ALGEBRAS SATISFYING
A CAPELLI IDENTITY

BY
AMITAIREGEV

ABSTRACT

The sequence of cocharacters (c.c.s.) of a P.I. algebra is studied. We prove that
an algebra satisfies a Capelli identity if, and only if, all the Young diagrams
associated with its cocharacters are of a bounded height. This result is then
applied to study the identities of certain P.1. algebras, including F,.

Introduction

Call the non-commutative polynomial

A [%,y]= dn[X1, 1 X3 Y10 5 Y] = ; (= 1%y 1Xe@y2" * * Ym-1Xo(m)

the Capelli polynomial of height m. Its degree is 2m — 1, and 2™~ polynomials
can be derived from it by replacing some of the y’s by 1. Denote them by
{d.[x,y]}. For example, if m =3 then

ds[xl, X2, X35 Y1, )’2] = 2 (— l)axa(l)ylxa(Z)y2x0(3))

oES;

ds[x1, X2, X33 Y1, 1] = Z (= D%y 1Xo@Xow),

oES;

ds[ x4, X2, X351, y2) = z; (= DXepXo@Y2Xo ),

d3[x1, X2, X35 1, 1] = Sg[xl, X2, X3]
and
{dalx, y It = {da[x, y], ds[x1, X2, X35 y1, 1], da[x1, X2, %33 1, Y2, 83 x4, %2, X3]}
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For technical reasons we say that an algebra A satisfies the Capelli identity
d.[x,y] if it satisfies all elements of {d.[x,y]}. Note that if 1€ A and
d.[x, y] = 0 is an identity for A, then so are all elements in {d.[x, y]}. However,
if 1 £ A, this may not be true. A major example of such an algebra is F;, the
k X k matrices, which satisfies di2.1[x,y].

Capelli identities were used by Razmyslov [2], to construct central polyno-
mials for matrix algebras. They were later used by Amitsur, [1], to deduce —
among other results—the M. Artin-Procesi theorem on Azumaya algebras
from central and Capelli identities.

Assume throughout that F is a field of characteristic zero. In this note we
characterize F-algebras satisfying a Capelli identity in terms of their cocharac-
ter’s sequence (c.c.s.). The definition of the c.c.s. appears for example in [3]. This
result is then applied to study the identities of some specific algebras, including
F.. We wish to thank S. Amitsur for completing this characterization.

§1. A c.c.s. characterization of Capelli identity

DerFiniTION 1. Let A =(ay,--+,a,)€Par(n), a,= ---=Za20. Then h(A) =
r is called the height of A. h(A) is actually the height of the Young diagram
associated with A.

Recall that each A € Par(n) defines an irreducible character [A] of S., and
every character y, of S. can be written as

= 2 alAl

A€&Par(n)

We say that the sequence of S, characters {x.}.-: is of height bounded by [ if for
all n,

X»= 2 alAl
AE€Par(n)
hA)=

We thus have the notion of a P.I. algebra whose c.c.s. is of height bounded by L

THEOREM 2. An algebra satisfies {d..[x, y|} if and only if the height of its c.c.s.
is bounded by m — 1.

Proor. Let Q C F(x) be the T-ideal of identities of the algebra.
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(a) Assume {d..[x,y]} C Q. It is trivial then that {d.[x, y]} C O for h = m. We
want to show that the c.c.s. of Q is of bounded height m — 1, i.e., for A € Par(n)
with h(A)Z m, I, C Q, where I, is the two sided ideal in FS, associated with A.
First let us quote from [4, §2] the following results: Let A € Par(n), T, a table
based on the corresponding Young diagram, and e;, the corresponding semi-
idempotent. Then there exists 7 € S, such that er, = 7 'er, 7, and

eTO.A(x) = ZP ps‘H[xl’ Tt xh.] ©tt Shy [xnfh,-H, R xn]-
pE

Here h; = h(A). Recall that of (x,," - -, X.) = f(Xo), * * *s Xormy) @and f(xy,**, x,)0
is obtained from f(x,, - - -, x.) by permuting the places in each monomial of f(x)
according to o. Since the er,’s generate I, as a left ideal over FS,, it is enough to
show that

shl[xh Y xh,] o sh, [xn—h,+11 Y xn]n € Q
1f k()\) = h] =Zm. Write (xhl+1, T, xn) = (yh,+], Y yn),
Sh,[xx, T xhl] e Sh [ Xm0 Xn ] = Sw[ X0, 0, xhx]g()’)’

g(y) = ZmanM(y), M(y) monomials, then it is enough to show that for each
such monomial M,

