subspace of the space 

Le(N, 3", Z) consisting of all linear functions. This fact has some useful consequ- 

ences which we examine in Section 4. 

Clearly, if ] is a linear isometry of Z into a space ZI, then for T E L(E, Z) one 

has ,~ = g(T). In particular, if rank T -- 1, then 

e(r) - -  II rll. 

Obviously, if U E L(E, E) is a unitary map, then e(TU) = e(T)  and hence for 

any V ~ L(E,E) 

e(TV) ~ e(T)ll vii. 

The latter estimate holds also if V ~ L(F, E), F being another Hilbert space (cf. 

the proof of Theorem 8.1). 
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Observe that, if S E L(Z, Z~), then 

~e(ST) < II s 11 e(T). 

Recall that the space L(Z, E) may be identified with the dual of L(E, Z) by 

the formula 

(T, ~b) = Tr(~b o T) 

for T E L(E,Z) ,  q~ E L(Z, E). The induced norm on L(Z, E) is given by 

~e*(O) = sup{ITr(~b o T)I : ~e(T) < 1}. 

One obtains easily 

e * ( 4 , )  = 114,11, if rankth = 1, 

e*(v4,)<=llvlle*(6), 6 E L ( Z , E ) ,  V E L ( E , E ) ,  

e*(~bS) _-< I1S [/~a*(th), S E L ( Z t ,  Z), 6 E L ( Z , E ) .  

The last estimate implies for ~b E L(Z, E) 

e*(4,) --< (rank 4,)"211 4, II. 

Our final lemma expresses a well known property of the dual of an injective 

operator ideal. 

LEMMA 2.1. Let u E L(Z, E), e*(u) < oo. If Z is a subspace of a space Y then 
there is U E L ( Y , E )  such that Ulz  = u and g * ( U ) =  ~a*(u). 

PROOF. Apply the Hahn-Banach theorem to the functional q~ (T) = Tr(u o T) 

defined on the subspace L(E, Z)  of the normed space (L(E, Y), ().  

3. The basic construction 

In the sequel X is a fixed n-dimensional subspace of a normed space Y 

(n _-> 1). We let E = 1~ and fix an isomorphism w E L(E ,X)  such that 

e ( w )  = 1, ~ * ( w - ' )  = n. 

(The existence of such a w is a special case of the main result in [6].) We also fix 

W E L(Y,  E) such that (cf. Lemma 2.1) 
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Obviously we have 

Ww(e) = e for e E E, 

e * ( w )  = e * ( w - ' ) =  n. 

d(X} l~) <= II w--lll II w If, 

x (x, Y)_~ lpwWll <=ll wllllw ll. 

More generally, if O E L ( E , E )  is a projection of rank k and Z = w(O(E)),  
then 

d(Z, l~) <= II Q W  Izll II w Io,E,II--< II owll  II wO II, 

X (Z, Y) <= II wOW II <= II wQ II II Q W  II. 

The quantities on the right hand side will be estimated by using the following 

obvious lemma in which 

= {P E L ( E , E ) : P 2 =  p = p .  and r a n k P  = 1}. 

Let T E L (E ,Z ) ,  c~ E L (Z ,E) .  I[ Q E L ( E , E )  is a projection, LEMMA 3.1. 

then 

[I TO II = sup{llrxll:x ~ O ( E ) ,  IIx If ~ 1} 

= s u p { e ( r P )  : OP = P E ~}, 

[I 0 r  II = s u p { e * ( e r  e O  = e ~ ~,}. 

4. Geometric properties of the norm 

We keep the notation of Section 2. Write L = (L (E ,Z) ,g )  and Lz(Z)= 
Lz(E, y, Z). 

Our first lemma summarizes some results from [1] about moduli of uniform 

convexity and smoothness. It is used only in the proof of Theorem 5.1. 

LEMMA 4.1. There exists a constant C, 1 < C < 5 ,  such that one has for 
0 < e < 2 ,  " r > 0  

pz('~) <= p~(r <= p~r162 <-- oz(C~), 

~ ( ~  ) >= a~ (~ ) >- ~ , ~ ( ~  ) >= a~(~ /( c + 1)). 
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PROOF. Let C be the constant appearing in proposition 17 of [1]. Then we 

have 

t, L2(~,(~') =< c 0 z ( ~ )  --< pz (c~-), 

because pz(z) /r  is non-decreasing. 

