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NONLINEAR PARABOLIC B O U N D A R Y  
V A L U E  PROBLEMS WITH UPPER 

A N D  LOWER SOLUTIONS 

BY 

JOHANNA DEUEL AND PETER HESS 

A B S T R A C T  

The existence of at least one periodic solution of a very general second order 
nonlinear parabolic boundary value problem is proved under the assumption 
that a lower solution q5 and an upper solution tO with & =< tO are known. 

1. Introduction and statement of the result 

In this paper we prove the existence of at least one periodic solution of the 

parabolic boundary value problem 

(1) t 
(-~)(x,t)+(Mu)(x,t)+(Pu)(x,t)=f(x,t) in O = f l x ( 0 ,  T) 

u(x,t)=O on 3~ = 0 ~ x  (0, T) 

u (x, 0) = u (x, T) in f~ 

provided we know the existence of a lower solution 4, and an upper solution ~b of 

(1) with 4) =< q' in O. Here fl is a bounded domain in R ~' (N _-> 1) with smooth 

boundary 01~, T > 0  is a given number, and sg: 

(2) (sgu)(x,t)= - ~  0-~, (x,t)~Q, 

is a quasilinear differential operator of second order in divergence form. Further 

P denotes the Nemitskii operator associated with the function p ' Q  x R •  

RN---> R, i.e. 

(Pu)(x, t) = p (x, t, u (x, t), (Vu)(x, t)) 

for any function u defined in O. Moreover, f is a given function defined in O. 
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The following standard conditions of Leray-Lions type are imposed on the 

coefficient functions A, (i = 1 , . . . ,  N) of M (e.g. Lions [6], p. 322): 

(A1) Each A, : O  x R x R N----~ R satisfies the Caratheodory conditions, i.e. 

A,(x, t, s, ~) is measurable in (x, t) E O for all fixed (s, ~r E R x R ~ and continu- 

ous in (s, ~j) for a.a. fixed (x, t). 

(A2) There exist constants q ( l < q < ~ )  and c0=>0 and a function 

koC Lq'(O) (q '=  q/(q - 1)) such that 

I A,(x,t,s,s <= ko(x,t)+ c,,(I s lq-' + l s lq-'), 

i = 1 , . . . , N ,  for a.a. (x , t )E  O, V ( s , ~ : ) ~ R x R  ~. 

(A3) EL. (A,(x,t,s,~)-A,(x,t,s,~'))(s - ~j;)>0, for a.a. (x,t)E O, Vs ER, 
V~r ~j'E R N with s  s 

(A4) EL.A,(x,t,s,s163 >=al~l q (a >O),fora.a.(x,t)E O, V(s ,~j)ERxR ~'. 

We set ~V = Lq(O, T; W"q(ll)) and 0//'0 = Lq(0, T; w~'q(fl)). Further let ~ 

Lq'(0, T; W-~'q'(fl)) denote the dual space of ~Vo. As a consequence of (A1)-(A2) 

the semilinear form a: 

(2') a(u' v)= ,=~ fo A,(x, t, u, ~TU )~x,, dxdt 

is defined on ~V • % 

We further assume that the function p satisfies the Caratheodory conditions, 

and that f E Lq'(O). In the following let ~1 denote a sufficiently small positive 

constant. 

DEFINITION 1. A function u is said to be a weak solution of problem (1) 

provided 

3u 
u E % , , - ~  oF,',+ L '+ ' (O) ,  u(0)= u(T) in f~, Pu E L~(O), 

and 

L L -~,v  +a(u,v)+ Puvdxdt= fvdxdt, VvE~174 

Note that the solution u :[0, T ] ~  W-~'q'(fl)+ L'(I~) is continuous. Thus the 

periodicity condition is meaningful. 

DEFINITION 2. A function ~ is said to be a weak upper solution of problem (1) 

provided 

O~ ~ E ~V~,+ L'+"(Q),O I,~ >--0 a.e., tk(0)-> 0(T)  a.e. in fI, PO E L t(Q), 
o l  
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and 

(-~t , v) + a(to, v)+ fo Ptovdxdt >= fo fvdxdt ,  

Vv E % , n  L=(O) with v => 0 a.e. in O. 

