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ABSTRACT 

Let T be a nonexpansive self-mapping of a closed convex subset  C of a real 
Hilbert space. In this paper  we deal with the structure of the weak to-limit set of 
iterates {T"x}, establish conditions under  which it is invariant under  T, and 
show that {T"x} converges weakly iff T has a fixed-point and T " x  - T"+~x ---~0 

weakly. 

Introduction 

Let H be a real Hilbert space and C a closed convex subset of H. A mapping 

T:  C ~ C is called nonexpansive provided II T x  - T y  [I---- II x - y II Vx, y in C. The 
weak (respectively, strong) w-limit set tow(x) (respectively, ws(x )) is defined to 

be the set of weak (respectively, strong) subsequential limits of {T"x}. 

Under the assumption that tos(x)~r • and that T has a fixed-point, Edelstein 
[10] has shown that for any y in cos(x), the lim, E~-i T~y/n = c exists, is a 

fixed-point of T, and is the only fixed-point of T in the closed atfine hull of tos(x). 

(He proved this in any reflexive, strictly convex Banach space.) It is easy to see 

that also lim, E~=l Tkx/n = c (for the essential idea, see Yen [19, lemma 8]). 

For extensions to strongly continuous contraction semigroups, see Dafermos and 

Slemrod [9]. 

Edelstein's result can be said to be the first nonlinear mean ergodic theorem. 

But the condition ws(x)~  Q is quite restrictive; the first ergodic theorem for 

general nonexpansive mappings (in Hilbert space) was established by Baillon 
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[2]: if T has a fixed-point, then the means E~ ~ Tkx/n converge weakly, as 

n --, ~c to a fixed-point of T. Simpler proofs have since been given by Pazy [17], 

Br6zis and Browder [4], and Bruck [7]. In general, the means do not converge 

strongly; some additional condition on T, such as oddness, must be imposed (see 

[1], [3], [4], [6], [7], [17]). 

Baillon's theorem suggests that, at least in Hilbert space, the weak w-limit set 

might be a more appropriate object of study than the strong w-limit set. (It has, 

at least, the virtue that it is non-empty when T has a fixed-point, unlike w,(x).) 

This is the program which we begin with this paper. 

In w we recall Lorentz's definition of "almost convergence" and show that the 

iterates {T"x} are weakly almost convergent to a fixed-point c of T; if T is odd 

(or isometric, or affine, or if ws(x) / Q), the almost-convergence is in the strong 

topology. This amounts to a technical simplification of the results of [4] (in 

particular, the concept of a "proper"  array is eliminated). For linear T, the 

strong almost-convergence is well-known (see Cohen [8]). 

Also in w we study the properties of ww(x) under the assumption that T has a 

fixed-point. While it is trivial that ws(x) is T-invariant, we do not know whether 

the same is true of ww(x) (we conjecture that the answer is negative), ww(x) is 

certainly not minimal, as we show by example. But we do establish desirable 

properties: clco ww(x) contains exactly one fixed-point of T (namely, c, the 

almost-limit of {T"x}); for any other fixed-point f of T, f -  c is orthogonal to 

ww(x) -  c (in particular, the closed affine hulls of ww(x) and the fixed-point set 

F(T) are orthogonal, intersecting only in c). We also identify c as the asymptotic 
center (in the sense of Edelstein [11]) of {T"x}. 

In w we introduce the notion of "asymptotically isometric" mappings. These 
include isometries, affine nonexpansive mappings, nonexpansive mappings for 

which w ~ ( x ) / ~  and odd nonexpansive mappings. Many of the results of [9] go 

through for such mappings (with the notable exception of minimality): {T"x} is 

almost-convergent to c, strongly; ww(x) is T-invariant, and T maps clco ww(x) 

onto itself affinely and isometrically. 