On the other hand, using proposition 1, the definition of 4, proposition 17 of 

[1] and the estimate of Lindenstrauss [10], we obtain 

6z(e /(C + 1)) < C & ( e / C )  

= sup�89 - Cpz(z) 
7~'0 

=< 6 L2(z)(~). 

The remaining assertions of the lemma are trivial, because L is a subspace of 

L2(Z) and Z embeds isometrically into L. 

Let rl, r z , " "  denote the Rademacher functions on [0,1]. Recall that the 

constant ak (Z)  (resp. /3k (Z)) is the infimum of those C > 0 such that for every 

choice of z,, z2, �9 �9 ", Zk E Z one has 

-<c~ IIz, llL 
i = 1  i = 1  

l ~r~( t ) z ,  2 ~ 

LEMMA 4.2. For each k -- 1, 2 , . . .  one has 

ilk(L) = ik(Z) ,  

ilk(L*) =< ak(L) = ak (Z). 

PROOF. It is obvious that ik(Z)<--[3k(L)<--flk(L2(Z)) and the equality 

flk(L2(Z)) = i k ( Z )  is verified in [12]. 

The proof that ak(L) = ak(Z)  is similar. Finally, we have ilk(L*) <-- ak(L) (cf. 

e.g. [2]). 

We shall only need the following consequence of Lemma 4.2. 

COROLLARY 4.3. Suppose P1,'" ", Pk E L(E,  E)  satisfy 
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for each choice of signs e, = +- 1. Then for every T E L(E, Z )  and 4) E L(Z,  E)  

one has 

min e( TP, ) <= k-"~[3. (Z)e( T), 
i~_k 

min g*(Pi&)=< k-mak(Z)e*(4)) .  
i n k  

PROOF. We have 

k 

k min e(TPIy_- < Z e(TPiy 

=</3k (L)2 e 

Io'( I = Ck(zy e(r) 

<= (ilk (Z )e (  T)) 2. 

The second estimate is proved similarly. 

\ 
2 d ) TPi ) ri(t t 

i=21 [) 2dt ri(t)P, 

5. Estimates for uniformly convex spaces 

THEOREM 5.1. Let X be an n-dimensional uniformly convex subspace of a 
uniformly smooth space Y. Let d, r satisfy 6• = 1/n, OY(r) = 1/n. Then 

d(X,l~)<-_3Od/r, ,~(X, Y)<-_3Od/r. 

PROOF. Pick numbers D , R  such that 

6(L(~,x),e~(D) = 1/n, p(L(~,y),e)(R) = 1/n. 

Since 6 and p are non-decreasing functions, Lemma 4.1 yields 1/R <=5/r, 

D =< 6d. Therefore it suffices to prove that the operators w, W from Section 3 

satisfy 

[[wlI< D/2, IIWII<--2/R. 

By Lemma 3.1, this will follow if we show that for each P E 

e(wP) <= D/2, s  <= 2/R. 
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Set x = w, y = w(I  - 2P).  Then  ~e(x) = ,a(y) = 1 and 

/~(x + y)--> n-lTr(w-l(x  + y))  

= n - l T r ( 2 ( I  - P) )  

= 2 -  2/n 

= 2(1 - 8(L(~x),e)(D)) 

and hence  ~ (2wP)  = r - y )  --< D. 

Now let p = p(L(~.v),e), 8 = 8<L(v.~).e.). Put x = n-~W, y = n - ~ ( I -  2P)W. Then  

e * ( x )  = ( * ( y ) =  1 and 

~e*(x + y)_-> Tr((x + y ) w )  = n-~(2n - 2), 

so that  ~ ( ( * ( x  - y))_-< 1/n. 

Set e = e* (x  - y ), ~- = 4/ne. Using the  es t imate  of Lindens t rauss  [6] we get 

p(~') > ~ze - 3(e)  > 1/n = p(R) .  

Since p is non-decreas ing,  this yields 

~*(PW) = ~me*(x - y)  = 2/z <= 2/R. 

This comple tes  the p roof  of the theo rem.  

REMARK. Of course,  the es t imate  of d(X,  l~) is improved  by put t ing Y = X 

in the s t a tement  of T h e o r e m  5.1. 

We should ment ion  that  the es t imate  A(X, Y)<-_ Cn I/p-~/2 if d(X,/~)_-<2 and 

pv(z)  <-c'; p (which follows also f rom T h e o r e m  5.1 or  Corol la ry  7.3) has been  

ob ta ined  independent ly  by W. B. Johnson ,  D. R. Lewis and  V. D. Milman.  