Similarity a weak lower solution ~b is defined by reversing the inequality signs 

above. 

Our main result is the following 

THEOREM. Suppose ~b and to are given weak lower and upper solutions of 
problem (1), respectively, with ok, to E L=(O) and ~b <= to a.e. in Q. Assume that, 
with constants c _->0, ~ > 0  and a suitable function k E L~+"(Q), 

(3) Ip(x,t,s,~)p<-<_ k ( x , t )+  c l ~ l q-~, 

]:or a.a. (x, t) E Q, V~ E R N, Vs E R with 4a(x, t) <= s <= to(x, t) in Q. Then there 

exists a weak solution u of problem (1) with c b <-u <tO a.e. in Q. 

REMARKS. 1) A theorem similar to the above - -  with almost identical proof 

- -  holds also for the initial boundary value problem. 

2) We can always assume 6 =< 1 and r/=< 6/(q - ~). Then in particular Lq'(Q) C 

LI+'(Q),  and the estimate (3) guarantees that Pv E LI+'(Q),  Vv E ~ with 

cb_-<v_-<tO a.e. in O. 

3) If sr is a linear, uniformly elliptic differential operator with sufficiently 

smooth coefficient functions (which may depend also on t), it follows from the 

results of Sobolevskii [9] that Ou/c~t E L '*~(Q) and egu E L ~§ 

For linear top order part ~r this Theorem was proved by Puel [7] (generalizing 

a result of Sattinger [8]). Our method of proof is however essentially different 

from Puel's, inasmuch as we operate entirely in the framework of weak solutions 

and can therefore dispense with any regularity results. It is modelled by the 

method developed in [4] and [5] for the corresponding stationary problem. Like 

Puel [7] we associate to problem (1) a parabolic variational inequality; but in 

contrast to [7] our convex set is stationary. The auxiliary variational inequality is 

solved by a systematic application of the penalty method. 

Also for linear sg, complete results concerning the existence of classical 
solutions have recently been obtained by Amann [1]. 

The present Theorem extends some results of the first author's Ph. D. thesis 

[3] where d5 = 1 is assumed. Its proof - -  though quite elementary - -  seems rather 

long. It is therefore split into several parts. The central existence result is stated 
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as a Proposition in Section 2. The proof of the Theorem then follows in Section 

3. Some auxiliary results are needed, which are stated as lemmas in the 

Appendix. 

2. Existence theory for a strongly nonlinear parabolic variational inequality 

Let al < 0 < a2 be two constants and let the convex set 9'( be given by 

Y(={u~T',la~<=u<-_c~2 a.e. in Q}. 

Our aim in this section is to prove the following 

PROeOSmOY. Let ~ be a quasilinear differential operator of the form (2), whose 
coefficient functions satisfy conditions (A1)-(A4), and let a denote the associated 
semilinear form. Further let ~ be a mapping having the properties: 

(i) ~ : ~,,--> L ' §  is bounded and continuous, 
(ii) [[~-u [[L*,o)_- < 7, + y2l[u I[r,,, Vu ~ ~o, with constants 7,, 72, 8 >0 .  

Then there exists 

t u ~ Y{ such that 
au 

(4) -~E ~%+L'+'(Q), u(0)=  u(T) in 1"1 and 

) fo - ~ , w - u  + a ( u , w - u ) +  ~u(w-u)dxdt>=O, Vw~9'{. 

REMARK. For linear sg with smooth coefficient functions, we have by the 

results of Sobolevskii [9] that Ou/Ot E LJ+'(Q) and ~qu G L ' §  

Proof. 
(i) We may assume 6 ~ 1 and ~ _-< g/(q - ~). For n E N  let S. denote  the 

mapping which truncates functions defined in O by the constants +_ n. We first 

claim that to each n there exists 

u, E 9'( such that - ~ E  ~ ,  u.(O)= u.(T) in ~ and 

Though this result is not new, we present here a complete proof employing the 

penalty method. For, many of the intermediate steps will be needed later on. 