In w we establish a necessary and sufficient condition for the iterates {T"x} 

to converge weakly to a fixed-point of T: that T has a fixed-point and 

T " x -  T"+lx--oO weakly. This is reminiscent of the asymptotic regularity 

condition of Browder and Petryshyn [5]: that T"x - T"+~x ~ 0  strongly. Opial 

[16] showed that if F ( T ) / f g  and T is asymptotically regular, then {T"x} 

converges weakly to a fixed-point of T. The new condition (which might be 

called "weak asymptotic regularity") is both necessary and sufficient. 

We establish the following conventions, which henceforth always hold: H 
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denotes a real Hilbert space, C a non-empty closed convex subset of H. 

(Complex Hilbert spaces can be reduced to this case by the standard trick of 

ignoring nonreal scalars and taking the real part of the inner product. Orthogon- 

ality in that case must be interpreted as real-orthogonality.) Strong convergence 

is denoted by ~ and lim, weak convergence by ~ and w-lim. For convenience, 

sequences are indexed from n = 0, 1, 2,. �9 �9 F(T)  denotes the set of fixed-points 

of the mapping T. co W denotes the convex hull of W, clco W the closed convex 

hull of W , H ( W )  the closed atfine hull of W. 

Our results are stated for discrete semigroups (iterates of a single mapping) for 

simplicity, but the techniques are also applicable to strongly continuous contrac- 

tion semigroups. For another approach to this case, see Reich [18]. 

We wish to thank Simeon Reich for calling our attention to the papers of 

Cohen and Lorentz, and for reminding us of Edelstein [10]. In the original 

version of this paper we established the weak convergence of {T"x} (and, in w 

the strong convergence) for the method (E) below (the same method considered 

by Br6zis and Browder [4]). Reich observed that the convergence is actually by 

method (SR); he has also established the almost-convergence of the iterates by a 

method independent of ours. 

w Structure of ww(x) for general T 

A key ingredient of our ergodic theorem is Lorentz's definition of almost 

convergent sequences, which we adapt to locally convex spaces. 

DEFINITION 1.1. A sequence {x,} in a locally convex space X is said to be 

almost-convergent to a point x E X if[ 

lim, ~ Xk+~/n = X, 
k = l  

uniformly in i = 0, 1, 2,. �9 �9 

It follows from the definition that {x,} is almost-convergent to x iff the shifted 

sequence {x,+l} is almost-convergent to x. Indeed, if X = R, Lorentz [15] shows 

that {x.} is almost-convergent to x iff {x.} is bounded and L({x.}) = x for every 

Banach limit L (motivating the "almost"). 

We introduce two classes of infinite real matrices Q = [q~i] (0 =< i, j < ~): (SR) 

(for strongly regular) consists of those Q for which 

(1.1) sup ~ Iq.~ I<oc, lira ~ q.~ = 1; 
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(1.2) lim ~ [q~+,- q~k I = O; 
n k 

while (E) (for ergodic) consists of those Q in (SR) satisfying 

q,, _-> 0 V i, j, ~ q,~ = 1 V n. 
k 

It follows from (1.1) and (1.2) that lim, q,k = 0, uniformly in k, so each Q E (SR) 

defines a regular method of convergence. In particular, for any bounded 

sequence {t,} of real numbers, 

(1.3) 

lim inf t, =< lim inf. ~ q,~tk 
k 

= lim sup~ ~ q.ktk <= lim supnt.. 
k 

LEMMA 1.1. I f  X is sequentially complete, then the following are equivalent: 

(a) {x,} is almost-convergent to x; 

(b) VQ in (E), lim. Y.k q.kxk = X; 

(C) VQ in (SR), limn Y-k qn~x~ = x. 

The implication ( c ) ~  ( b ) f f  (a) is obvious; the reverse implication was 

proven by Lorentz [15] when X = R, and as no new ideas are needed in the 

general case, the proof can be safely deleted. Note that sequential completeness 

is only needed to guarantee the convergence of Ek q,kxk. (As Lorentz [15, p. 171] 

notes, the almost-convergence of a sequence implies its boundedness, and this is 

also true in general X.) 

In the sequel we refer to strong or weak almost-convergence in H, meaning 

almost-convergence in H with the strong (or weak) topology. 

Note that on account of (1.2), for any bounded sequence {xn} in X, 

We refer to this as shift-invariance. 