6. Estimates in terms of type and cotype constants 

LEMMA 6.1. For each k, 1 <- k <-_ n, there are subspaces El, E2 C E such that 

d i m E j  > n - k, j = 1,2, and for P E ~ P ( E ) C E I  implies #(wP)<= k-1/2fl~(X), 

and P(E)  C E2 implies 

( * ( P W )  ~ k-1/2 min{ak (Y)n,  flk(Y*)~e(W*)}. 

PROOF. Let  A be a maximal  subset  of 
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{P E ~ : e(wP) > k -ln[3k (X)} 

consisting of mutually orthogonal projections. By Corollary 4.3 A has less than k 

elements. Thus 

E1 = {e E E : Pe = 0 f o r P  ~ A} 

has the required properties. 

The construction of E2 is similar. Since ,e(w*P)=llw*Pll=llPW[[= 

e*(PW),  one can use Corollary 4.3 to estimate ~e(W*P) or ,e*(PW), whichever 

gives better upper bound. 

PROPOSITION 6.2. Let X C Y be a subspace of dimension n and let 1 <= k < �89 n. 

Then there is a subspace Z C X  with d i m Z  = j => n - 2 k  + 2 such that 

d(Z, P2) <- (n/k )ak (X)flk (X), 

A (Z, Y) < (n/k )ak ( Y)/3k(X). 

PROOF. Given k, let Z = w(E1 fq E2) where El, E2 are constructed in Lemma 

6.1. It suffices to prove that if Q ~ L(E, E) is the orthogonal projection onto 

E1 f3 E2, then 

[[wQll~ k-ln/3k(X), IlQWll<-_ k-l12nak(Y). 

These estimates follow directly from Lemmas 3.1 and 6.1. 

7. An extension theorem 

LEMMA 7.1. Suppose X C Y and u E L (X, H) ,  where H is a Hilbert space, 
d i m H < o o .  Then [or each k = 1 , 2 , . . ,  there exist U E L ( Y , H )  and an or- 

thogonal projection Q E L (H ,H)  such that U Ix = u and 

II QU II <-- k -ln ak ( Y)(*(u ), 

r a n k ( / -  Q)  < k. 

PROOF. Let U be the extension of u constructed in Lemma 2.1. We repeat 

the procedure of Lemma 6.1, with A being a subset of 

{P E ~ : ( * ( P U )  > k-1/2ak(Y)~v*(U)}. 
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Using Corollary 4.3 and Lemma 3.1 we obtain easily that the orthogonal 

projection Q onto the subspace determined by A has the required properties. 

THEOREM 7.2. Let X C Y and let u E L(X, H) have rank m ~ 2 j. Then there 

is an extension a E L ( Y , H )  such that 

. i-! 

Ilall--<x/2~ o~2,(Y)ll u II. 
S=0 

PROOF. We use induction over ]. The case ] = 1 is well known. Suppose now 

that X C Y, u ~ L(X, H) has rank n, where 2 j < n -< T +1, and that the theorem is 

true for this ]. 

Set k = 2' and let U, Q be those given by Lemma 7.1. Since e*(u) _-< x/~ll u II, 
we have 

IIQUH <- k-l%~(Y)e*(u) <-- x/2a~(Y)ll u II. 

Set X o = k e r ( I - Q ) u ,  X I = X / X o ,  Y1=Y/Xo.  Let ulEL(X1,  H) be the 

operator induced by ( I - Q ) u .  Then rank u l =  < k = 2  j and hence, by the 

inductive assumption, there is an extension fil E L(Y1, H) such that 

i-1 

Ila,ll--< V ~  a2,(Y,)ll ulll. 
s=0 

Since II ulll = II(t- O)u II =< II u II and a,(Y~) _<- a,(Y) for each i, we conclude that 

the operator 

u = QU + (~lq, 

where q : Y--~ Y/Xo is the quotient map, is the required extension of u. 

This shows that the theorem is true for ] + 1 too, and hence completes the 

proof. 

COROLLARY 7 . 3 .  If Y is Of type p < 2 ,  X C Y and dim X = n, then 

A (X, Y) <_ Cn "P-'/2d(X, IT), 

where C = X/2K(P)(Y)/(1 - 21'2-1'~). 

PROOF. Let u E L(X, l~) satisfy Ilu II = d(X, l~), Ilu-'ll = 1. The projection 

P = u-l~ has the required property because c~,(Y) < K(P)(Y)iZ/~-I/2 (cf. Section 

10). 
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8. A class of locally ~r-Euclidean spaces 

Let us define ~ ,  (Y) to be the least C such that for each u E L ( Y ,  l~) one has 

e(u *) <-_ ce*(u ). 

