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ON A N  INVERSE PROBLEM 
FOR N O N N E G A T I V E  A N D  E V E N T U A L L Y  

N O N N E G A T I V E  MATRICES + 

BY 

SHMUEL F R I E D L A N D  

ABSTRACT 

Let o- = {A~, - - -, A,} CC. We discuss conditions for which ,7 is the spectrum of a 
nonnegative or eventually nonnegative matrix. This brings us to study rational 
functions with nonnegative Maclaurin coel~cients. A conjecture for special sets 

o- is stated and some evidence in support of this conjecture is given. 

1. Introduction 

The classical Perron-Frobenius  theorem [10, 3] on the spectrum of nonnega- 

tive matrices stimulated an enormous number of papers on the one hand, and 

was applied successfully in various fields of pure and applied mathematics on the 

other hand. In recent years the following inverse problem became of interest: 

Give a necessary and sufficient condition for a set o- of n complex numbers 

{ &, . . - ,  A,} to be a spectrum of a nonnegative n • n matrix A. See [1], [2], [5], 

[7-9], [11], [13]. If A => 0 then A ~ => 0 and the obvious necessary conditions are 

(1.1) 2 _->o, 
j=l 

for k = 1 , 2 , - . . .  In the first paper on the subject by Suleimanova [13] it was 

stated and proved (quite loosely) that if the set o- is real and contains exactly one 

positive number then the condition ET_~Aj =>0 is a necessary and sufficient 

condition for cr to be the spectrum of a nonnegative matrix. Note that in this case 

the inequality (1.1) for k = 1 implies immediately (1.1) for k > 1. 

In the general case, however, the conditions (1.1) for k = 1 , 2 , . . .  are not 

sufficient for o" to be a spectrum of A => 0. This is true even in cases that cr is real 
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and contains two positive numbers [11]. Indeed, take for example o '=  

{1, I, - ~, - 2, _ 2}. If o- is the spectrum of A _-> 0, then according to the theorem of 

Frobenius, A should be reducible. So o" can be split into two disjoint sets 

o" = o'1 U o'2, where each o'~ satisfies (1.1). This is clearly impossible. The 

Suleimanova result was reproved and extended by [7-9], [1], [5] and [11] to more 

general sufficient conditions for a real set o- to be a spectrum of nonnegative 

(positive) matrices. Recently, Fiedler showed that practically all known sufficient 

conditions for a real or are also sufficient for the existence of a nonnegative 

(positive) symmetric matrix with these eigenvalues. 

It is interesting to note that all known sufficient conditions on o- require o" to 

be real. We conjecture that Suleimanova's result holds without assumptions that 

o- is real. 

CONJECTURE. Let  cr = {al," �9 ", a,} be a set o f  n complex numbers. A s s u m e  that 

cr satisfies the conditions (1.1) for k = 1, 2 , . . . .  I f  0, contains exactly one positive 

number  then cr is the spectrum o f  some nonnegative n x n matrix. 

In support of this conjecture we prove: 

THEOREM 7. Let  ~r = {Al," " ", A,} be a set o f  n complex numbers. A s s u m e  that 

cr satisfies the conditions (1.1) for k >- M. Suppose that ty contains exactly one 

positive number. Then cr is the spectrum of  some real n x n matrix A ,  such that 

Ak>-_O f o r k  >-N. 

Such a matrix A is called eventually nonnegative. In particular Theorem 7 

implies the validity of our conjecture if we assume in addition that alI 1A i I are 

equal. We now describe briefly the organization of the paper. In the second 

section we give a refined version of the classical Pringsheim theorem for rational 

functions. This theorem is our main tool in investigating sets satisfying the 

conditions (1.1). In particular we note that the conditions (1.1) for k _-> M imply 

that maxl~j_<, I Ajl belongs to tr. In Section 3 we consider a set cr satisfying the 

conditions (1.1) and which contains exactly one or two distinct positive numbers. 

In the last section we apply our result to the inverse eigenvalue problem for 

nonnegative and eventually nonnegative matrices. We also give "natural"  

sufficient conditions for a set ty CC to be a spectrum of a nonnegative matrix. 

These conditions include the Suleimanova condition. 

2. Rational functions with nonnegative Maclaurin coefficients 

Let cr = {AI ," ' ,A .}  be a set of n (not necessarily distinct) points in the 

complex plane C. The k- th  moment  & (b-) of o- is defined to be 
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(2.1) sk(o') = ~ a~ 
i = l  

for k = 0 , 1 , . . . .  Indeed if /z,~ is a nonnegat ive  measure  concen t ra ted  at the 

points A , , . . . ,  A,, i.e. 

(2.2) tx~ = ~ 6 ( z  - Aj) 
j = l  

where 8(z  - A )  is the Dirac measure,  then 

(2.3) sk (or) - fc z kd/z~. 

The  sums sk(o-) are genera ted  by the following rational function:  

(2.4) 
i = l  k=O 

Let f ( z )  be an analytic function in the ne ighbourhood  of the origin. Then  

(2.5) f ( z )  = ~ akz k. 
k=O 

Assume that the radius of convergence  R = R (f) of this power  series is positive 

and finite. The  classical t heorem of Pringsheim states that if ak _->0, for  

k = 0, 1, �9 -. ,  then R is a singular point  of f. Since altering a finite number  of 

terms in the series (2.5) does not change the radius of convergence ,  Pringsheim's  

theorem holds if we assume that ak --> 0 for k _--- M. Consider  the function f~. It is 

clear that the radius of convergence  of f~ is r(o-)-'  where  

(2.6) r(o-) -- max I A I. 
AGO" 

We call r( t r)  the radius of car. Assume that &(tr)_->O for k - > M .  F rom the 

theorem of Pringsheim we deduce  that z = r(o ' )- '  is a singular point  of f.. Thus  

we obtain 

THEOREM 1. Let o-={A~, . - . ,A ,}  be a set of n complex numbers. If the 

moments sk (~r) are real and nonnegative for k > M then the radius of or belongs to 

the set o'. 