Our main result is: 

THEOREM 1.1. Suppose C is a closed convex subset of a real Hilbert space and 

T : C--~ C is nonexpansive and has a fixed-point. Then for each x in C the 

following hold: 
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(i) {T 'x}  is weakly almost-convergent to a fixed-point c of T; 

(ii) c is the asymptotic center of {T"x} in C in the sense of Edelstein [12]; 

(iii) {c} = F ( T ) n  clco o)w(x); 

(iv) H ( F ( T ) )  is orthogonal to H(o)w(x)), with {c} = H ( F ( T ) ) A  H(o)w(x)); 

(v) {T"x} converges weakly to c iff T"x - T ' + l x ~ O  as n ~ .  

Theorem 1.1 follows from two lemmas which we now prove. 

LEMMA 1.2. Let {x.} be a sequence in a weakly compact convex subset of a 

Banach space X and let W denote the set of all weak subsequential limits of {x,}. 

Then 

clco W =  n c lco{xk 'k->n}.  
n = 0 

PROOF. Put K n = c l c o { x k : k > = n } , K  = NK..  The inclusion W C K  (and 

hence clco W C K) being trivial, it suffices to prove K C clco W. Suppose not; let 

x E K\clco IV. Then there exists u in X* with 

u(x ) > sup{u(y ): y ~ clco W} 

(1.5) 

= s u p { u ( y ) : y  E W}. 

On the other hand, since x E K C K,, 

u(x)<= s u p { u ( y ) : y  E K.} 

= sup{u(xk): k _-> n}. 

Therefore u(x)<-l im sup, u(x,) .  Extracting a subsequence of {u(x,)} which 

converges to the lira sup, and using the Eberlein-Smulian theorem, we can 

therefore find a subsequence {x,(o}, such that x , ( , ~  x' and u(x)<- u(x'). Since 

x ' E  W by definition, this contradicts (1.5). Q.E.D. 

LEMMA 1.3. Suppose {x,} is a bounded sequence in H with 

(1.6) lim sup,. lim sup. lim sup, [(x,., x , .+,)-(x. ,  x,.,)] <-0. 

Let W denote the set of weak subsequential limits of {x.}. Then: 

(i) {x.} is weakly almost-convergent to a point c of cico W; 

(ii) lim, (x,, c) = [[ c I[~; 

(iii) c is orthogonal to W - c ; 

(iv) c is the point of clco W of minimum norm ; 

(v) if, in addition, {]l x. Ill converges, then c is the asymptotic center of {x,} in H. 
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PROOF. By (1.6) we can find e(m, n, i ) > 0  such that 

(1.7) lim sup,. iim sup, lim sup,e(m, n, i) = 0, 

(1.8) (x,,, x,, +,) - (x~ x,+,) _-< e(m, n, i). 

Let Q E (E) and put y. = Zk q.kxk. Let F denote the set of weak subsequential 

limits of {y,}. Since {y,} is clearly bounded, to show that it converges weakly it 

suffices to show that F is a singleton. 

Multiplying (1.8) by qk~ and summing over i, we obtain 

(x,. -x . ,yk)=~i  q~i(x,.,x,)- Z qki(x~,,xi) 
i 

<=_ ~] qk,(m,n,i)+ ~ q~,I(x~,x,)-(x~,x~+,)l 
i i 

- Z [(x~ x , )  - (x~ x~ 
i 

By the shift-invariance condition (1.4) and (1.3), therefore 

lira sup, (x,, - x,,yk)_-<lim sup~e(m,n,i). 

Let c ' E  F. Then ( x , , -  x., c')-< lira sup~ e(m, n, i), hence by (1.7), 

lim sup,. (x,,, c') _-< lim inf, (x,, c'). 

