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ON COMBINATORIAL A N D  AFFINE 
AUTOMORPHISMS OF POLYTOPES 

BY 

J O R G E N  BOKOWSK1,  G O N T E R  E W A L D  AND P E T E R  K L E I N S C H M I D T  

ABSTRACT 
We disprove the longstanding conjecture that every combinatorial automor-  
phism of the boundary complex of a convex polytope in euclidean space E ~ can 
be realised by an affane transformation of E L  

I. Introduction 

Let P be a (convex) d-dimensional polytope in the euclidean space E d and 

B (P) its boundary complex. A combinatorial automorphism of P is a bijective, 

inclusion-preserving mapping 4, of the (abstract) complex B(P)  onto itself. In 
[4], p. 289, the following problem is discussed: Given any d-polytope P and a 
combinatorial automorphism ~b of P, does there always exist an orthogonal 

transformation t~ of E d and a polytope P' combinatorially equivalent to P such 

that t~(P')= P' and such that tO induces the combinatorial automorphism d' in 

B(P'). In other words, is every combinatorial automorphism of a polytope 

"affinely realisable"? Mani [7] has given a positive answer to this question for 
the case d = 3. Perles positively decides the problem for d-polytopes having at 

most d + 3 vertices (compare [3], p. 120). So far, these seem to be the only results 
in this direction. Our following theorem shows that the question generally has to 
be answered in the negative. 

THEOREM. There is a 4-polytope P with 10 vertices and a combinatorial 
automorphism qb of P, which cannot be realised by an affine trans[ormation t~ o re  4 

and its effect on the boundary complex of a polytope P' combinatorially equivalent to 
P, where to(P') = P'. 

The combinatorial scheme ~ of the boundary of P and the automorphism 4~ 

have been found by the third author who also proved that th cannot be realised 
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affinely in case qr is isomorphic to the boundary complex of a convex polytope 

(first part of the proof). 

Whether the latter is true remained an open question, being part of the 

unsolved "Steinitz-problem" of characterising the boundary complexes of 
convex polytopes intrinsically. Meanwhile the first two authors have indepen- 
dently developed methods of solving special cases of the Steinitz-problem, both 

suitable to be applied to the example under consideration. The first method 

proceeds by the calculation of coordinates for the vertices of P after having 

simplified the problem by means of Plficker-Gral3mann-relations. The second 

method generalizes the concept of stellar subdivisions and presents an existence 

proof for P which visualizes the Schlegel-diagram of the polytope. We outline 

both methods. 

2. A non-realizable symmetry 

We describe B (P) in Table 1 by listing the vertices of its facets, which are all 

tetrahedra. We describe the automorphism ~b of B (P) by the images of the 

vertices under 4}. The vertices 2, 3, 5 and 6 are left invariant under 4}. On the set 

of the remaining vertices 4) is involutoric, where 4}(1)= 9, 4}(7)= 8 and 

4}(4) = 10. 

Table 1 

1 2 3 7  1 2 4 8  9 2 3 8  9 2 1 0 7  
1 3 4 7  2 3 4 8  9 3 1 0 8  2 3 1 0 7  
1 4 6 7  1 5 6 8  9 1 0 6 8  9 5 6 7  
4 5 6 7  1 4 5 8  1 0 5 6 8  9 1 0 5 7  
1 2 6 7  1 2 6 8  9 2 6 8  9 2 6 7  
3 4 5 7  3 4 5 8  3 1 0 5 8  3 1 0 5 7  
1 4 5 6  1 2 3 4  9 1 0 5 6  9 2 3 1 0  

We assume that there is a polytope P'  combinatorially equivalent to P and an 

afline transformation ~b of E d with ~b(P')= P' such that ~b induces the 

combinatorial automorphism 4) on B(P').  We use the same symbols for 

corresponding vertices of P and P'. The only faces of P' which are fiked under 

are the edges 23, 35, 56, 26 and their vertices. This can easily be read off from the 

effect of 4} on B(P'). These faces, which form a circuit in B(P'), are even 
point-wise invariant because their vertices are fixed. Hence, the affine fiat 

A = aff (2, 3, 5, 6) is point-wise fixed under ~b. Furthermore, A has to be 

2-dimensional, for otherwise ~b would leave a 3-dimensional subspace of E '  
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invariant, whose intersection with the boundary of P '  would be 2-dimensional. 

Consequently, there would exist an invariant 2-face of P' .  

The affine transformation ~b maps the line determined by the vertices 7 and 8 

on itself and the line therefore contains a fixed point p E A. 

From this and from the planarity of aft (2, 3, 5, 6) = A we may conclude that 

the affine hull of the vertices 2, 3, 5, 6, 7 and 8 is 3-dimensional and that their 

convex hull is an octahedron O, the latter following from the fact that the faces 

formed by these vertices form a complex isomorphic to the boundary-complex of 

an octahedron. 