Sh [xh o 'ixhllM(y)T’ € Q
Write

shl[xl’ t ',xh]M()’)"l

=< > (—1)“0)(x,---xh‘M(y)n)

a€S,,

= (2 (- 1)00') ao(y)xiai(y)x, - an-i(y)x i @ (Y ),

(i1, * -+, in) a permutation of (1,---, h,). It follows that

S;,,[X;, Y xh]M(y )7]

I

* 02 (= 1)%ao(y )%eai(y) - - n-1(y )Xompan(y)

€5,
"y

x aU(Y)d"x[xl’ Cry Xngs al(Y)’ ) a“l“(y )]ahl(Y) € O»

since {d,[x,y]} C Q.
(b) This part is due to Amitsur.



152 A. REGEV Israel J. Math.

Assume I, CQ, for any n and A €Par(n), h(A)=m. We show that
d.[x,¥] € Qun-i. Let A = (1) € Par(m), then

er, = en = 2 (- 1)c.

cES,,

Write J = e,,(FSa.-1). By the Branching Theorem,

JC D @I hencel C Oyt

AEPar(2m—1)
h(A)zm

In particular, €., € Qun-, for any n € Sz..—i. In Vo, = FSsny,

€m (xl, Tt x2m—1) = Z sgn (U)xa(l) ct Xom)Xm+1* "t Xom-1-

oES,,

Denote

(me, Tty x2m—1) = (yla T ym—l)

and choose 1 € S;..-: such that

X1 XmY1' " Ym—1M = XaY1X2Y2 " " Yi-1Xm,s

then clearly e.n =d.[x,y] and d.[x,y]€ Q. A similar proof shows that
{da[x,y]}C Q.

§2. Applications

The k x k matrices F, satisfy di2.,[x, y] (see [1] for the minimality of k*+ 1),
thus

TueorReM 3. Let {x.(F)}n-1 be the c.c.s. of Fi, then

(F)= 3 alAl.
AEPar(n)
h(A)sk

Only limited information regarding the multiplicities a, is known at the
moment.

Theorem 2 has already been applied in [3]. To help find the c.c.s. of To(S3[x]),
we showed that {d[x, y]} C To(Ss[x]). Intrigued by that, we then found that for
1 =i =7 there exists some m = m (i) such that {d..[x, y]} C To(Si[x]). The proof
for i =7 isin particular long, and it is not clear if it can be generalized to all i.
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As an example we now show that

{ds[x, Y]} C To(ss[x}).

NoraTion.  First, write s,[x, "+, x.] =[%,* - -, X»]. Now, for fixed y, - -

write
i Ys
[xl, Xk V Xk XV X,y xn]
= Es (_ l)axou) o Xo)Y 1 Xek+1y " Xo()YsXa+1) " " " Xo(n)
oES,
REMARK 4.
y

Su(xi, X2, X3, y] = = y[%1, X2, X3} + [x1 V X2, X3

(a) y
= [x1, x2 v x3] + [x4, X2, X3]y 5
x,y

(b) Sa[x1, X2, (x3+ )] = X3y [%1, %2] = [x1 V %] + [x1, X2]%5Y.

Proor. A direct computation.

y
COROLLARY S. [x1 v X2, x3] = [x3, X2 \,/ x3) € To(Ss).
COROLLARY 6. In 4(b), alternate x,, x,, xs and sum, to get
y y
2([x1 v X2, X3)+ [x1, X2 v Xa] + [x1, X2, X3]y ) € To(s5),

hence

[xl \y/ X2, x:;] + [xl, X2 \; X3] [S To(s;;)
y y
LEMMA 7. [X;V X3, X3], [%1, X2 vV X3] € To(s).
Proor. Follows from Corollaries 5 and 6.

y y y
NOTE. [x1V X2, X3, Xa} = [X1 V X2, X3]Xat -+ +[x2 v X3, Xo]x), hence
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¥y
[xl V X2, X3, )’z] € To(Sg).
¥y ¥,
LEMMA 8. [x:1V X2V x3] € To(ss)

141
PROOF. =[x,V X2, X3, y2] € To(s3)

¥y Y1 Y2 Yi¥z2
=[xV X2, X3]y2 = [x1 vV X2 v X3] + [x1 VX2, X3) = yaya[ x4, X2, X3)

which clearly implies that ds[x, y] € To(s;).
The proof that {di[x, y ]} C Tu(ss) is now completed. Theorem 2 has an obvious
application for the c.c.s. of Ty(ss).
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