It follows that lira, (x,, c') := a(c') exists for each c'  in F. Clearly a(c') = (x', c') 
for any x'  in W, and therefore for any x' in clco W. But it is clear from (1.1) and 

lim,q,~ = 0 that c ' E  (")~=,,clco{xk �9 k _-> n}, which is clco W by Lemma 1.2. Thus 

in particular, a (c') = (x', c') = (c', c') for all x'  in clco W. This shows that c' is 

orthogonal to clco W - c', whence c' is the point of clco W of minimum norm, 

This means, first, that F is a singleton {c}, i.e. y, ~ c, proving, by virtue of 

Lemma 1.1, part (i) of Lemma 1.3: and second, parts (ii)-(iv) of the lemma have 

been established en route. It remains only to prove part (v). 

Suppose {11 x, [[} converges, and put r(y) = lim sup, I] x, - y 112 for y in H. By 

Edelstein [11], [12], r has a unique minimizer (the point which we have called the 

asymptotic center of {x,} in H in the sense of Edelstein). Since I [ x . - c  [[2= 

11 x, ]12 - 2(x,, c) + II c I] 2, we have by part (ii) r(c) = lira, I] x, - c II 2 (that is, the limit 

exists). Finally, for any O E (E), with y. = Ekq,~xk we have the identity 

E q.~ ]lxk-y[I 2= E q,k 
k k 

By (1.3) and part (i), therefore 

llxk -c Ir+2(y. - c,c- y)+[Ic - y I] 2. 
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r(Y) > i im  E q,k [[ xk - Y tt 2 
n k 

: lira [I x .  - c [[2 + [] c - y [[2 

= r(c)+[[c - y [I 2. 

Thus c is the minimizer of r, i.e., the asymptotic center of {x,). Q.E.D. 

PROOF OF THEOREM 1.1. Let f be a fixed-point of T, and put x, - T"x - f .  

Then ll x.+, ll--< l[ x. II by the nonexpansiveness of T; so {ll x. ll} converges. On the 

other hand, again by nonexpansiveness, we have for any n ~ m _>- 0, i _-> 0 the 

inequality [Ix,+,- x, [[-< II x . , . , -  x~ II. Squaring, expanding norms, and noting 

that {ll x~ Ill converges, we deduce (1.6). We now read off consequences from 

Lemma 1.3. First, {T"x - f }  is weakly almost-convergent, hence {T"x} is weakly 

almost-convergent to a point c ; moreover, c ~ clco w~ (x). Second, c - f is the 

asymptotic center of {T"x - f} in H, hence c is the asymptotic center of {T"x} in 

H. As Edelstein [12] remarks, however, in Hilbert space this implies c is the 

asymptotic center of {T"x} in C. Third, c - f  is orthogonal to w ~ ( x ) -  c. Thus for 

any f,, f2 C F(T),  w~, w2 ~ ww (x) there holds (f~ - c, w~ - c) = 0 (i = 1,2), whence 

( f , - f2 ,  w , - w 2 ) = 0 .  This shows H(w~(x) )  is orthogonal to H(F(T)) as affine 

subspaces of H. Fourth, c - f  is the point of clco ~ow(x)-f  of minimum norm, 

i.e. c is the point of clcoww(x) closest to f. By [12, theor. 1] c E F(T);  thus this 

proves {c} = F(T) n clco ~ow (x). Since H ( F ( T ) )  is orthogonal to H(m~ (x)), we 

also have H ( F ( T ) )  CI H ( w ~ ( x ) ) =  {c}. 

All that remains is part (v) of the theorem. But this follows from the easy 

Tauberian condition: if {u,} is almost-convergent to u, and u, - u,+,--*0, then 

{u~ converges to u. For a proof in R (the general case being similar) see Lorentz 
[15, w 

COROLLARY 1.I. (Pazy [17]). Suppose T:  C--~ C is nonexpansive and has a 

fixed-point. Then a necessary and sufficient condition ]:or {T"x} to converge 

weakly to a fixed-point of r is that O)w(X)CF(T). 

