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CODIMENSIONS AND TRACE CODIMENSIONS 
OF MATRICES ARE ASYMPTOTICALLY EQUAL 

BY 

A M I T A I  R E G E V  

ABSTRACT 

The codimensions c. and the trace codimensions t. of the k x k matrices are 
asymptotically equal: l im.~=(t./c.)= 1. Since t. ~ q ( n ) .  k 2" where q(x) is a 
known rational function, this asymptotically gives c.. This has applications to 
the codimensions of Capelli identities. 

Let F be a field of characteristic zero, 0 <  k an integer, and consider 

Mk (F) = Fk, the k • k matrices. One of the basic questions one can ask about 

the polynomial identities of a given P.I. algebra, and in particular of Fk, is: How 

many identities does it have? This question is answered, in a sense, by 

(calculating) the codimensions c, = c~ (F~). Here Q = I(Fk) are the identities of 

Fk, V, = spanF{x,~o)'' �9 x,,~,)[ o- E S,} (S, the symmetric group) and c, (Fk) = 

d i m ( V , / V ,  ~ Q)  [3], [4], [7], [9]. 
Here we give a partial answer to that question by giving the asymptotic value 

of c, (Fk) as n--.oo. This has already been done for c, (F2) [5], [9]. These 

computations implied that c, (F2) - t. (Fz) (i.e. lim,~= (t, (F2)/c, (F2) = 1), where 

t, (F2) are the trace codimensions [5, w [9, th. 2.2], and we conjectured that for 

all k, c, (Fk) = t, (Fk) [9, conj. 2.4]. By proving this conjecture here (Theorem 1 

below), we capture c, (Fk) asymptotically since the asymptotic value of t, (F~) is 

known [7, 5.2, 5.4] (correction to [7, 5.4]: t , (Fk)~-as(k ,n  + 1)). 

A complete description of the various Poincar6 series associated with F2 was 

recently given [2], [4], [5]. The asymptotic evaluation of c, (Fk) may be thought 

of as a first step towards evaluating these Poincar6 - -  as well as cocharacter - -  

series for the higher matrices. 

Our main result is 

THEOREM 1. Let c. (Fk ) be the codimensions of Fk, the k x k matrices, and 

t. (Fk) the trace codimensions, then, as n--~ 0% 
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( 1 ,k ,(l~k2 ,t2 
cn(Fk)=tn(Fk)~--\~-7--~] \2] . l ! . . . (k_l ) ! .k ,k2+4, /2(1) ,k~ o/2 k2L / - -  - -  \ ~ /  " 

The main tool for proving Theorem 1 is [4, th. 16] which indicates that the 

Poincar6 series of the identities and trace identities of Fk are very close. The next 
few results are also needed for proving Theorem 1. 

To save introducing many notations and definitions we assume familiarity with 

[4]. 

THEOREM 2 [4, th. 7]. Let A be any P.I. algebra, x , ( A  )=E~,pa,n)r(A )Xa its 

cocharacters. Then P ( A  ) = ~ r(A)& is the Poincard series of A. 

THEOREM 3 [1, th. 16]. Let A, {r(A)} be as in Theorem 2. There exists a 

polynomial g(x)  such that for all n and partitions A E Par(n), r(A)=< g(n).  

We now extend that last theorem to the multiplicities F(A) of P(/~). Here R is 

the ring of k x k generic matrices and /~ the trace ring of R. 

THEOREM 4. Let P(/~) = Xa f(A)& be the Poincard series of R [4, w Then 

there exists a polynomial f ( x )  such that for all n and A E Par(n), r(A)=< f (n) .  

PROOF. Let P ( R ) =  EA r(A)s~ [4, w and let g(x)  be a polynomial such that 

r(A) < g(n)  for all n and A E Par(n). Let A ~ E D [4, 15(d)] (l instead of k there) 
and let ~z = (lk~)E Par(k2). By [4, lemma 13(a)] and [4, th. 16], 

?(X)= f(I/z + X ) =  r(ltz +A)-< g(n + l k 2 ) = f ( n )  

where g(x + lk :) = f (x  ). Q.E.D. 

Note that the polynomial bound f ( x )  for the F(A)'s has the same leading term 
as g(x)  for the r(A)'s. 

Let d~ = degx~ denote the degree of the S. character )t'a, A ~Pa r (n ) ;  d~ is 
given, for example, by the hook formula. 