Let f be a rational function. Assume that 0 < R < ~. Thus  on I z j = R, f has 

poles. Let  p be the maximal order  of the poles of f on I z [ = R. We call z = A a 

p-pole  of f if z = A is a pole of o rder  p of f. 
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DEFINITION 1. The  set of triples r r ( f )={(A, ,  l , , p ) , "  .,(A,, l , ,p) is called 

the principal part  o f  a rat ional f if the function f -  Z~' , 11(1 - Ajz) -p does not 

have poles of order  grea ter  than or equal to p(p >= 1) on I z I = R (f) > 0. Here  

(2.7) I i / 0 ,  IAi] ' = R ( f ) ,  & / a k ,  for  j / k . j . k = I , . - ' , n .  

Normal ize  for  the sake of convenience:  

(2.8) R (f) = 1. 

In what follows we shall be using f requent ly  the function e 2''~ mostly where  

x = m or x = n. To  simplify the notat ion,  we introduce the convent ion:  

(*) e (x)  = e 2"x, ~ = e 2~-i/m (3) : e 2~"". 

We now give a refined version of Pringsheim's  theorem for rational functions 

which is needed  in the sequel.  

THEOREM 2. Let f be a rational function having power series (2.5) and 

normalized by the condition (2.8). Let {(A,, l , , p ) , . . . ,  (A,, l , ,p) be the principal 

part of f. Assume that ak _~ 0 for k >-_ M. Then the point z = 1 appears in the 

principal part of f .  Let A, = 1. Then l~ > 0 .  Moreover if n >-_ 2 then 

(2.9) Iljl < l,, i = 2 , . . . ,  n. 

Assume furthermore that 

(2.10) I l j ] = l ~ , j = 2 , . . . , m ,  I l i t < l ~ , ] = m + l , . . - , n .  

Then A,, . . ., Am are the m-th roots of unity. Moreover, after a suitable rearrange- 

ment of A,," �9 ", a,, we have 

(2.11) A, = (*- ' ,  l, = ~.~-oq, j = 1 , "  . ,m  

for some integer q. Finally, the principal part rr (f) is invariant under the rotation by 

2rr /m.  That is if ( a , l , p ) E  rr(f) then (A ( , (q ,p )E  rr(f). 

PROOF OF THEOREM 2. We may assume that all ak are nonnegat ive .  Otherwise  

consider  the rational function fl = f -  Y,~=0 akz k. Clearly 7r(fl) = 7r(f) and f~ has 

nonnegat ive  Maclaurin coefficients. By the Pringsheim theorem z = 1 is a pole of 

f. Let  p be the order  of the pole at z = 1 = A~. It is a s tandard fact that if z = A, 

I A I = 1 is ano ther  q-pole  of f then q = p. This follows from the inequali ty 

(2.12) ( 1 - I z  I) plf(z){<-_ ( 1 - I z  I )Pf ( Iz  I) 
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fo r  I z I < 1. A s  z = 1 is a p - p o l e  a n d  ak _-> 0 we  d e d u c e  

(2.13) 1, = l i m ( 1 -  r)Pf(r), as r---~ 1-. 

Le t  Aj, I Ajl = 1 be  a p - p o l e  of  f. S ince  

(2.14) ]ljl=lim(1-r)P[f(rA)l, as r - - - ,1 -  

f r o m  (2.12) we  d e d u c e  the  i nequa l i t y  (2.9). A s s u m e  n o w  tha t  (2.10) ho lds  a n d  

m > 2. Pu t  

(2.15) l, = rhl,, I nJl = 1, j = 1 , . . . ,  m. 

A s  all ak a re  rea l  we  h a v e  the  iden t i ty  f ( ~ ? ) =  f ( z ) ,  thus  by  the  Schwar z  

re f lex ion  p r inc ip le  

(2.16) (Aj, Ij, p)E 7r(f), if (A i, li, p)@ 7r(f). 

C o n s i d e r  t he  func t ion  

(2.17) g(z) = 2 f ( z ) -  ~,f(~z)- r J ( A , z )  = ~ 2(1 - Re{~7,Z ~})akz k. 
k = 0  

Clea r ly  g(z) is a r a t iona l  func t ion ,  ana ly t i c  in the  uni t  disc a n d  g m a y  h a v e  

s ingula r i t i es  on  I z l  = 1 of  o r d e r  not  e x c e e d i n g  p. M o r e o v e r  g has  n o n n e g a t i v e  

p o w e r  coeff ic ients .  T h e  coef f ic ien t  of  (1 - z )  p a p p e a r i n g  in g ( z )  is 21~ - r/j/j - Oj 

-- 0. A c c o r d i n g  to w h a t  we  s h o w e d  a b o v e  g does  not  h a v e  p - p o l e s  on the  uni t  

circle.  Th i s  m e a n s  tha t  the  p - p o l e  at z = .~k, 1 =< k _-< n, has  to  d i s a p p e a r  in g. Le t  

first 1 ~ k _-< m. T h e n  (1 - Akz) p a p p e a r s  in f wi th  t he  coef f ic ien t  21k. A s  Ilk I = l~ 

the  p - p o l e  at z = ,~k w o u l d  d i s a p p e a r  in g(z) if on ly  

(2.18) Zk = ZjZ,,, Ak = .~A,2, rljL, + Ojl~ = 21k, 

w h e r e  1 =< r~, r~ =< m. Le t  Aj ~ 1 be  fixed.  T h e n  r~ ~ r2. T h u s  if k va r i e s  f r o m  1 to  m 

r, a lso o b t a i n s  all t he  va lues  b e t w e e n  1 and  m. Th i s  m e a n s  tha t  the  set  

{A~, . . . ,A , , }  is a mu l t i p l i ca t i ve  g r o u p  of  o r d e r  m. So we m a y  a s s u m e  the  

n o r m a l i z a t i o n  Aj = ~'J ', j = 1, �9 �9 m, as A~,- �9 A,, a re  dis t inct .  