PROOF. Theorem 1.1 says F ( T )  71 clco ~ow(x) is a singleton. Thus ~o~,(x) is a 

singleton--i.e., {T"x} converges weakly--iff w w ( x ) C F ( T ) ,  in which case the 

weak limit is a fixed-point of 7". Q.E.D. 

w A s y m p t o t i c a l l y  i s o m e t r i c  m a p p i n g s  

DEFINmON 2.1. Let T:  C--> C be nonexpansive. T is said to be asymptoti- 

cally isometric on a subset S of C provided for all x, y in S, the 
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lim, l lT"x-T"+'yp]  exists uniformly in i = 0 , 1 , 2 , . . . .  T is said to be 

approximately affine on a convex subset K of C provided 

E -  

for all choices of n in Z*, Ul, " "  " ,  U .  in K, tl," " ' ,  t,, in R § with Ztk = 1. 

Note that for any nonexpansive mapping T, ]1 T"x - T"+~y II is, for any fixed i, 

nonincreasing (and therefore convergent) as n--~ ~. We require the uniformity 

of the limit in i. 

The main result of this section is: 

THEOREM 2.1. Suppose C is a closed convex subset of a real Hilbert space 

H, T : C--~ C is nonexpansive, and T has a fixed-point. If  T is asymptotically 

isometric on a subset S of C, then: 

(i) for all x in S, {T"x} is strongly almost-convergent; 

(ii) for all e > 0  and x~, . . . ,xm in S there exists no such that T is e- 

approximately affine on clco {Tkx, : 1 <-- i <= m, k >= n,,}; 

(iii) if x E S and n(i)--~ ~, T"("x---~y as i - * ~ ,  then T~*"~ ---" Ty; 

(iv) for all x in S, T maps tow(x) onto itself; 

(v) T maps K = clco U {ww(x):x E S} onto itself affinely and isometrically. 

REMARK. If T is asymptotically isometric on S then it is easy to see that T is 

asymptotically isometric on S U F(T) .  Thus in the theorem it may be assumed 

that F(T)  C S. 

The key to part (i) is: 

LEMMA 2.1. I f  a sequence {x,} in H satisfies 

(2.1) lim (x,, x , .k  ) exists uniformly in k = 0, 1 , 2 , . . . .  
n 

then {x,} is strongly almost-convergent to its asymptotic center. 

PROOF. Clearly (2.1)implies (1.6). Taking k = 0 in (2.1), we see {llx, I[} 

converges. By Lemma 1.3, therefore, {x,} is weakly almost-convergent to its 

asymptotic center. 

Put M = sup~ ]Ix, H. Given e >0 ,  choose m so large that i _-> m, k => 0 imply 

I(x,x~+~)-(x,~,xm+k)l<=e (this is possible by (2.1)). Let Q E ( E )  and put 

y. = Ek q,kxk. Clearly 
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II y. II 2 = Z q.,q.J (x. x i) 
i .j  

<- ~ q.,q.,(x,.,x,.+,,-iO+ 2 M  = ~ q.~ 
i , j ~ r a  k < r a  

+ e . ~ q.,q.~ ; 
i , j > m  

thus 

(2.2) fly. If ~ E q.,q.,(x,. ,x,.+,,_,,)+e + 4 M 2 E  q.k. 
i ,j  k < m  

Let P = [pq] be the matrix defined by 

p,k = ~, q~, (k = 0), 
i 

p.k = 2" ~ q,~q,.k+, (k ~ 0). 
i 

It is an easy computation (noting that lim.q,k = 0 uniformly in k) that P E (E). 

Now by rearrangement, 

q.,q.i(X,.,X,.+u-,,) = (X,., ~ p.~x,.+k). 

Since {xk }~=0 is weakly almost-convergent to a point c, by shift-invariance so is 

{x,, +k }7=,,. Thus 

lim ~ q,,q.j(x,.,x,.+u-jl) = (x,., c). 
n i , j  

Exploiting this in (2.2), we obtain 

lim sup II y .  II ~ = IIr II ~ + ~ ; 

or finally, lim sup. 11Y. II =</I c II. But y, ~ c; in Hitbert space these imply y, --+ c 

strongly. Q.E.D. 

We also need: 

LEMMA 2.2. Suppose e > 0, T : C-+ C is nonexpansive, and for all x, y in a 
certain subset S of C there holds 

(2.3) II x - y II ~ ~ II T~ - Ty IV + ~ =/4. 