THEOREM 8.1. There is a constant c > 0 which has the following property. For 

each normed space Y, if X C Y, d i m X  = n, then there exists Z C X such that 

dim Z _-2 c min {n//3. (X) 2, n//3. ( Y ,)2}, 

A(Z, Y) =< 27~ , (Y) .  

We shall use a lemma which is implicit in [2]. Its proof is given after that of the 

theorem. 

LEMMA 8.2. Let )t be the normalized rotation invariant measure on the unit 

sphere S in a k-dimensional Euclidean space F. I f  0 ~ u E L (F, Z) ,  then for each 

C >= e(u)/ll u I1 one has 

A ({x ~ s : 11 ux II ~ x /8 - -~c  II u II}) = 4e-C~. 

PROOF OF THEOREM 8.1. Set k = [(n + 4)/3]. Let El, Ez be subspaces of E 

constructed in Lemma 6.1 for this k. Pick a subspace F CE1 t"l E2 with dim F = k 

(one has dim E1 t"l E2_-> n - 2k + 2 _-> k). It suffices to prove the estimates 

(*) 
,X({x ~ S : II wx II >= X/~/-~}) <- 4 e x p [ -  k/flk(X)2], 

~x ({x ~ s :11W*x II ~ V8-~e(w*)}) ~ 4exp[ - k/ilk (y,)2]. 

Indeed, (*) enables us to apply the idea used in [2] in order to prove Theorem 

2.6. This yields an absolute constant c ' >  0 for which there exists G C F  with 

dim G > c 'min {k ~ilk (X)  2, k ~ilk ( y,)z} 

such that for g E G one has 

IIwgll<-_v'9/klgl, IfW*gll<-x/9/ke(W*)lgl. 

It follows that, if P is the orthogonal projection of E onto G, then II wPII ~ v/'97 -~ 

and I [ P W l l = l l w * P [ [ < = v " ~ e ( w * ) .  Thus w P W  projects Y down onto Z =  

w ( G )  and 



3/'O1. 33, 1979 PROJECTIONS ONTO HILBERT SPACES 165 

II wewll <= (9/k)~'(W*) _-< 27X, (Y). 

This shows that the theorem holds with c = ~c'. 
Let us prove the second estimate (*). Let Q be the orthogonal projection of E 

onto F. Then 

e ( w * l ~  ) = e ( W * O ) ~  e ( w * ) ,  

so that we may apply Lemma 8.2 with u = W*lp and c=e(w*)/llw*ld. 
Moreover,  the argument used in the proof of Proposition 6.2 yields that 

C > k~r~l#k(Y*). The  first estimate is proved similarly. 

PROOF OF LEMMA 8.2. Set [ (x )  = II ux II for x E S. Let M be the median of f, 

i.e. the largest number c such that 

A({x �9 S :llux II -> c } ) e  1/2. 

Then M _-< V'2-~C'(u), because 

e(u)~ fF Iluxll~d~F(x)=k fs Iluxll=dA(x)>'!kM~ 3 2  �9 

Estimate (2.6) in [2] yields for each e > 0 

A ({x ~ s :  11 ux II > M + ~ II u lid =< 4e-~:/2. 

Letting e = X/2/kC, we have 

M + ~ Ilu II--< x/ff/-kCllu II 

and the assertion of the lemma follows immediately. 

REMARK. If one uses theorem 5.2 from [2] to obtain a big 2-Euclidean 

subspace X 1 C X  and then applies Theorem 8.1 to X1, one obtains the following 

corollary. 

COROLLARY 8.3. I f  Y is of cotype q < oo and Y*  is o[ cotype q ,  < 0% then every 

X C Y with dim X = n has a subspace ZI  such that 

d imZl  = j >- c ln  "/4~', 

d (Z l ,  l~)<-_2, ;t(Z1, Y)_-< 27X~(Y), 

where cl = c l (Y )  > O. 
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COROLLARY 8.4. I l K ( Y )  = sup.~/ ' , (Y)< ~, then Y is locally 7r-Euclidean in 
the sense of [13]. 