C o n s i d e r  the  last  equa l i ty  in (2.18). A s  21~ = 21 lk I =< [L, [ + IL21 = 211 we  d e d u c e  

(2.19) rh'O, , = rlk, "0jrl,~ = r/k. 

T h u s  {'Ol, " " ", rl,,} is a lso a mu l t i p l i ca t i ve  g roup .  F u r t h e r m o r e ,  the  m a p  Aj --~ r h is 

a h o m o m o r p h i s m .  So r h = rl{ a n d  72 = s rq fo r  s o m e  0_-  < q _-< m - 1. I t  is left to  

p r o v e  tha t  if (A, l,p)E rr(f) t hen  (A~', l~q,p)E rr(f). C o n s i d e r  t he  func t ion  
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(2.20) h (z )  = 2 f ( z  ) - r162 ) - r162 ). 

As before  we deduce  that g ( z )  does not have p-poles  on [z [ = 1. So all the poles 

of f ( z )  of order  p on the unit circle cancel. This is equivalent  to the fact that 

(A~', l ( q , p ) E  ~r(f) if (A, l , p ) E  ~r(f). The  proof  of the theorem is completed.  

3. Special sets with nonnegative moments 

Let cr = { A . "  ". A.}. The  principal part  ~'(~r) of o" is defined as 

(3.1) rr(o') = o- N {z, I z I = r(o-)}. 

The  set o- is called simple if Aj~ Ak for j ~  k. 

DEFINITION 2. A set o" = {A, , . . . ,  h,} is called a Frobenius  set if 

(i) r(o-)>0, 
(ii) ~-(o') = {r(o'), ~ ' r (o ' ) , . . . ,  C"-lr(o ')} for  some 1 =< m =< n, 

(iii) the set o- is invariant under  the rotat ion by an angle 2To~m, i.e. Co" = o-. 

The  reason we called such a set a Frobenius  set is that by the Frobenius  

t heo rem the spectral set of a nonnegat ive  irreducible matrix is a Frobenius  set. 

For  r _-> 0 deno te  by o'r the set 

(3.2) o'r : o" A {z, I z I :  r}. 

Note  that o-, may be empty.  

THEOREM 3. Let o- = {A~,. �9 A,} be a set of n complex numbers. Assume that 

eventually all the moments of ~r are nonnegative, i.e. Sk (~r) >= 0 for k >= M. I f  cr 

contains exactly one positive number then o" is a Frobenius set. 

PROOF. Consider  the function f ,  defined by (2.4). F rom the Pringsheim 

theorem we deduce  that r(o') E o-. As o- contains exactly one positive number ,  

r(o') > 0. Let 

r, = r (~r)= A~ = IA2[ . . . . .  I A..,[ > r2 = I A..,+, [ . . . . .  JAm21 

(3.3) 
> " "  > r , : l A  . . . . .  ,I . . . . .  I A,-, I, m , : n .  

Thus 7r(o ' )= {A, , . . . ,  A,,,}. Note  that ~'(o') may contain the same number  A 

several times. 

Let 7r(f~) = {(/~, l,, 1 ) , ' . . ,  (/~,,, l,,, 1)}. Here /~ j~ /~k  for k ~ j ,  lj i s the  multiplic- 

ity of /xj in ~-(o'). Thus lj _-> 1. The  assumptions of the t heo rem imply that 

~ , = r ( o - )  and l , = l .  By T h e o r e m  2, l j = l ,  j = 2 , . . . , m  and ~ j=~ ' J - ' r ( o ' ) ,  
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j = 1 , . . . ,  m. This means  that m = m, and zr(00) = {r(00), ~'r(00),. . . ,  ~"- ' r (o ' )} .  

Assume now that r 2 > 0 ,  otherwise the t heo rem holds trivially. Let  002 = 

~ o ~ 0 0 .  D e n o t e  

(3.4) 

Clearly 

(3.5) 

As 

(3.6) 

f~=f~= ~ bkz k. 
k = 0  

fz = f,, - ~ (1 - ~J-'r(00)z)-'. 
./=1 

, ~ ( 0  , ) k = ~ O  for k ~ 0  ( m o d m ) ,  
j ~ ~ m = l  for k = O  ( m o d m ) .  

We realize that b~ are real and bk=>0 for k - > M  and k ~ 0  ( m o d m ) .  As 00 

contains exactly one positive number ,  namely r(00), zr(o'2) = {h,,,+l, �9 �9 -, h,,~} does 

not contain r2. Let  

(3.7) g =f2+ m A ( 1 -  r~z" ) - '=  ~ CkZ k. 
k =0 

Clearly ck = bk for k ~ 0 (mod m),  ck = bk + mAr~ for  k --- 0 (mod m ). Choose  A 

to be a suificiently large positive number .  Then  we have that ck _-> 0 for  k _-> M. 

We apply now T h e o r e m  2. Clearly (r Aj, 1)E  ~(g) ,  where  Aj _-_ A for  

j = 1 , . . . ,  m. As r2 ~ zr(002) we deduce  that A1 = A. According to T h e o r e m  2 

Aj = A, j = 2 , . . . ,  m. This means  that ~rJ-lr2 ~ Ir(o'2) for  j = 1 , . . . ,  m. M o r e o v e r  

zr(g) is invariant under  the rotat ion by an angle 2zr/m. The re fo r e  

~'{h,.,+l,"" ", h,.2} = {h,,,,+,,." ", h,,,2}. Thus  

m 2 

(3.8) ~ h ~ = 0 ,  for  k ~ 0  ( m o d m ) .  
i = m l + l  

That  is, b~ = 0 for k # 0 (mod m ). Let  0~ = (-Jo=,~,~o',. Consider ing the funct ion 

fo  we prove  in the same manne r  as for  f~ that {h,,2+1, �9 �9 -, h,,,} is invariant under  

the rotat ion by an angle 2zr/m. Cont inuing in the same way we obtain that 

~o'r = 00~ for any r = r,. So ~00 = 00 and 00 is a Frobenius  set. The  proof  of the 

theorem is comple ted .  