Let /3  : L" (Q)---> L" ' (Q)  be a penalty operator  associated to the convex set 3(, 

defined as the Nemitskii operator  of the function /3 :R-->R: 
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/ 3 ( s )  = 

(S -- •2) q 1, S > O~2 4- 1 

(s - a 2 ) " ,  a2 < s ~ a2 + 1 

O, eel =< S ----- a2  

- ( - s 4 - a l )  1/', a , - l _ - < s < a ,  

- ( - s + a l )  q-l, s < a , - 1 .  

(Note  that this is not the simplest choice of /3 one  can find; in this form it is 

however  suitable also for our  fur ther  purpose since both the funct ion 

s ~ I/3(s)ll/~q-')-l/3(s) and the funct ion s ~ I/3(s)l~-l/3(s) are Lipschitz continu- 

ous on R as ( q -  1)r~ _-< 1.) 

By a well known result of Lions (e.g. [6], p. 328), to each n E N and e > 0 there  

exists 

(6) 

u,,, E 7/'0 such that 3u"~E Ot ~ ,  u.~(O)= u.~(T) in ~ and 

fo ,fo 9t ' v + a(u . , , v )+  (S, oo~u.~)vdxdt + e  /3u,~vdxdt = O, 

V v E ~o. 

(ii) We let n E N fixed and consider  the passage to the limit e --~ 0 +. Setting 

v = = / 3 u ~  

( ~  ~Vo) in (6) and observing that 

Ot ,v.~ >-0 

a(u.~,v,,)>-O 

and 

we obtain an est imate of the form 

(cf. L e m m a  1) 

(cf. L e m m a  3), 

q' l/(q-D q'/q 
1[  ~un~ Lq,(Q) ~ cl [ l [~une ] Lq(O) = cl l [~UnellLq,(O) " 

(REMARK. The  constants  ci, c 2 , " "  may depend  on n, but they are indepen-  

dent  of e > 0.) It follows that 

(7) 1/3u,~ L q~o) =< c2. 
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Hence ,  by the coercivi ty of the mapp ing  sr 

fr 

The  uni form boundedness  principle now guaran tees  that 

- d  ,--< c~. 

We may thus extract  a sequence,  still deno ted  by {u,~}, such that  

(8) u.~ ~ u. in ~ and Ou.~__~ Ou. in ~ (as e--~ 0+). 
Ot Ot 

whence  u . ( 0 ) =  u,(T) in 1). 

By Aub in ' s  l e m m a  (e.g. Lions  [6], p. 58) we get 

u,, ~ u, in Lq(O) (as e ~ 0 + ) .  

F rom (7) we conclude that  /3u,~---,0 in LO'(Q) (as e---,0+). Consequen t ly  

/3u. = 0 ;  i.e. u, EK.  
Setting v = u., - u. in (6) we see readily that  

lira a (u,,, u,~ - u , )  = 0. 

By L e m m a  4 of the Append ix  it follows that  

u,~ --~ u. in 7/o (as e --~ 0+). 

Setting now v = w - u,~ (w ~ 3/') in (6) and passing to the limit e ~ 0 + we 

infer immedia te ly  that  u, solves (5). 

(iii) In o rder  to pass to the limit n ~ o~ in (5) we need some  a priori  es t imates  

on the sequences  {u,} and {Ou~ 
Sett ing w = 0 in (5) we get 

a(u,, u,)+ fo (S, o~u,.)u,dxdt <- O. 

Since u. ~ 5r/', we obtain  the es t imate  

" 11 u~ TI~.,, =<dl ff S~ ~u~ []~',o,- 

(The constants  d,, d2,..." are now independen t  of both  e and n.) 
q 8 

By assumpt ion  [I S .o  .~u. ItL',o~ =< "1', + Y~ II u. ]l~',, ; hence  

(9) II u. r[v,, < d2. 
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Since ,~ : OF0---~ L1§ is bounded we have 

(10) [[ S o  .~u. [[L'*.(o, =< d3. 

