I-ADIC COMPLETIONS OF NON-COMMUTATIVE RINGS

BY

J. C. McCONNELL'

ABSTRACT

Some sufficient conditions are given for the I-adic completion of a noncommutative ring R to be Noetherian. The case considered is when I is polycentral or has a normalising set of generators. In the polycentral case we use an associated graded ring argument.

I. Introduction

Let R be a ring with 1, I an ideal of R and \hat{R} the I-adic completion of R. If R is a commutative noetherian ring then \hat{R} is also a noetherian ring. However it is possible for \hat{R} to be noetherian even if R itself is not. (For example if I is the augmentation ideal of the group algebra kG , where k is a field of characteristic zero and G is a torsionfree abelian group of finite torsionfree rank. See [2].) If R is commutative then a necessary and sufficient condition for \hat{R} to be noetherian is that R/I be noetherian and I be finitely generated modulo $I²$. If R is a non-commutative ring, then the condition that R be (left) noetherian need not imply that \hat{R} is (left) noetherian. (See [7].)

In this paper some sufficient conditions for \hat{R} to be noetherian are given. We show that if R/I is left noetherian and I is polycentral modulo I^2 then \hat{R} is left noetherian. Particular cases of this result are known, [5], [9], [11].

In the example ([7]) of a left and right noetherian ring R for which \hat{R} was not left or right noetherian, I had a normalizing set of generators, $I = (u, v)$, where $uR = Ru$ and R/Ru is a commutative ring. We show that if *either* R/I is left and right artinian and I has a normalizing set of generators modulo I^2 or R is left and

^{*} This paper was written while the author was a Fellow of the Institute for Advanced Studies, The Hebrew University, Mount Scopus, Jerusalem, Israel.

Received July 4, 1978

right noetherian and I has a normalizing set of generators x_1, \dots, x_n such that $x_iI = Ix_i$ and $x_iI = Ix_i$ modulo (x_1, \dots, x_{i-1}) for $i > 1$ then \hat{R} is left and right noetherian.

2. Notation and definitions

For the definition and basic properties of the I-adic topology and the corresponding completion of a ring R see [1] chapter 10. Let R be a ring and $\{W_n : n \geq 1\}$ a chain of ideals of R with $W_n \supset W_{n+1}$ for all n and $W_i W_i \subset W_{i+1}$ for all $i, j \ge 1$. Then we may form the graded ring

$$
R^* = R/W_1 \oplus W_1/W_2 \oplus \cdots
$$
 (compare [1], p. 111).

The following result is proved just as in the commutative case, [1], 10.23.

2.1. PROPOSITION. Let $\{W_n\}$ be as above. If $\{W_n : n \ge 1\}$ and $\{I^n : n \ge 1\}$ *define the same topology on R (i.e.* $\forall k$, $\exists m$, *n s.t.* $W_n \subset I^k$ *and* $I^m \subset W_k$) *and* R^* *is a left noetherian ring then the I-adic completion* \hat{R} *is left noetherian.* \Box

2.2. DEFINITION. An ideal K of a ring R is polycentral if there is a finite chain of ideals $K = K_0 \supset \cdots \supset K_{i+1} = 0$ such that, for $0 \leq j \leq t$, K_i/K_{i+1} is generated (as an ideal) by finitely many elements of the centre of R/K_{i+1} . A set of generators $\{x_1, \dots, x_n\}$ of an ideal K is a normalizing set of generators if $x_1R = Rx_1$ and $x_iR = Rx_i$ modulo (x_1, \dots, x_{i-1}) . ([6] and [10], p. 488.)

If K is a polycentral ideal of a ring R then, following Roseblade, $[12]$ or $[10]$, p. 488, we construct a certain graded ring \Re containing R as a subring. If the K_i's are as in 2.2, let \Re be the subring of $R[X]$ generated by $\{R, K, X^s : 0 \leq i \leq t\}$. $1 \leq s \leq 2^{i}$. Then

2.3. $\mathcal{R} = R + L_1 X + L_2 X^2 + \cdots$, where the L's are ideals of R which satisfy $L_1 = K$, $L_1 \supset L_2 \supset \cdots$, $L_n \supset K^n$ and $L_iL_j \subset L_{i+j}$.