COROLLARY 1. Let or = {h , , . .  ", h,} be a set of n points on the unit circle. 

Assume that s, (00) >_- 0, for k >= M. If the point z = 1 appears only once in 00 then 00 

is a set of exactly n roots of unity. 
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In case that A~,. -., A, are algebraic, i.e. each of the A t is some root of unity, 

Corollary 1 was proved independently by M. Newman [6]. Another proof of 

Corollary 1 was suggested by A. Selberg [12]. 

It is trivial that Theorem 3 does not hold if we relax the assumption that or 

contains exactly one positive number. Indeed let o-= {I, 1, e '~ e -'~ where 0 is 

real. Of course, s~ (o') = 2(1 + cos kO) >= O, but e '~ need not be any root of unity. 

We now examine a set or satisfying the conditions (1.1) on assumption that or 

contains exactly two distinct positive numbers. To do so we need the following 

theorem. 

THEOREM 4. Let f be a rational function having power series (2.5) and 

normalized by the condition (2.8). Let  {(A,, I ,  p ) , . - . ,  (A,, l,, p)} be the principal 

part of f .  A s s u m e  that A~ = It = 1 and all other l t are positive integers. Suppose that 

for k >-_ M, ak are real and  a~ >= 0 for k ~ 0 (rood m), when m > 1. As sume  that 

~r(f) is completely uninvariant under the rotation by an angle 2rr/m, i.e., i ra  is a 

p-pole on I z I = 1 then A~ q is not a p-pole for some 1 <= q <= m - 1. Then l t = 1 for 

2 <= j <- n. Let  m '  be the greatest divisor of  m such that all m '-th roots of  unity are 

p-poles off .  Let  m " = m /m ' > 1. Then there exists r co-prime with m"  such that 

(i) if m"  is even then the set or = {A,, �9 �9 A, } is equal to the set oh which consists 

of  all m 'r-roots of  unity, 

(it) if m"  is odd then either or = or~ or or = ort U o,2 where 0"2 is of  the form 

(3.9) o'2= I,.J e q ~ +  
q,k,S~l m 'Jm'J" 

PROOF. We will prove the theorem by induction on m. We divide our proof 

into 4 steps. 

(i) Let m = 2. Consider the function 

(3.10) f , ( z )  = f ( z ) -  f ( -  z )  = ~ 2a:k+~z 2k*'. 
k=O 

Thus 2a2k+l => 0 for k => M. Moreover, from the assumption that if A is a p-pole 

- A  is not a p-pole of f we deduce that 

~-(f,)= {(1,1,p), ( - 1 , -  1,p), (~2,12,p), f -A2 , - l , _ ,p ) , ' . . , ( a~ , lo ,  p),  

(3.11) ( - X , , - l . , p ) } .  

As It --> 1, from Theorem 2 we deduce that lj = 1 for j = 2,. �9 n. Furthermore 

2n 

~'(f0 = I,.J ( e ( j / 2 n ) , e ( j / 2 ) , p ) ,  
t = l  
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that is, in the nota t ion of T h e o r e m  2, q = n. As the coefficient of (1 - ~kz)-" in f 

is positive we deduce  that after  a suitable r ea r rangement  )t~ = to k-', k = 1,- �9 n. 

Since - 1 is not a p-pole  of f, n is odd. The  theo rem is established in this case. 

(ii) Let  m > 2 be a prime. We claim that ~q is not a p-pole  for  1 < q -< m - 1. 

Otherwise  consider  the function 

g(z) = 2 f ( z ) -  f(~qz) - f(~qz) = ~ 2(1 - cos 2rcqk/rn )z k 
k=O 

(3.12) 
= ~ bkz k 

k = 0  

As ak are real for  k -> M we have that ~'q is also a p-pole  of f. So (~-*", I, p )  E 

7r(f). Obviously bk =>0 for  k ~ M. The  coefficient of (1 - z )  -p is 2 ( 1 -  l)=<0. 

According to T h e o r e m  2, l = 1 and g(z) does not have p-poles  on Izl= 1. As 

(q, m )  = 1, since m is prime,  we deduce  that ~ '(f)  is invariant under  the rotat ion 

by an angle 27r/m. This contradicts  the assumption of the theorem.  Let  

(~, l, p )  ~ 7r(f) and assume that ;t ~ 1. By the orbit  or (A) we deno te  all the points 

of the form ;t~ "j, 1 =< j -< m - 1 such that ,~s is a p -po le  of f. We  claim that each 

l = 1 and ei ther  or (,~) is empty  or contains exactly m - 2  points. Assume first 

that for  some 1 -< j _<- m - 1, A~ "*-j ~ or  (A). So ~-*~ ~ or (~). Cons ider  the func- 

tion 

(3.13) h(z)  = 2 f ( z ) - f ( , ~ z ) - f ( ~ z ) =  ~ ckz ~ 
k = 0  

where  ck are real and ck -> 0 for k ~ 0 (mod m).  No te  that ~*-J is not a p -po le  of 

h(z). Moreover ,  the coefficient of ( 1 - z )  -p is 2 ( 1 - l ) = < 0 .  As in the proof  of 

T h e o r e m  3 consider  the funct ion 

(3.14) h i (z )  = h(z)+ m~'A(1 - z" )  -p = ~ dkz k 
k = 0  

where  A is a positive sufficiently large number .  So dk => 0 for k _-> M. Clearly 

(3.15) (1, A + 2 ( 1 - l ) , p ) ,  (~• 7r(hl) 

According to T h e o r e m  2 A + 2(1 - l) => A, so l = 1. Fur the rmore ,  since A -> l~ 

and m is prime, f rom T h e o r e m  2 we deduce  (~-~,A,p)E 7r(h O, 1 <= k <= m. So 

o r ( 1 ) = ~ .  Suppose  now that we do not have l<=j<=m-1 such that 

;t~ ~-j ff or (~). Then  we claim there  exists 1 =< q =< m - 1 such that )t~ q ~ or  (;t) but  

~.2q E or(A). Indeed,  according to the assumptions there  exists j, 1 = j <= m - 1 

such that ,~'J ff or (,~). If A~ "2~ E or  (,~) then q --- j. Otherwise ,  let 3 =< r =< m - 1 be 

the first integer  such that tz = h.~ ''~ E or() t ) .  If such r does not  exist clearly 
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A~r~J~ or (A)  contrary  to what we assumed. If r is even then take q = jr~2. If r is 

odd let q = j ( r + l ) / 2 .  We claim that A~'2q C o r ( k ) .  Otherwise  p.~'*-J E or (/z ). 