The desired a priori estimates on {au./at} do not follow directly. We introduce 

the differential operator ,ft, : 

(M,v)(x, t)= - ~ ~ a,(x, t, u.(x, t), (Vv)(x, t)), 
i=1 

where u. is the just obtained solution of (5). To M, we associate the semilinear 

form a.. 

The solvability of the variational inequality 

ft. E Y{ such that off. E Ot OF~, a . (0)=  a.(T) in 12 and 

(11) [Off. fo \a t  , w - f i . ) + a , ( f i , , w - f i . ) +  ( S . o ~ u . ) ( w - f i . ) d x d t > O ,  V w E Y (  

is proved as above by passing to the limit e ~ 0 § in the penalized problem 

ft,, E ~ such that ~ E OF~, f . ,  (0)= f . ,  (T) in 12 and 

(12) [Off., v]+a.( f .E,v)+ ( (S,o~u.)vdxdt+ l (  /3f. ,vdxdt=O, V v E  OFo. 
\ a t  ' / Jo e jo 

By strict monotonicity, the variational inequalities (5) and (11) have exactly 

the same solutions. Thus 

and we have 

u .  = f t .  

(13) f i , ~ u ,  in OFo, Off,, au, .  , at ~ at m ~ as e ~ 0  +. 

From (12) we can however deduce some a priori estimates on {au./at}. Set 

v = ~ . ,  = l t3a.E 17-' ~a.~ 

in (12) (note that 15., E OFo by our choice of the function /3). We get 

--5-i-,v.,)+ a.(a.~,o.~)+ (S,o~u,)O.,dxdt + /3a., = 0 .  
L In(O) 
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Again (by Lemmas 1 ,and 3) 

Ot '#"" >-0 and a.(f i . . ,v .~)=O. 

Knowing that the sequence {S. o g*u.} is bounded in L~+~(Q), we infer that 

Thus 

I 1/3ti.~ I <-d,, V n ~ N ,  V e > 0 .  (14) 
~ L ~§ 

Let ~r = 'Vo A L~+')'(O) and thus ~r = ~'~+ L~+'(Q). Since 

{S. o ~u .  + (1/e)/3fi,,} is bounded in L~+'(Q) (by (10) and (14)) and thus in 'W', 

Vn E N, Ve > 0 ,  we conclude from (12)that 

ds. 
0t ~ ,=  

By (13) and the weak lower semicontinuity of the norm in ~r it follows that 

I ~  .u.ll  
Since the sequence {~.u.} is bounded in ~ - -  and thus in ~P' - -  we get 

(15) Ou, <= d6. 
Ot ~v, 

(iv) Because of (9) and (15) it is now easy to go to the limit n ~ ~ in (5). We 

know that (if necessary by passing to subsequences) u. ~ u in 'Vo, u E ~, and 

au . /a t~  au/Ot in ~r (as n ~ ) ,  whence u(0)= u(T) in l'l. 

By Aubin's lemma it follows again 

u. ~ u in L~(Q) 

Setting w = u in (5) we get 

(16) \ o t , U . - U  + a ( u . , u . - u ) +  

Note that (cgu./cgt, u . -  u ) ~ O  (n ~ ) .  
We show that 

(17) fo (S. o J;u.)(u. - u)dxdt---~O 

(n ----~). 

($. o J;u,)(u. - u)dxdt <= O. 

(n ~ ~ ) .  
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In fact, {S. o,~u,} is bounded in L'+"(Q). Since u. ~ u in Lq(Q) (n-->oo) and 

u. C Y[, Vn, it follows by Lebesgue's dominated convergence theorem that 

u. ~ u in L<'+")'(Q). Thus (17) holds. Therefore we get from (16) that 

and by Lemma 4, 

Hence 

limsupa(u.,u, - u ) < = O ,  

u. --* u in ~Vo (n ~ ) .  