2.4. For $m \in N$ and $n > 2^m$, we have that $L_n \subset L_1^m$, since \Re is generated by *R* and $L_1 + L_2X + \cdots + L_iX^{2^n}$.

2.5. Define $\mathcal{R}_{i+1} = R$ and for $t \geq i \geq 0$ define \mathcal{R}_i as the subring of \mathcal{R}_i generated by $\{\mathcal{R}_{i+1}, K_i X^* : 1 \leq s \leq 2^i\}$. Note that $\mathcal{R}_0 = \mathcal{R}$. Then \mathcal{R}_i is generated by \mathcal{R}_{i+1} and finitely many elements v_1, \dots, v_l such that for $1 \leq j, k \leq l$, $[\mathcal{R}_{i+1}, v_i] \subset \mathcal{R}_{i+1}$ and $[v_i, v_k] \in \mathcal{R}_{i+1}$. (See [10] chapter 11, proof of lemma 2.6.)

3. Polycentral ideals

Suppose that I is polycentral modulo I^2 , i.e. there is a polycentral ideal K of R with $K \subset I$ and $I = K + I^2$. Let K_i and L_i be as in 2.2 and 2.3. $\{L_n\}$ and $\{I^n\}$ need not define the same topology on R. Define $\{T_n\}$ by $T_n = L_n + I^n$ for $n \ge 1$.

3.1. PROPOSITION. $\{T_n\}$ and $\{I^n\}$ define the same topology on R.

PROOF. From 2.4 we have that for $n > 2^m$, $T_n \subset Iⁿ$.

The T's need not satisfy $T_i T_j \subset T_{i+j}$ so define $\{W_n\}$ inductively by $W_1 = T_1$ $(= I)$ and $W_n = T_n + \sum W_i W_i$, summed over $i, j \ge 1$ with $i + j = n$. By induction on n we have

3.2. PROPOSITION. $W_1 \supset W_2 \supset \cdots$, $W_i W_i \subset W_{i+h}$, $W_n \supset I^n$ and for $n > 2^{m}$, $W_n \subset I^m$.

Thus $\{W_n\}$ and $\{I^n\}$ determine the same topology on R.

3.3. LEMMA. $W_n = L_n$ modulo W_{n+1} .

PROOF. Since $L_1 = K$ and $K = I$ modulo I^2 , $L_1^* = I^*$ modulo I^{n+1} and hence $L_n = T_n$ modulo T_{n+1} . Hence $L_1 = W_1$ modulo W_2 . Suppose that $L_i = W_i$ modulo W_{i+1} for $1 \leq i \leq n$. Then $W_n = T_n + \sum W_i W_j = L_n + \sum L_i L_j$ modulo W_{n+1} since $W_i W_i \subset W_{i+i}$. So $W_n = L_n$ modulo W_{n+1} from 2.3.

Let R^* be the graded ring $R/W_1 \oplus W_1/W_2 \oplus \cdots$ (which is well defined by 3.2).

3.4. THEOREM. *Let R be a ring and I an ideal of R such that I is polyeentral* modulo I^2 . If R/I is left noetherian, then the I-adic completion \hat{R} is left noetherian.