Then T is e-approximately affine on clco S. 
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PROOF. We first show that for finitely many vk in S, )t~ in R § with ZAk = 1, 

there holds 

~ ( z ~ ) -  y ~  ~ / ~  (2.4) 

Indeed, by Baillon's inequality (stated in [2] and proven in [17]), 

~(;~o~)- ~ ~_~ ~, ,~ ,  ~fr~,- ~,ll~-IJ~, - ~ ii~. 

With (2.3), this immediately implies (2.4). 

Next suppose {uk}CcoS, {t~}CR § and Ztk = 1. Find {v~}CS, {A~}CR § with 

Y.~Ak~ = 1 for all k, and u~ = 5'.~A~,v~. Two applications of (2.4) yield 

o r  

(2.5) 

and 

t .0- 

Multiplying (2.6) by tk and summing over k, we obtain 

tkTuk - ~ tkAk, Tv, <--e/2, 

which with (2.5) yields 

This proves T is e-approximately atiine on co S ; by continuity, the same is true 

on clco S. Q.E.D. 

PROOF OF THEOREM 2.1. By Theorem 1.1, { T"x } is weakly almost-convergent 

to a fixed-point c of T. Put x. = T"x-c .  Then {llx. ll} converges and 

lim. II x,+k - x. Ir exists uniformly in k since T is asymptotically isometric on {x}. 

Therefore lim, (x.,x.+k) exists uniformly in k. Now {x,} is weakly almost- 

convergent to 0, so by Lemma 2.1, it is strongly almost-convergent to 0. Thus 

{T"x} is strongly almost-convergent to c. This proves part (i). 
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Part (ii) is an obvious consequence of Lemma 2.2 and Definition 2.1. 

To prove (iii), it suffices to show that if T"~ and Tl+"~ ~ w, then 

w = Ty. Let y, be a convex combination of the T"O)x (j >= i) such that y, ~ y, 

and let w~ be the same convex combination of Tl+"O)x (1" >= i). Then w~ ~ w .  By 

part (ii), w, - Ty~ ~ 0. But T is continuous and y~ ~ y, so w~ ~ Ty. Since w~ ~ w, 

we have w -- Ty, finishing part (iii). 

It immediately follows from (iii) that T maps co, (x) onto itself. To prove part 

(v), put Ko = U {cow(x):x E S}, so that K = clco Ko. We claim T is isometric on 

K0. 

Let x,y E S and f E F(T) .  Since 

( T" x - f, T " y  - f ) =  �89 T" x - f l l 2 +  I1T"y -f[12-II T"x - T "  y [r] 

and {11 T"x - f  I1}, {1[ T " y  - f  [1} converge while T is asympototically isometric on 

{x,y}, there exists a sequence e, ~ 0  such that 

(2.7) I ( T " + I x - f ,  T " + l y - f ) - ( T " x - f ,  T " y - f ) [ < = e , ,  (n>=m). 

Let u E cow(x), v E cow(y). Letting n ~ co through some subsequence of integers 

such that T"x ~ u, and using part (iii), we obtain from (2.7) 

] ( T u - f ,  T m + l y - f ) - ( u - f ,  T " ~ y - f )  l<=em. 

Next letting m - ~  through an appropriate subsequence, we obtain 

(Tu - f, Tv - f )  = (u - f, v - f )  for all u E co,(x), v E cow(y), and f E F(T) .  It is 

clear that this identity implies 11 T u -  Tv II = 11 u - v  11, proving that r is an 

isometry on Ko. By [13, prop. B], therefore, T maps co Ko affinely and 

isometrically into itself. By continuity, T maps K isometrically and affinely into 

K. But since T(Ko)= Ko we have T ( K ) D  T(coKo)= co K0, so that T ( K )  is 

dense in K. Finally, T ( K )  is closed because K is closed and T is isometric; 

therefore T ( K ) =  K. Q.E.D. 