Let  H denote the affine hull of O and H -  and H § the open halfspaces of E 4 

determined by H. Without loss of generality we may assume that the edge 14 of 

P' lies in H § and 9 10 in H - ,  for H cannot separate the vertices 1 and 4 or 9 and 

10, as otherwise the edge 14 (or 9 10) would have inner points in common with a 

face of O. 

From our construction it follows that H is a supporting hyperplane of the 

polytope P * : =  conv (1, 2, . . ., 8) and 0 is the face of P* which is the intersec- 

tion of H and P*. Except for O the facets of P* are exactly those facets of P '  

which contain neither 9 nor 10. From Table 1 we deduce that P* is combinatori- 

ally isomorphic to a polytope O constructed in [6] (in [6] the same numbering is 

used for the description of the facets). In [6] it is shown that there does not exist a 

polytope O '  combinatorially equivalent to O such that the vertices 2, 3, 5 and 6 

lie in a plane. In P*,  however, we have seen that dimaff(2,  3, 5, 6 ) = 2 .  

Consequently, we have a contradiction to our assumption of the existence of P '  

and ~b, which completes the proof of the theorem. 

We remark that there is even a "central symmetry" of our complex which 

cannot be realized by an affine mapping. It is involutoric and it can be described 

by the image of five vertices: 

~o(1)=10, ~o(2)-5,  ~0(3)=6, ~o(4)=9, ~0(7)=8. 

3. Finding the coordinates by using Pliicker-GraBmann-relations 

The existence of a convex polytope combinatorially equivalent to P can be 

checked by the coordinates of its vertices presented in Table 2, where e is a 

sufficiently small positive number which, e.g., may be chosen to be 10 -8 . 

We briefly describe how we found these coordinates. Identify each vertex 

v ~ {1 ,2 , . . . ,  10} with a vector (1, x~, x~, x~, x~). Let i, j, k, l E {1, 2,. �9 10} be the 

vertices of an arbitrary facet and v another vertex of P. 

For this fixed facet and for all choices of v the determinants 
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i i 1 xa, �9 . . ,  x4 

1 - . . ,  

1 x~, . . . ,  x~ 

must  have equal  signs. On  the o ther  hand  these condit ions for the de terminants  

imply the convexi ty  of P. 

We  first listed all inequalities of this type. Then  we used the Pl i icker-  

Gral3mann-relat ions satisfied by our  determinants  (compare  e.g. [5]) to obtain a 

reduc t ion  of the original number  of inequalities. 

The  reduced system finally was clear enough  to enable us to find the above  

solution. 

In conclusion,  we remark  that the contradict ion obta ined  in section 2 f rom the 

planari ty of aft (2, 3, 5, 6) can also be obta ined  by use of Pl i icker-GrafSmann- 

relations. 

4. Geometrical  construct ion of P 

Let  cs be a simplicial complex  of d imension d which is realized by a d-  

d iagram (see [2], p. 44) and let T1, . .  ., T ~ 1 _-<] =< d, be d-cells of cr each 

having a ( d - 1 ) - c e l l  in c o m m o n  with a d-cell  T. It can be shown that  

K : = T U T x - �9 �9 U T ~ is s tar-shaped and that the center  C of K has points in 

int T (see [1]). Let  p E C, and let ~ be the complex  such that K = set Y{. 

Table 2 

Coordinates 

Vertex v x~ x~ x~ x~ 

1 0 1 1 e 
2 -2/3 + 1/3 ellO00 1/3 
3 0 -7/18 1/18 4/3 
4 1/3 1/3 1 7/18 
5 1 0 0 0 
6 0 1 0 0 
7 0 0 0 1 
8 0 0 1 0 
9 0 0 0 0 

10 5e/3 - ~ e l l O 0  - e / l O 0  
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o.(p; K)C~ : =  (cg \~)U ({p}. &~) 

({p}. &St[ the join of the complexes {p} and &~'/') is called a hyperstellar 

subdivision of cg, its inverse an inverse hyperstellar subdivision. It can be shown 

(see [2]) that: If cg is a Schlegel-diagram, then o-(P; K)Cg is isomorphic to a 
Schlegel-diagram. 

Let a 3-simplex Do be the outer facet of a 3-diagram, and let its vertices be 

denoted by a, b, c, d. Consider aft Do to be extended to real 4-space R 4. We shall 

construct a 4-polytope whose boundary complex contains Do and is projected 

onto a Schlegel-diagram by vertical projection onto affDo. We use the same 

letters for vertices in R 4 and their projections into atI Do. There are 6 steps to be 
achieved. 

Step I. Consider a 4-simplex conv(DoU{e}) such that e is projected into 

int Do, and stack a simplex abdef  onto abde obtaining a double simplex P1. 