PROOF. From 3.3, the natural R-module map: $L_n \to W_n/W_{n+1}$ is surjective. By combining these maps in each degree there is a surjective R -module homomorphism, which is in fact a ring homomorphism, from

$$
\mathcal{R}=R+L_1X+L_2X^2+\cdots
$$

onto

$$
R^* = R/W_1 \oplus W_1/W_2 \oplus W_2/W_3 \oplus \cdots
$$

Consider Im \mathcal{R}_i , the image of \mathcal{R}_i in R^* for $t + 1 \ge i \ge 0$. Im $\mathcal{R}_{t+1} = R/W_i = R/I$ is left noetherian. Hence, by 2.5 and [10] lemma 2.5, each of Im $\mathcal{R}_1, \dots, \text{Im}~\mathcal{R}_1$, Im $\mathcal{R}_0 = R^*$ is left noetherian. So \hat{R} is left noetherian by **Proposition 2.1.** \Box

4. Normalising sets of generators

4.1. Let $\bigcap_{n=1}^{\infty} I^n = 0$ so that R is a subring of \hat{R} . Let T be an ideal of R contained in I and consider the exact sequence of R -modules

$$
0 \to T \to R \to R/T \to 0.
$$

Since the topology on R/T induced from the I-topology on R coincides with the natural *I*-topology on the *R*-module R/T , on completing these modules we obtain the exact sequence of \hat{R} -modules, $\hat{R} \rightarrow (R/T)^\wedge \rightarrow 0$, by [1] corollary 10.3. (R/T) ^{\circ} may be regarded as a ring, viz. the completion of R/T in its I/T topology and the above homomorphism is a ring homomorphism which we denote by π . (For more details see [5], proposition 7.)

If K is the kernel of π then K is the closure in \hat{R} of T, i.e., $K =$ $\bigcap_{n=1}^{\infty} (T + (\hat{I})^n).$

4.2. THEOREM. *Let R be a ring and I an ideal of R such that R/I is left and right artinian and I has a normalising set of generators modulo* I^2 *. Then* \hat{R} *is left and right noetherian.*

PROOF. Let the normalising set of generators be $\{u, v, \dots, w\}$ and set $L = (u, v, \dots, w)$. Then $I = L + I^2$. We may assume that $\bigcap_{n=1}^{\infty} I^n = 0$. Consider the exact sequence of R-modules, $0 \rightarrow Ru \rightarrow R \rightarrow R/Ru \rightarrow 0$ and the corresponding exact sequence of 4.1,

(*)
$$
0 \to K \to \hat{R} \to (R/Ru)^{\hat{ }} \to 0.
$$

Since $\hat{I} = \hat{R}u + \cdots + \hat{R}w$ modulo \hat{I}^2 and $\hat{I} \subset J$, the Jacobson radical of \hat{R} , $\hat{I} = \hat{R}u + \cdots + \hat{R}w$, by Nakayama's Lemma, i.e., \hat{I} is finitely generated as a left ideal of \hat{R} . Since $\hat{R}/\hat{I} \cong R/I$ is left artinian and hence left noetherian (Hopkins), J is a finitely generated left ideal of \hat{R} . Now K is the closure in \hat{R} (in the \hat{I} -adic or J-adic topologies) of $\hat{R}u$. But by Hinohara's Theorem, [4] lemma 3, $\hat{R}u$ is closed in \hat{R} . Thus $K = \hat{R}u$. Similarly, using right modules instead of left modules throughout, we have $K = u\hat{R}$.

By using an inductive hypothesis on the number of elements in the normalising set of generators, we may assume that $S:=(R/Ru)^{2}$ is left and right noetherian. So we have an exact sequence

(*)
$$
0 \to K \to \hat{R} \to S \to 0
$$

where S is left and right noetherian and $K = \hat{R}u = u\hat{R}$. So the associated graded ring Gr \hat{R} : = $\hat{R}/K \bigoplus K/K^2 \bigoplus \cdots$ is generated by $S = \hat{R}/K$ and the element

 $Y: = u + K^2$ which is homogeneous of degree one. Since $u\hat{R} = \hat{R}u$, $YS = SY$ and so Gr \hat{R} is left and right noetherian by [6] theorem 9. Since \hat{R} is complete in its K-topology, \hat{R} is left and right noetherian by Proposition 2.1. \Box