PROOF OF COROLLARY 8.4. We shall show that K(Y)<oo implies that Y 

satisfies the assumption of Corollary 8.3 for some q, q .  < oo. In fact, Y is even 

B-convex. For, it is easy to check that, for any Z, ~ , ( Z * ) =  ~ , ( Z )  and 

~ ,  (Z)  _-> ~ ,  (Z,) if ZI C Z. Using Theorem 8.1 and known facts one obtains that 

if m _-> 2", then 

Yr.(17) = ~/'. (l=) -> c Vn,  

where c is a positive constant. Thus, if K(Y)< o% then Y cannot contain l~"s 

uniformly. 

9. Relation to K-convexity 

A normed space Z is said to be K-convex (cf. [12]) if 

sup p, (Z)  < ~, 
r l  

where p,(Z) is the norm of the operator R,  in L2([O, 1], dt, Z)  given by 

(RJ)(t)--,~ r,(t) r,(s)I(s)as. 

The main result of this section is the following 

PROPOSITION 9.1. For each normed space Z there is C <oo such that, for 
n = 1 ,2 , . . . ,  

( Tr /4)p,(Z) <-_ • , (Z)  <-_ Cp,(Z). 

In particular, Z is K-convex if and only if K(Z)  = s u p , ~ ( Z )  < oo. 

We shall compare R,  with the projection F, of L2(E, y,Z*) ,  where E = l~, 

onto the space L(E, Z*) of linear functions given by the formula 

(F, f ) (x)  = ~ (x, y ) f (y )dy (y ) .  
JE 
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The operator Fn may be called the n-th Gaussian projection in L2(Z*), because 

it is equivalent to an operator  

where ~1, ~2,'" ", ~, are orthonormal Gaussian random variables. 

LEMMA 9.2. For each n = 1,2, . . .  one has 

~co(z) = l i t ,  If. 

PROOF. Recall that L2(E, 7, Z*)  is norming over L2(E, 7, Z )  and observe that 

the annihilator in L2(E,y,Z*) of L =L(E,Z)CL2(E,T ,Z)  is equal to the 

kernel of F.. Thus the induced mapping 

L2(E, T, Z*) /Ker  r ,  --~ Lz(E, 7, Z*)  

can be identified with the mapping of L * = (L(Z, E),  t a*) into L2(E, T, Z*)  given 

by u ~ u *. It follows that the two maps have equal norms, i.e. ItF~ l{ = ~n(Z) .  

LEMMA 9.3. Suppose the functions f~, g, E L2(fl, tz ), f'i, g'~ E L2(f~',/z '), where 
i = 1 , 2 , . . . , n ,  satisfy for any z l , . . . , z ,  EZ ,  z * , . . . , z * @ Z *  

f',z * < C [,z * 
. =  
l 1 

where U" II stands for the L2 norm. Then the operators A in L2(a, ~, Z) and A ' in 
L2(Iq',/z ', Z*)  given by 

Ah = gihdtz, 

satisfy I I A ' l l -  CIGIIA II. 

PROOF. 

A'h = ,=1 ~ f~ fo, g'ihdtz' 

Fix e > 0. Given h E L2(II',/z ', Z*),  let 

x :  ,o,2 f'fo, g',hdr L2(a,g,Z*) 

and pick y E L2(I),/t, Z )  so that fly [[ < 1 + e and faxydtt =t[x II, Then we have 
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II A'h II = I ,z~ ~ f'i fa, g'ihdl't' 

--<c, Ilxll 

C1 fn xyd~ 

=C,f. h(~g',fof, yd.)d.' 

<- CIC211 h IIIIAY II 

_-< (1 + e)C,C~lle IIIIh II. 

Since e > 0 is arbitrary, the lemma is proved. 

PROOF OF PROPOSITION 9.1. Observe first that 

p.(Z)  =< p.(Z**)<-_ (4/~)llr .  I1 = (4/7r)~/', ( / ) .  

The second estimate follows from Lemma 9.3 and the inequality from [14]. 

Recall that, by corollaire 1.3 in [12], if X does not contain l~'s uniformly, then 

there is C < ~ such that, for each n and any xl," �9 ", x, E X, one has 

I , ll 
Hence, if neither Z nor Z*  contain l~'s uniformly, then the right-hand side 

estimate follows from Lemma 9.3. 