According to what we just proved or (/z) is empty.  This contradicts  the fact that 

is a p-pole  of f. Note  that since m is odd A~'2qgA. Recall that (A,/ ,p),  

(A~ "2q, l', p)  E 7r(f) and k~ "q ~ or (k),  ,~q ~ or (,~). Consider  the function 

(3.16) ,p(z) = 2 f ( z ) +  
k = O  

Again for  k => M, a~ are real and ak =>0 for k ~ 0  ( m o d m ) .  We have 

(1 ,2 ,p ) ,  (~"-", 1 + l ' , p ) E  zr(~). 

Consider  the function 

(3.17) ~Ol(Z) = ~ ( z ) +  mPA(1 - z - ) - p  = k 

k = 0  

where  A is a sufficiently large positive number .  So /3~ => 0 for k _-> M. Thus  

( 1 , 2 + A , p ) ,  ( ~ * - q , l + l ' + A , p ) E T r ( r  As / , l '=>l ,  according to T h e o r e m  2 

l = l '  = 1. This establishes ou r  assertion that lj = 1 for  2 _-< ] ___- n. Moreover ,  since 

m is pr ime we must have (~rJ, 2 + A , p ) E T r ( , p l )  for  l < - _ j < = m - 1 .  Thus 

k~ r '  E or (A)  for 1 =<j -< m - 1 and j ~  q, i.e. o r (A)  contains m - 2 points. We 

examine  two cases. 

(a) For  any p-pole  k of f or(A)  is empty.  Let  

(3.18) O(z)  = f ( z ) -  f(~Jz) = rkz ~. 
= k = O  

According to the assumptions of the t heo rem rk => 0 for k => M. As or (A)  is 

empty  we have 

[ [1, rn - 1  1 
m ' ' "' 

(3.19) I{k,, m - 1 1 ,  \ ,  1 
T , p ) ,  (A ,~ ' , -~ -  p] . .  ., (A ,~"- ' ,  m p)} . ,  

According to T h e o r e m  2 A~ = o) ~ 1 for  k = 1,. �9 n af ter  a suitable rearrange-  

ment  of Al, '"  ", A,. Clearly (n, m ) = 1. According to the nota t ion of the t heo rem 

o" = or,, where  r = n and m ' =  1. 

(b) Let  o-' = {/~l, �9 �9 ", ~,}, r -> 1, such that each/~j is not  a p -po le  of f but tzi~ "k 

is a p -po le  of f for  1 =< k =< m - 1. Fur the rmore ,  let o ' "=  {kl = 1,. �9 A,} be the 
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rest of the p-poles which are not of the form/zj~ rk. Then if A E tr" the orbit of A is 

empty. Let 

(3.20) f (z)=f(z)-  ~ (1-#,if'z) -p= ~ ~,z k. 
I , k  ~ I k = 0  

Again, for k _>- M dk are real and dk >- 0 for k # O  (mod m). We also have 

(3.21) 7r(f)---{(1.1,p) ," . , (A,l ,p) ,(~, , - l ,p) , . . ' , ( I .*, , -1,p)}.  

Furthermore the orbits of each Aj and ~k are empty. Let 

(3.22) r = ] ( z ) -  m ,=~ ,.~ 

As for $&_->0 for k =>M. Now 

1 7"r(~)={(l ,  .mm-1 p), (• l p ) . . . , ( ~ - , ~ - - i ,  m ' P )  ' ' ' ' ' \ ( A ' ' m - l m  'P) '  

(3.23) - -  - -  " ~  A m - I  - - -  

According to Theorem 2 s = r and or"= {1,~:2, ...,~:2" ,}, ~: = e(1/2r), o"= 
{~:,.. ", ~2,-,}. The theorem is verified in this case (m'= 1). 

(iii) Let m be not a prime and suppose that m ' =  1. We claim that the orbit of 

A = 1 is empty. Assume to the contrary that (~'q,l,p)E zr(f). Consider the 

function g(z) defined by (3.12). As before we conclude that l = 1 and Tr(f) is 

invariant under the rotation by an angle 2rrq/rn. Let ( q , m ) =  q', 1 =<q'< m, 

Then all m/q' roots of unity are p-poles of f, contrary to the assumption m'  = 1. 

Let rn = m,m~ where 1< m~, rn2. Clearly ak _->0 for k # 0  (modm2). Let us 

decompose 7r(f) to Tr~ U rr: where rr2 is invariant under the rotation by 27r/rn2 
and 7r~ is completely uninvariant under the rotation. Obviously ~'~ # 0 .  

(a) Assume first that m is even. Then we choose rn2 to be even. By the 

induction hypothesis 

(3.24) ~r, = {(1, l ,p) ,  ( n , l , p ) , ' "  . , (n ' - ' ,  1,p)}, "0 = e(1/r). 

As m ' =  1 we deduce ( r , m ) =  1. Suppose that 7r2# O. Thus 
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7r2= {(v , , t , ,p ) , (u ,~2,  t l ,p) ,  . . . , (v ,  ~2m2-' , t,, p),  . . .  , 

(3.25) (vs, ts, p ) , "  �9 ", (vd2"2-', t ,  p)}, ~'2 = e(1/m2), 

where  tj _-> 1, 1 _-< j _-- s. Let  

m 2 

(3.26) O(z) = m~" Z f ( (~z  ''m2) = m~ "+' ~ a,,2kz ~ 
j = l  k = 0  

where  a,,2~ are real and a,,,k _-->0 for  k ~ 0  (modrn l )  if k _->M. Let  

(3.27) zr(0) = {(1, 1, p) ,  (/22, p:, p ) , "  ", (tz,, p,, p)}. 