4.3. THEOREM. *Let R be a ring which is left and right noetherian and I an ideal of R with a normalising set of generators* x_1, \dots, x_k such that $x_1I = Ix_1$ and *for i > 1,* $x_iI = Ix_i$ *modulo* (x_1, \dots, x_{i-1}) *. Then* \hat{R} *is left and right noetherian.*

PROOF. We may assume that $\bigcap_{n=1}^{\infty} I^n = 0$ so that R is a subring of \hat{R} . By [8], lemma B, I has the left topological Artin-Rees property, viz. that if M is a finitely generated left R-module and N is a submodule of M, then $\forall k$, $\exists n$ such that $I^*M \cap N \subset I^*N$. A similar statement holds for right modules. So, just as for commutative rings, completion is an exact functor on finitely generated left (or right) R-modules and if M is such a module then $\hat{M} \cong \hat{R} \otimes_R M$. (See e.g. [3] proposition 3 and [11] theorem 1.) Applying $\hat{R} \otimes_{R}$ - to the exact sequence $0 \rightarrow Ru \rightarrow R \rightarrow R/Ru \rightarrow 0$ where $u=x_1$ we obtain the exact sequence $0 \rightarrow \hat{R}u \rightarrow \hat{R} \rightarrow (R/Ru)^{2} \rightarrow 0$. Using right modules instead of left modules we have that $0 \rightarrow u\hat{R} \rightarrow \hat{R} \rightarrow (R/Ru)^{2} \rightarrow 0$ is exact. Thus $\hat{R}u = u\hat{R}$. The proof is completed as in Theorem 4.2. \Box

REMARK. We take this opportunity of pointing out that in the statement of lemma B of [8] the inequality signs are the wrong way round. The statement should read (a) $Ix_1 \subset x_1I$ and (b) $Ix_i \subset x_iI + x_1R + \cdots + x_{i-1}R$ for $i = 2, \dots, n$.

An example of an ideal I satisfying the conditions of Theorem 4.3 is the following. Let g be a completely solvable Lie algebra over a field of characteristic zero, $R = U(g)$ the universal enveloping algebra of g, n a nilpotent ideal of g and I the ideal of R generated by n. (See [8].)

REFERENCES

1. M. Atiyah and I. G. MacDonald, *Introduction to Commutative Algebra,* Addison-Wesley, Reading, Massachusetts, 1969.

2. J. W. Brewer, D. L. Costa and E. L. Lady, *Prime ideals and localization in commutative group rings,* J. Algebra 34 (1975), 300-308.

3. K. S. Brown and E. Dror, *The Artin-Rees property and homology,* Israel J. Math. 22 (1975), 93-109.

4. Y. Hinohara, *Note on non-commutative semi-local rings,* Nagoya Math. J. 17 (1960), 161-166.

5. T. Levasseur, *Cohomologie des algèbres de Lie nilpotentes et enveloppes injectives*, Bull. Sci. Math. 2^e séries, 100 (1976), 377-383.

6. J. C. McConnell, *Localisation in enveloping rings,* J. London Math. Soc. 43 (1968), 421-428.

7. J. C. McConnell, *The noetherian property in complete rings and modules,* J. Algebra 12 (1969), 143-153.

8. J. C. McConnell, *Localisation in enveloping rings -- erratum and addendum*, J. London Math. Soc. (2) 3 (1971), 409-410.

9. J. C. McConnell, *On completions of non-commutative noetherian rings*, Comm. Alg. 6(14) (1978), 1485-1488.

10. D. S. Passman, *The Algebraic Structure of Group Rings*, Wiley, New York, 1977.

11. P. F. Pickel, *Rational cohomology of nilpotent groups and Lie algebras*, Comm. Alg. 6 (1978), 409--419.

12. J. E. Roseblade, *Applications of the Artin-Rees lemma to group rings*, Symposia Mathematica Vol. XVII, Academic Press, New York, 1976.

SCHOOL OF MATHEMATICS

UNIVERSITY OF LEEDS

LEEDS LS2 9JT ENGLAND