Step 2. Let, in the Schlegel-diagram c~l of PI, T :  = abe[, T ' : =  adef, 

T" : abce, K : = T U T'  U T". By a hyperstellar subdivision o-(g, K)cgl we obtain 

a Schlegel-diagram of a polytope P2 (Fig. 1). Here g must be chosen close 

enough to ae. In P2 the vertex g is found by choosing e,, /z appropriately in 

g = e,[�89 + f ) - � 8 9  + e)] +�89 + e )+/z(0 ,0 ,  0, 1). 

C 

8 
Fig. 1. 
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Step 3. We choose a point h '  close to eg such that 

(1) F :  = bcegh' is a convex double-simplex where ceg is the inner triangle of 
F. 

(2) The simplices fdeh', fdgh', daeh', dagh', aceh', acgh' are new faces 

replacing fdeg, daeg, and aceg. 
(3) a, b, c, d, e, f, g, h '  are vertices of a polytope P3. h '  can be found by 

choosing e2, E3 appropriately in 

h ' :  = �89 + g) + e~[�89 + g) - b] + e3[(0, 0, 0, 1) - �89 + g)]. 

Step 4. Now we move h'  slightly towards affDo and leave all other vertices 

unchanged: h : =  h ' - e4 (0 ,0 ,0 ,  1). The double simplex F breaks down into 2 

simplices. We obtain a simplicial polytope P4 (Fig. 2). 

C 

e 

b 

t 

g 
Fig. 2. 

Step 5. We choose a new vertex i close to eg such that 

(1) P : = gdebi is a convex double simplex where bci is the inner triangle of F. 

(2) The simplices fghi, efhi, cehi, cghi, bfgi, befi are new faces, replacing fheg, 
hceg, bfeg (see Fig. 2 where a, d and the 1-cells emanating from a, d are left 

out). 

The vertex i can be found by choosing e5 sufficiently small > 0 in 

i : = �89 + g) + e~[�89 + g) - �89 + c)]. 

We obtain a polytope Ps (Fig, 3). 
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Fig. 3. 
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S t e p  6. In the diagram of P5 consider P = bcegi  dissected at the triangle bci, 

obtaining a complex cr Let 

T : = cghi ,  T '  : = bcgi,  T "  : = fgh i ,  K : = T U T '  U T".  

We apply a hyperstellar subdivision o-(j, K)  to cr where j is chosen in T such 

that the line segment [j, e] intersects the triangle bci  in its interior. Now "lift" j 

sufficiently high so that a polytope P is obtained whose boundary complex is 

isomorphic to ~r We can find j by choosing e6, e7 appropriately in 

j = �89 + i) + E6[(�89 71- i) - -  �89 + / ) ]  + eT(O, O, O, 1). 

J. Bokowski and B. Neidt have carried out the search for appropriate 

e l , "  ", es,/z; they obtained a polytope with coordinate vectors: 

a=(1,O,O,O), b=(O,l,O,O), c=(0,0,1,0), d = ( - 1 , - 1 , - 2 , 0 ) ,  

e = (0, O, O, 0.5), f = (0, O, - 0.5, 3.25), g = (0.45, 0.05, - 0.025, 0.3), 

h = (0.227025, 0.015225, - 0.023225, 0.4), 

i = (0.225225, 0.024525, - 0.0130125, 0.4004), 

j = (0.33795011, 0.36799763, - 0.018775256, 0.35175). 
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We obtain an isomorphism of this polytope and that presented in Table 2 if we 
map the vertices as follows: 

a---~l, b---~7, c---~6, d ~ 4 ,  e ~ 5 ,  

f---~3, g---~2, h---~8, i---~10, j---~9. 

Note added in proof. In the meantime, A. Altshuler has found yet another 

proof for the polytopality of our complex ~g (oral communication). 

REFERENCES 

1. J. Bokowski, Polytopale and nichtpolytopale Sphiiren (zum Problem eines einfachen Algorith- 
mus'), in preparation. 

2. G. Ewald, A class of polytopal spheres, in preparation. 
3. B. Griinbaum, Convex Polytopes, Academic Press, New York, 1967. 
4. B. Griinbaum and G. C. Shephard, Convex polytopes, Bull. London Math. Soc. 1 (1969), 

257-300. 

5. W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Cambridge, 1968. 
6. P. Kleinschmidt, On [acets with non-arbitrary shapes, Pac. J. Math. 65 (1976), 97-101. 
7. P. Mani, Automorphismen yon polyedrischen Graphen, Math. Ann. 192 (1971), 279-303. 

Address o[ first author 
FACHBEREICH MATHEMATIK 

TECHNISCHE HOCHSCHULE DARMSTADT 
6100 DARMSTADT, FRG 

Address o[ second and third authors 
ABTEILUNG MATHEMATIK 

RUHR-UNIvERSlT.~T BOCHUM 
4630 BOCHUM I, FRG 