If /z = r/j, 1 -<j  =< r - 1 then e i ther  p = 1 or  p = m2tk + 1 in case that  p~", = ~7 j. I f /z  

is not  r- th root  of unity then ~ = v~"' and O = m2t~. Let 

(3.28) O(z) = 01(z)+ Odz)  

where  O,(z) satisfies the assumpt ions  of the t h e o r e m  and 7r (02) is invar iant  under  

the ro ta t ion  of 2~r/ml. Suppose  t h a t / z  = 77 j, 1 <-j,<- r - 1 and O = m2tk + 1. AS 

tk---> 1 and m2_- > 2 f rom the induction hypothes is  for  7r(00 we deduce  that  

( l ~ , p ' , p ) E  7r(02), where  e i ther  p ' =  m2tk or p ' =  m2tk + 1. The  invar iance  of 

r implies  that  ( v T 2 ( ~ , p ' , p ) ~  zr2, 1 <-j <= ml, ~ = e(1/mO. F r o m  the induc- 

tion hypothes is  for  zr(01) we deduce  that  p '  _-> p - 1 = mztk > 1. This means  that  

v~'=~'{ = v~"~ for  any l < j < = m l - 1 .  So ~k~ j are p -po le s  of f for  l < j < - _ m ,  

cont ra ry  to the uninvar iance  of 7r(f). Suppose  that  u~ "' is not r- th root  of unity. If 

p '  > 1 then we will have  a contradic t ion  as before .  Assume  that  all p '  are equal  to 

1. Thus  m2 = 2, tk = 1 and p ' =  p -  1. If u~,sr{ = u~,,for any 1 -< j  =< m l -  1 we will 

have  a contradic t ion as before .  So for  some  j, 1 _-<j _-< m - 1 ,  u~'{ = ~2o. This  

happens  only for  one  j, o therwise  we would get that  or (1) ~ ~ .  T h e r e f o r e  we 

conclude that  the orbi t  of uk contains  exactly m -  2 points.  Fu r the rmore ,  if 

.qs~ or(uk) ,  1 _-< k _-< s, then the orbi t  of ~/J may  contain roots  of  unity. Since 

or (1) = O we deduce  that  or  ( 'q ' )  = ~ .  Thus  we arr ived at the si tuat ion descr ibed 

in (ii b). As  in (ii b) we deduce  that  tr = cr~ U o'~ with m '  = 1. Since m is even and 

r is odd  ((m, r) = 1) it is easy to show that  11 > 1 cont ra ry  to our  assumpt ions .  So 

~r2 = ~ and tr = o'i in the nota t ion  of the theorem.  

(b) Let  m be odd. So ms _-_- 3. If ~'1 is of the fo rm (3.24) as in (iii a) we deduce  

that  ~rz = C~ and the t h e o r e m  is proved.  A s s u m e  that  ~1 = zr3 U "~4 where  zr3 is of  

the fo rm (3.24) and 

(3.29) r U ~ e l ~  + 1 ,p  . 
k,j~l  mz ' 
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As m'  = 1, (r, m) = 1. If rrs = O we finished the proof. Let rr2 ~ 0 .  Then rr2 is of 

the form (3.25). Consider O(z) defined by (3.26). Thus ~ (0 )  is given by (3.27). If 

/ ~ = r / i  then either p = l  or p = m 2 t , + l  in case that v~'*='r/( If tz =~2J-1 

(~ = e(1/2r)) then either p = m s -  1 or p = ms(t~ + 1 ) -  1 in case that v72 = ~-2s-,. 

For o the r / z  which equal uD, p = m2tk. As in (iii a) decompose 0 to 01 + 02. If 
m 2 t t k > l  then p ' > = p - l > 2 m s - l > m s - 1 ,  where (vk ,p,p)ETr(02). As 

(v '~{,p ' ,p)E 7r(02) for 1 =<j =< ml we conclude that ~k~ j is a p-pole of f for 

1 -< j =< m. This contradicts the uninvariance of It(f).  Thus each tk = 1. Assume 

first that p ' =  m2+ 1 for some uk. In particular u~', = 7/~ Since 7r(02) is invariant 

under the rotation by 27r/ml and 7r(f) is uninvariant we must have v~"~'~ = ~s,-~ 

for some 1 =<j =< m l -  1. Thus ~'{ = ~:sw-zo-L This is impossible as m, is odd. In 

the same way we eliminate a possibility that either u~ '~ = ~ss-, or p'  = m2. So we 

are left with the possibility that p ' =  m 2 -  1. Moreover  each orbit of u~ "2 with 

respect to m~ contains exactly one point of the form ~2i-~ as (r, m) = 1. Suppose 

that there exists a point ~2j-~ which does not belong to any m~ orbit of u~ "'. So 

(~2s-~, P% P ) ~  7r(G) where either p " =  m 2 -  1 or p"= m s - 2 .  Thus the m, orbit 

of ~2i-~ contains either ~s~-i or ~ ' .  This is impossible since (m, r) = 1 and ml is 

odd. Thus we proved 

~-(o,) = {(1,1, p) , . . . ,  (n ' - ' ,  1, p), (v~ '2,1, p ) , . . . ,  (v7 2,1, p)}, 

(3.30) rr(Os)={(~,m2-1,p),...,(~2'-l, m2-1,p),(v'f2, m2-1,p), .. . ,  

(~7 ~, m ~-  1, p)}, 

(3.31) ) I t ( G ) =  [,.J e + , m 2 - l , p  . 
j,k=l 

This establishes the equality o- = o-1 U o'ffm' = 1). 