S.o,~u,---~ff'u in L'+~(Q) (n-.-~o*). 

Passing to the limit n --~ oo in (5) we see now that u solves (4). The Proposition is 

proved. 

3. Proof of the Theorem 

The idea of the proof consists in first modifying the problem outside the 

interesiing range of functions v : ~ =< v =< tO a.e. in Q. To the modified problem 

there is associated a certain variational inequality, whose solvability follows from 

the Proposition. Finally it is shown that any solution u of this variational 

inequality is a weak solution of problem (1) with ~b =< u =< tO a.e. in O. 

(i) For i = 1 , . . . , N  we set 

fA,(x,  t, to(x, t), ~:), s > to(x, t) 
A,(x, t ,s ,~)=~ A,(x,t,s,~), ~b(x,t)<=s<=to(x,t) 

1A, (x ,  t, 6(x ,  t), ~), s < 6(x ,  t) 

for a.a. (x, t) E Q, V(s, ~:) @ R x R N. The coefficient functions fi~, still satisfy the 

conditions (A1)-(A4). Let ~ denote the corresponding differential operator 

(deduced from (2) by replacing the A~ by fi,~) and ~ the associated semilinear 

form. 

(ii) Let S be the mapping truncating functions by ~b and to; i.e. for u E 

(Su)(x, t) = 
"to(x, t), u(x,t)>to(x,t) 
u(x,t), ~b(x,t)<-u(x,t)<=to(x,t) 
6(x,t), u(x , t )<6(x , t ) .  

It is well known that S is a continuous mapping from ~ into itself (e.g. [4]). As a 

consequence of (3), PoSu E L I*"(Q), Vu ~ ~F. 
(iii) Let the function b : Q  x R ~ R  be defined by 
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(s - to(x, t ) )  q- ' ,  s > + ( x ,  t)  

b(x, t ,s)= O, &(x,t)<s<=to(x,t) 

- ( - s+ck (x , t ) ) " - ' ,  s<ck(x, t ) .  

We note that b satisfies the Caratheodory conditions. The associated Nemitskii 

operator, which maps Lq(Q) into L"'(O), is denoted by ~. 

(iv) Let ce~ < 0 < a2 be constants such that 

-oo<a,+l<=ck(x,t)<=to(x,t)<_a2-1< +~o a.e. in O. 

We introduce the convex set 

= { u ~ , , l a ~ u < = a :  a.e. in O}. 

The mapping .~ : ~u = P o Su + ~u - f satisfies the assumptions of the Proposi- 

tion. 

It thus follows that there exists 

I 
u E3'{ such that -~--~ E ~[~+L~+"(Q), u(0)= u(T) in 1) and 

- ~ , w - u  + d ( u , w - u ) +  ( p o S u ) ( w - u ) d x d t +  ~ u ( w - u ) d x d t  

>-- fo - Vw ~ 

(v) We claim that for any solution u of (18) necessarily ~b <= u - tO a.e. in O. 

In fact, setting w = min(u, tO) in (18) we obtain 

Ou "u t O ) + ) + t i ( u , ( u - t O ) + ) + f o ( P o S u ) ( u - t O ) * d x d t  
- g i ,  ~ - 

(19) + ~o ~u(u-tO)§ fo f(u-tO)+dxdt 

(where v + means the positive part of the function v defined in O.) 

Since (u - tO)+ E ~'~, n L~(O) and tO is the weak upper solution of problem (1), 

(20) (Tt ' (u - tO )+ ) + a( to'(u - to )+) + fo Pto(u - to )+ dxdt 

>-_ ~ f(u - to)+ dxdt. 
Jo 
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Substracting (20) from (19), we get 

(-~t (u - tO ), (u - tO )* ) + ~t(u,(u - tO )+) - a (  tO,(u - tO )+) 

+ ~o (P~ + So ~u(u-tO)+dxdt<-O" 

As an immediate consequence of the definition of S, 

o ( P  o Su  - PtO) (u  - tO)+ dxd t  = O. 