COROLLARY 2.1. Let T : C--~ C be nonexpansive and asymptotically isometric 

on {x} for each x in C. Suppose F ( T ) ~ f 3  and for each xff. F(T) ,  

(2.8) dis (Tx, F(T) )  < dis(x, F(T)) .  

Then for each x in C, {T"x} converges weakly to a fixed-point of T. 

PROOF. By Theorem 2.1 (v), for any y in co,(x) and f in F(T) ,  11Ty-f[I = 

] ]y - f l ] ;  consequently, dis(Ty, F ( T ) ) = d i s ( y , F ( T ) ) .  By (2.8), therefore, 

co, (x) C F(T).  By Corollary 1.1, { T"x } converges weakly to a fixed-point of T. 

Q.E.D. 
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Let (UR) denote the class of matrices satisfying (1.1) and 

lira max [q,k J= 0, 
n k 

i.e. lim, q.~ = 0 uniformly in k. (UR stands for "uniformly regular"; it is clear 

that (SR)C(UR) and that each (UR) matrix is regular.) We say that a sequence 

{x,} converges (UR) to x provided lim, Xk q,kxk = X for all O E (UR). 

Recently Fong and Sucheston [14] have established (for a linear nonexpansive 

operator T in Hilbert space) that {T"x} converges weakly to y iff {T"x} is 

strongly (UR)-convergent to y. An example of Baillon [1] can be used to show 

that such a result is false for nnnlinear nonexpansive mappings. But: 

THEOREM 2.2. Suppose T : C ~ C is nonexpansive and has a fixed-point. I f  T 

is asymptotically isometric on {x}, then w-lim, T"x = y  iff {T"x} is strongly 

(UR )-convergent to y. 

As noted in [14] sufficiency holds in any Banach space. Necessity is by now an 

obvious consequence of: 

LEMMA 2.3. Suppose x. ~ x and (2.1) holds. Then {x,} is strongly (UR)-  

convergent to x. 

PROOF. Let O ~ (UR). Using the same notations as in the proof of Lemma 

2.1, and slightly refining the estimates, we obtain 

It is easy to see (since O E (UR))that P is regular, so that w-lira, Ekp,kxm+k ---X. 

The right-hand side of (2.9) therefore tends to (x , , ,x)+ e as n - * 2 ;  whence 

lira sup, 11Y, [I 2 =< II x II 2. Since y, ~ x we again obtain y,, ~ x. Q.E.D. 

We conclude this section with conditions sufficient to guarantee that T is 

asymptotically isometric on a set S. 

THEOREM 2.3. I f  T : C ~ C is nonexpansive, 0 ~ C, T(O) = O, and there exists 

c >= 0 such that 

(2.10) [[Vx + Tyli2<=[lx +y[t~+c{l lxlr-IITxl l2+llyl lZ-I lTyl l2}.  

then T is asymptotically isometric on C. 

The proof of Theorem 2.3 is essentially to be found in the last paragraph of [4]. 

Note that (2.10) is satisfied (with c = 0) if T is odd. 
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THEOREM 2.4. Let  T :  C---~ C be nonexpansive. If, for a certain x in C, 

cos(x) f iQ,  then T is asymptotically isometric on {x}. 

PROOF. Let  y E toe(x); recall that this means  there  is a subsequence  of { TAx } 

which converges to y. We shall prove 

lim [I T"§ - T"x ]1 = ][ T 'y  - y II 
n 

uniformly in i = 0, 1 , 2 , . . . .  Let  e > 0 and choose m so that II Z ' x  - y II ~ ~/2. 

For n => m we have 

]] T"+'x - Z"x [I =< II T" "+'y - T " - " y  I[ + II T " + ' - ' T ' x  - T"§ H 

+ [I T"-mTmx - T"-~Y [I 

<= II T'y - y II + ell T ' x  - y II 

--< II T ' y  - y [1 + ~. 

Since {ll T ~ - Z ~ x  Ilia=,, is non-increasing, clearly [[ T'y - y II =< II T ~ - Z ~  II- 
Since these est imates are independen t  of i, we are done.  Q.E.D.  