(iv) Let  m be not a prime and suppose that (~% l,p)E rr(f). By considering 

the function g(z) de.fined in (3.12) we deduce that I = 1 and rr(f) is invariant 

under the rotation by 27r/ml where ml = m/(q, m). Thus all rn-th roots of unity 

which are p-poles of f constitute a subgroup of order  m'  and ~r(f) is invariant 

under the rotation by 21r/m'. Let m ' >  1. Consider the function O(z) given by 

(3.26) where m2 = m '. The function 0 satisfies the assumptions of step (iii) of our 

proof. Using the results of (iii) we easily deduce the theorem. The proof of the 

theorem is completed. 

From Theorem 3 and 4 we deduce: 
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THEOREM 5. Let  tr '  = {A1," �9 ", A,.} be a set o f  n'  complex numbers. A s s u m e  

that tr' contains exactly two distinct positive numbers r(tr ' )  > ro > 0. A s s u m e  for 

convenience that ro = 1. Suppose that sk (cr) >-_ 0 for k >= M. Then 

7r(o")=  (..J r (o")~(  
l~ j~m 

A s s u m e  that m > 1. Let 1 < r < r(o ' ) .  I f  or', is not empty  then cr'r is invariant under 

the rotation by 2 rr /m. Let  or" be the m a x i m a l  subset of  cro = o" f"l {z, I z [ = 1} which 

is invariant under the rotation by 2rr/m. Let  ~ro = o" t . )~" and assume that 

o-=  {A~,. . . ,A.} is not empty, i.e. 1 ~ o'. Then ~ is o f  the form described in 

Theorem 4. That  is, let m '  be the greatest divisor of  m such that o" is invariant 

under the rotation by 2 rr /m  '. Then there exists r, co-prime with m " = m /m  ', such 

that 

(i) i f  m "  is even then ~r = o~1, where o'1 = I,.Jl~j~_m,,e(j/m'r), 

(ii) i f  m "  is odd then either o" = ~r~, or or = or1 U o'2 where cr2 is o f  the form (3.9). 

We conclude this section with an open problem. 

PROBLEM. Let tr = {A~, ' . . ,  A,} be a simple set in C, i.e. A j / &  for j / k .  

Assume that s~ (tr)_-> 0 for k => M. Find the structure of o-. 

Theorems  3 and 5 answer our  p roblem in case the set o- is concent ra ted  on one 

or  two circles. 

4. N o n n e g a t i v e  and  eventua l ly  n o n n e g a t i v e  matr ices  

Let A be an n x n real valued matrix. We call A eventually nonnegat ive  if 

A k =>0 for k => M. Let o -=  {AI , . . . ,A ,} .  Deno te  by rk(o') the k- th  symmetr ic  

polynomial  in A~,-. . ,  A, 

(4.1) rk (~r) = ~ AJl " " " Ajk, k = 1 , - .  ", n. 
l __'~--j i < " " < j k  _'~ Pl 

We call or a self-conjugate set if r~ (o') are real for 1 =< k =< n. 

F rom the Pe r ron -F roben ius  theorem we easily obtain:  

LEMMA 1. Let  A be an eventually nonnegative matrix. I f  A is not nilpotent 

then the spectrum of  A is a union of  sel f-conjugate Frobenius sets. 

The converse of this lemma is also true. 

THEOREM 6. Let  cr = { Al, " . . ,A ,}  be a union of  sel f -conjugate Frobenius sets. 

Then there exists an n x n eventually nonnegative matrix A such that o" = cr(A ). 
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PROOF. Clear ly it is enough  to consider  the case where  tr itself is a 

se l f -conjugate  F roben ius  set. Wi thout  any restr ict ion we may  assume  that  

r(cr) = 1. 

(i) Cons ider  first the case where  o" = {1, A2,..  ",A,} and [A/I < 1 for  2<-_j <= n. 

Let  A(cr )  be  the c o m p a n i o n  matr ix  cor responding  to m i.e., 

A ( ~ )  = (a,s((~))7, aq(o')=($i+l,/  for 1 <  i <= n - 1 ,  1 <  j <= n, 

(4.2) a,~(o') = ( -  1)"-/r , - /+l( tr) ,  1 _-<j _<- n. 

T h e  assumpt ion  that  1 ~ o- implies 

(4.3) 2 a , / ( t r ) =  1. 
i=1 

As cr is self con juga te  A (tr) is real. We  have  A (tr)u = u and A '(tr) v = v where  

u = (1, 1 , . . . ,  1), v = ( v , . - . ,  v ,)  and A '  deno tes  the t ransposed  matr ix  of A. As  

A = 1 is a s imple  e igenvalue  of A (tr) we may  normal ize  v such that  Z7=1 v, = n. 

Let  J be  an n x n matr ix  having every e l emen t  1/n. 

Cons ider  X = (1 - O)J + OI where  1 s tands for  the  identi ty matr ix .  So X u  = u, 

X v  = (1 - O)u + Ov = w = (wt ,"  �9 ", w , ) .  Choose  O > 0 such that  w is posi t ive and  

X is nonsingular .  Let  B = X - l A X .  So B u  = u and B ' w  = w. Clearly t r (B)  = tr. 

As I,x,l<l for  2 < - j < = n  we have  B k - ~ , C = ( c , / ) 7  as k ~ ,  where  c,s = 

w//Y~=l w, > 0. Thus  B is eventual ly  nonnega t ive  and the t h e o r e m  is proved.  

(ii) Let  ~-(tr) = {1, ~ ' , . . . ,  ~.,,-1} where  m > 1. We  may also assume that  0 ~ o-, 

since the zero e igenvalue  cor responds  to zero matr ix .  So n = ran'  and rk (o') = 0, 

if k r  (rood m) .  Let  tr '  = { /x t , "  ", p..} be  the  unique set such that  

(4.4) rk (tr ')  = r,,~ (o'), k = 1 , "  " ,  n' .  

Clearly or' is self con juga te  and af ter  a sui table r e a r r a n g e m e n t  we have  that  

/xt = 1 and I/x/I < 1 for  1 < j  = n ' .  Accord ing  to (i) there  exists n ' x  n '  eventual ly  

nonnega t ive  matr ix  B such that  o " =  or(B). Let  A = (A,/)~" be  the n x n matr ix  

c o m p o s e d  of mZ block matr ices  A~/ of  size n ' X  n ' .  H e r e  

(4.5) A o=~,.1./I, 1<i<=n-1,  lNj<=n, A,/=6t/B, l<=j<=n. 