Further, with the notation Q .  = {(x, t)  E Q l u(x ,  t ) >  tO(x, t)}, 

a ( u , ( u  - ~b ) § - a (  to,(u - tO) +) 

= f o  , - ~ ( A ' ( x ' t ' u ' V u ) - A ' ( x ' t ' * ' V * ) ) d - ~ ( u - t o ) + d x d t  

= fo+ , = , ~ ( A ' ( x ' t ' t o ' V u ) - A ' ( x ' t ' ~ ' V ~ ) ) ~ ( u - ~ ) d x d t  

-> 0, by hypothesis (A3). 

Moreover, by Lemma 2 of the Appendix, 

Hence 

f o  4- q o >= ~ u ( u  - to)+dxdt = tl ( .  - q ,)  IP~ ,o , ,  

i.e. u _-< to a.e. in O. 

Similarly one shows that 4) =< u a.e. in Q. 

(vi) We now assert that u is a weak solution of problem (1). Indeed, note that 

Su = u, and that (18) is thus reduced to 

fo So , w - u + a (u ,  w - u ) +  P u ( w  - u ) d x d t  >= f ( w  - u ) d x d t ,  

Y w  E Yf. 

Let v E ~ n L | be arbitrarily given. Introducing w -- u +- 8v in (21), with 
-1 0 < 0 =< [[ v [[L| we obtain 
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( ~ t , v ) +  a(u ,v)+ fo Puvdxd t=  fo fvdxdt .  

Hence the Theorem is proved. 

Appendix 

LEMMA 1. Letw ~ ~VobeafunctionwithOw/OtE ~ w(T)  a.e. in 

[l. Let further g : R---> R be a monotone increasing, Lipschitz continuous function 
with g(0) = 0. Then (Ow/Ot, g(w)) = O. 

PROOF. With the aid of a partition of unity and double regularization we find 
a sequence {w,} of functions having the following properties: 

f w i E C~([O, T]; C| w, [~ = O, 
wj---~w in 7/'o, 

0__~w 0w in V; 0~oo).  
Ot Ot 

Thus wj(t)-o w(t) in L2(I1), Vt E [0, r] ,  because of the continuous embedding of 
the space ~ = {v E % [ Ov/Ot E OF;} into C~ T] ; L2(f~)). We get 

( - ~ , g ( w ) ) = ! i m  f ~ " " J~| ~o Ot g(wi)dxdt" 

Let further the function G be a primitive of g. We have 

, ,0w~ 
O G(wi) = gtwD Ot " Ot 

Hence 

Ow, (w,'~ }imf n O(w~ O, - ~  g ))= ~ [G(w,(T) ) -  (0)) ldx = 

since w(O)= w(T). 
By a similar method one proves the following 

LEMMA 2. Let w ~ ~ f"l L~(Q) be such that Ow/Ot E ~V;+ L'+"(Q), w(O)<= 

w(T)  a.e. in [l, and w I~<=O. Then (Ow/Ot, w*)>-O. 

LENNA 3. Let g :R---~R be a monotone increasing, Lipschitz continuous 

function with g (0)= O, which is differentiable except at a finite number of points. 

Let a be a semilinear form as defined by (2') with coefficient functions satisfying 
(A1)-(A4). For u E ~ we then have a(u,g(u))>=O. 
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PROOF. 

ion ( a(u,g(u))= ~ A,(x,t,u, Vu g(u) )dxd t  
i = l  

=>0, 

by (A4) and the monotonicity of g. 

LEMMA 4. Let the semilinear form a be as in Lemma 3, and let {u,} be a 
sequence such that 

u . ~ u  in ~o and Ou-'-2"---'Ou in ~ + L ' + ~ ( Q )  (n---~oo). 
Ot Ot 

Suppose further that lim sup.~= a (u., u. - u) <= O. Then u, ~ u in ~o (n ---~oo). 

PROOF. The proof is similar to that for the elliptic case (Browder [2], p. 25), 
replacing Sobolev's embedding theorem by Aubin's lemma. 
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