Now observe that N~(Z)<-_V'n, because for u EL(Z, l~) one has ~ '(u*)_ < - 

v';l lu*ll  and Ilu I1~ e*(u). 
Suppose Z contains /~'s uniformly. Then 

p , (Z)  ~ p,(l~ ~ _-> 2-"~C, (Z), 

because ~/n~_ an(/~') =< ~,,(l~')p,,(l~') <= "X/2p,,(l~). 
Finally, if Z* contains l~'s uniformly, then 

~C~ (Z) _-< X/2p~ (Z*) _--- V2p~ (Z), 

where the last estimate follows from Lemma 9.3. This completes the proof of the 

proposition. 
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I0. Another approach to the extension problem 

Using duality relations for operator ideals one can obtain some stronger 

results (cf. [4]). The comparison will be clearer if we introduce certain new 

constants. 

For T E L(X,  Z),  let bk (T) denote the least C => 0 such that 7r2(TS) <= Cg(S) 

for S E L(I~,X) .  (This is equivalent to e*(UT)<= CTr2(U) for U E L(Z,  l~).) 

Analogously, ak (T) is defined so that g(TS)<= ak (T)rr2(S*) for S ~ L (l~, X) (or 

~r:((UT)*) < - a~ (T )e* (U)  for U ~ L ( Z ,  l~)). We set ak(X) = a~(I), b~(X) = 

bk(I), where I E L ( X , X )  is the identity map. 

The following lemma is a consequence of the Hahn-Banach theorem and the 

characterization of F~ due to Kwapieri [5] (the right-hand side is equal to the 

norm of the functional defined by v on {T E F*(Z, Y ) : T ( Z ) C X } ;  cf. [8] the 

proof of theorem 3.3). 

LEMMA 10.1. Let ] : X ~ Y be an isometric embedding and let v E L (X, Z),  

rank v = n. Then 

min{3,2(~) : ,3 E L(Y ,  Z),  f~] = v} = 

sup{lTr(v2v,v)[ : v, ~ L(Z ,  l~), v2e  L( l~ ,X) ,  7r2(v,) = 7r:((jv2)*) = 1}. 

Since our notation yields the estimate 

ITr(V2VlV)l ~ e(v2)e*(v,o) 

<-<_ eO'v2)b.(v)~2(v,) 

<_ a. ( Y)zr2((jv2)*)b. (v ) 

= a.(Y)bn(v) ,  

we obtain that there exists an extension ~5 with 

"y2(~) <= a. (Y)b,, (v). 

It remains to find estimates for an and bn. Clearly, a . ( Y )  >- &.(Y),  b.(v)>-_ 

/3o(v), where 6,, /3, are Gaussian type and cotype constants (cf. [2]). On the 

other hand, it is easy to check that 

a.(Y) <-_ sup ft.(Y) = I~'2)(Y), 
n 

b,(v) ~ sup/3. (v) =/~(2)(v), 
n 

and in fact, using the argument of lemma 6.1 in [2], one gets 
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a,(Y)<-&n2(Y), bn(v)<~,2(v). 

This improves slightly the operator case of Maurey's extension theorem [11]. 

Now, the basic result in [4] asserts that, if rank V = k and q _-> 2, then 

7r2( V) <= c(q )k '/2-'/qrrq.2(V), 

where c(q)= 4/(1-  2/q) if q > 2 and c(2)= 1. 

It follows that, for T E L ( X , Z ) ,  l < p  =<2<q and k = 1 ,2 , . . . ,  

ak (T) -< c CO/Co - 1))k '/P-1/2/s 

bk (W) _-< c (q)k '/2-'/~R(~)(T), 

where R~)(T), /~c~)(T) are the least constants such that 

2 X 1/2 \ lie 

for any finite sequence xl,.. . ,x,,,  E X. One needs to check only that, if 

U E L(Z, l~), S E L( ILX) ,  then 

7rp/(p-,).2((UT)*) < rr,2(T) < I~(q,(T)~e(S). 

This is similar to the proof of Corollary 4.3 (cf. [4]). 

The estimate of the form 

T203) <- cCo, q)R~')(Y)R~q)(v)n '/P-'/q 

obtained in [4] is more general than the results of Sections 5, 6, 7, hut only 
Corollary 7.3 is entirely its consequence. 

Added in proof. Good estimates for an and bn are a consequence of a recent 

result of the second-named author (to appear in Ark. Mat.). Using her Theorem 

1 it is easy to show that, for any T E L ( X , Z )  and k = 1 ,2 , . . . ,  

ak (T) _-< 2Sk (T), bk (T) -< 2/3~ (T). 

The estimate ~,2(O)_-<4&~(Y)/3.(v) which follows now from Lemma 10.1 is 

stronger than Proposition 6.2 and Theorem 7.2 It also implies Theorem 5.1. 
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