In view of (4.4) it is easy to show that  ~ ( A  ) -- ty. It is enough  to no te  that  A " is a 

= / a (E)x- where  AI~ > is b lock diagonal  matr ix  diag { B , . . . ,  B}. F u r t h e r m o r e  A k ~ , j  sl 

e i ther  zero or B ""''~ where  r(i,j)>-_ k / m .  Thus,  as B is eventual ly  nonnegat ive ,  A 

is also eventual ly  nonnegat ive .  T h e  p roof  of  the  t h e o r e m  is comple ted .  

Combin ing  T h e o r e m  3 with T h e o r e m  6 we obta in  



58 s. FRIEDLAND Israel J. Math. 

THEOREM 7. Let o" = {A j,- �9 ", A. } be a set of  n complex numbers. Assume that 

st (or) >= 0 for k >= M. Suppose that or contains exactly one positive number. Then cr 

is a spectrum of some real n x n matrix A ,  such that A k > 0 for k >= N. 

In view of T h e o r e m  4 and L e m m a  1, T h e o r e m  7 is false if we shall assume that 

o- contains exactly two distinct positive numbers .  F rom Corol lary 1 we deduce  

COROLLARY 2. Let (r satisfy the assumptions of  Theorem 7. I f  1Aj [ = r(tr) for 

1 <- j <- n then or is the spectrum of the matrix A = r((r)P where, for example, 

P = (pij)7 is a permutation matrix p~j = 6~+,.j, 1 _-< i, j _< n (n + 1 ---- 1). 

We give now a simple condit ion for a self-conjugate set cr to be a spec t rum of 

a nonnegat ive  matrix,  which quite  surprisingly was over looked  by o ther  authors.  

THEOREM 8. Let 0, = {A,, . .  -, .,L} be a self-conjugate set. Assume that 

(4.6) ( -  1)k-'rk (or) => 0, k = 1 , "  ", n. 

Then or is the spectrum of the companion matrix A (or), (4.2), which is nonnegative. 

We claim that Sule imanova 's  condit ion implies (4.6). 

LEMMA 2. Let {la,,'" ",l~,-~} be nonnegative numbers. Assume that 

n - i  

(4.7) Z /z, =< 1. 
./=1 

Then cr = {1, - / z ~ , .  �9 - /Z , - l}  satisfies the conditions (4.6). Moreover, the com - 

panion matrix A (or is stochastic. 

PROOF. 

(4.8) 

Let  o-' = {/zj, �9 � 9  Then  

rk (or) = ( - 1)k-'[rk_,(O") -- rk (cr')], 2 < - k < - n - 1 ,  

n - I  

= 1 - u , ,  = ( -  
j = l  

Taking into account  (4.7) it is enough to show 

(4.9) r~ ((r') => rk ~(o")  for  1 _-< k =< n - 2. 

The  last inequalit ies follow directly f rom the classical Maclaurin inequalities 

[4, p. 52] 

[/(~ 1)]. __> . . .  __> (i- _,)'/(--'), (4.10) 1/(n - 1)_-> rl/(n - 1)_-> ~'2 2 



Vol. 29, 1978 NONNEGATIVE MATRICES 59 

where rk = rk(o"). Indeed, 

' rk - -  "rk+l -~ "rE - -  "t'k k + 

= r~/(n k I){(n Z i)_ [rk/(n Z l)]"k(k + Ii) } 

/ ( n k l ) { ( n k l  ) 1 ( k - i ) } > 0 .  
- > r k  - -h--7~- 1 + 1  = 

So ( -  1)k-~r~(o')_--> 0. As 1 ~ or, X~'=1 a.,(cr) = 1 and thus A(cr)  is stochastic. End 

of Proof. 

We conclude our paper with the following observation. Let cr be a simple set 

such that sk (or) _-> 0 for k _-> M. According to Theorem 4 and Lemma 1 cr may not 

be a spectrum of any eventually nonnegative matrix. However,  the following 

result holds: 

THEOREM 9. Let cr = { a , , "  ", A, } be a simple set, i.e. A, r ak for j ~ k. Assume 

that sk(cr)>-0 for k >-M. Then there exists a cone K with interior such that 

A(o-)K C K  (note that A(~r) is real). Furthermore K CRT. 

PROOf. Without any restriction we may assume that 0 ~  o- (otherwise 

consider o" after reducing the zero eigenvalue). Let 

(4.11) u k = (sk(o'), &+ , (u ) , ' '  ", sk+._,(cr)), k ->0. 

The classical identities 

(4.12) &+.(o') = Z (-1)S-'r ,(cr)&+._j(o-),  k -> 0 
j= l  

imply that 

(4.13) A(tr)u  k = U k*l, k >=0. 

From the assumptions of the theorem we have that u k _> 0 for k _-> M. Let K be a 

closure of finite nonnegative combinations of the vectors {u k }~. AS K C R .~, K is 

a cone. It is left to show that K contains n linearly independent vectors. 

Consider a matrix B = (b,j);' with the columns UE, U TM, "" ,  u k+"-l. So b~j = 

s,+~+~-2(o'). Let Wk = ( , ~ . k + i  1 n )1. A straightforward calculation shows that B = 

, 2n. ~k where I BJ stands for the determinant of B. WoWk. Thus IBI = [Wo ,,,= ,,,, 

Since a e # a  q for p # q  and a p # 0  we deduce that I B I S 0 .  Thus 

u ~, uk+l, . .  ., u ~+"-1 are linearly independent and K has interior. The proof of 

the theorem is completed. 
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It is interesting to note that the conditions (4.6) are equivalent to the fact that 

u k*" belongs to the cone generated by the vectors u k, u~* ' , . . . ,  u~*"-', in the 

case that these vectors are linearly independent. 
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