LEMMA 5. Let A = ( M , . - . , A , ) E P a r ( n ) ,  v = ( l " ) ~ P a r ( u ) ,  0 = < a E Z ,  then 

for large n, 
d.~+~ <= 2" n "~-~ &. 

PROOF. Let h~ s denote the hook numbers in the diagram of av + A ; note that 

the numbers in the A part are the hook numbers for A. Thus 

d,,.A = (n + au)! = n'. . (n + l ) ' " ( n  + au)  < dA . (n + l ) . . . ( n  + au) . 

a v + A  A 
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Since A~ + - . .  + A. = n, II~=~(L + 1 ) =  > n (induction on u)  so 

d . ~ + ~ = < & . ( n + l ) ' " ( n + a u ) < = d  ".2.no,. ~) a 
n 

(n large). Q .E .D.  

Deno t e  A , ( n )  = {(A,, A2,. �9 �9 ) E Par (n) ]  A, = 0 if i - u + 1} and recall 

THEOREM 6 [8, 4.5]. 

S~'(n)= ~'~ d,~-q,(n).u" 
A~Au(n) 

where q . ( x )  is a ( k n o w n )  rational function. 

We are now ready to give the 

PROOF OF THEOREM 1. By [7, 5.2, 5.3, 5.4], 

t , (Fk)  ~ s ( n ) . k  2" 

where  s (x)  is a (known) rational function, and c, (Fk)_--< t, (F~). Thus  the theorem 

will be proved once we show that for large n, 

t. (Fk) - c.(Fk)<= v ( n ) "  (k  2 -  1)" 

for some rational funct ion v(x ) .  

Note  that 

t. (Fk) = ~'~ ?()t). d~ 
AEAk2(n) 

[4, w while 

r(;t)d  
A ~Ak2(ra) 

[7, w hence,  by [4, th. 16] (with l replacing k there),  

t . ( F k ) - c . ( F k )  = 
A EA'k2!ri ) 

Ak2~l 

Let /x = (lk2), A E Ak2(n), 

A'(~Ak2_l(n - j "  k2), so (n large) 

I - I  

( f ( A ) -  r(Z))d~ ~ ~'~ ~" ~(A)d~. 
1=0 A EAIt 25n ) 

Xk2# j 

Ak2 = j, then A = j �9 + A' where  

d. <- 2" (n - j k  2) j(k~-') " ds,. 

Also, let ~(A)-<_f(n) as in T h e o r e m  4. We have: 
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l -I  
< ik2Xi(k2 1) W'~ t . ( F k ) - c . ( F k ) = f ( n ) .  ~'~2.(n - j  ) 2,, dA, 

j=O A'~AI~ 2 j(n--jk ) 

~- v ( n ) . ( k  2 -  1)" 

where v(x)  is the rational function 

I-I q~(x ) . ~, 2" (x - jk 2) ''k~ 1) 
tg(X ) f(x).  ,~ ( k 2 - 1)i ~2 , 

qk~(x) being given in Theorem 6. Q.E.D. 

REMARK 7 [5, w For F2, t. (F2) -  c, (F2) = 2" + (3)-  1. 

As an application we now show that Theorem 1 captures the exponential 

behaviour of the codimensions associated with the Capelli polynomials dr, [x ; y ] 
for m = k  2+1 [6]. 

Let T ( d , . ) C F ( x )  be the T ideal generated in F(x)  by d,., U(dm)= 

F(x ) /T (d , . )  and c. (d,.) = c. (U(d.~)) the codimensions. 

PROPOSITION 8. Le t  

(see Theorem 1). There exists a second rational function p'k(x ) such that for large 

n~ 

pk(n)" k 2" ~c,(dk:+~)~p'k(n)" k 2". 

PROOF. The first inequality follows directly from Theorem 1 since Fk satisfies 

dk2+l. 

Apply "degree" to [6, th. 2] (with a~ = r(A)) to get: 

Cn (dk2+l) = Z r(A )d,. 
AEAk2(n) 

By Theorem 3, r (A)=  < g(n)  for some polynomial g(x), so 

c . (d~2~O<= g ( n ) "  
A~Ak2(n) 

and the proof follows from Theorem 6. 

dA 

Q.E.D. 

It would be interesting to prove an analogue of Proposition 8 for c. (d,.) with 

any m => 5. 
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