THEOREM 2.5. Suppose T :  C---~ C is affine and nonexpansive and has a 

fixed-point.  Then T is asymptotically isometric on C. 

PROOF. Without  loss of general i ty we may assume 0 E C and T(0) = 0. Since 

C is convex,  Ho: = span C consists of all points of the form x = A.  ( x , -  x2) 

(A > 0, x,, x2 ~ C). Defining T,,x = A �9 (Tx,  - Tx2), we readily see that T,, is a 

well-defined extension of T which is linear. Moreover ,  To is nonexpansive  since 

II r,,x II = A II Tx, - Txz I! =< A I1 x, - x= [I = II x ]l. 

Ex tend  To to Tj:cl  H,,---, cl Ho by continuity.  Then  7", is linear and nonexpan-  

sive, so T h e o r e m  2.5 now follows from T h e o r e m  2.3. Q .E .D.  

w A c o u n t e r e x a m p l e  

It is easy to prove that w,(x)  is invariant  and minimal  under  T, in the sense 

that for  each y in w , ( x ) , { T " x }  is dense in w,(x) .  This is not the case for o~w(x), 

even for unitary operators .  

EXAMPLE 3.1. Let  F:[0,2~']---~[0,1] be the C a n t o r - L e b e s g u e  function with 

dissection ratio 1/3. Let  {E~} be the resolut ion of the identi ty on the complex 

space L2(0,1) defined by E f t  = f .  Ct0.Ft~t, where  Cs denotes  the characterist ic 



14 R.E. BRUCK Israel J. Math. 

function of the set S. Put T =  f,]" e~*dE,. Then T is unitary (in particular, 

nonexpansive), and we easily see 

. 2 ~  t 

(3.1) (g, r"f) = Jo e-'"*g(F(a))f(F('~))dF('~) 

for all f ,g  in L~(0,1). 

CLAIM 1. {T ~ 1} does not converge weakly to 0, where 1 denotes the constant 

function. We have 

(1, T " I ) =  e- ' "dF(A)  
) 

(3.2) 

= ( -  1)" I~I cos(27rn3 k) 
k - 1  

by Zygmund [20, p. 196]. Taking n = 3", we see that 

(1, T 3~ 1) = - lzI cos (2~'3 k), 
k - 1  

a nonzero constant independent of m, thus precluding the weak convergence of 

T"I  toO. 

CLAIM 2. {T"('I}~-,, converges weakly to 0, where n ( j ) =  3J[3J/41 (here [. ] 

denotes the greatest integer function). Consider any interval of the form 

I = [2zr (k-  l)3 ~, 2zrk3 a] (k, d positive integers, I N k  <-3~). By (3.1), 

f~ e ) (C~m, T" 1) = -'vm ~ i ~ d F ~  ~ 

(3.3) 

= f, e-'"*dF("~) 

since F 'F(I)\I  consists of at most two intervals on which F is constant. Now 

the form of the Cantor set, and of the Cantor-Lebesgue function, guarantees 

that either (a) F is a constant on I, or (b) F ( s ) =  F(s + ( k -  1)3-a)+ const for 

0---s_-<3 -~. Moreover, for such s we have F(3ds)=2aF(s). In case (a), 

(Cv.), T" 1) = 0; in case (b), we find by a change of variable 

e-'"*dF(A ) = ix , e-'"'dF(t) 

(3.4) 

= 2-al.t ( '  e-~.S."dF(s ) 
do 
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for s o m e / x  with I P- 1 = 1. For j _-> d, n(j)3 d is an integer, hence by (3.2), (3.3), 

and (3.4), 

I(C~(,), T"("I)I = c" kiwi cos(27rn(j)3 d-k) 

for c / 0  independent of j. By using only the term k = 2 1 -  d we see that 

j (C~(,,, T"("I)t N C" I COS (27r3 '[3J/4l) l. 

But lim, 2~'3 J[3~/4] = 7r/2, so 

(3.5) lim (Ca(,), T"(J)I) = 0. 
J 

Since F maps [0,2~]  onto [0,1] continuously, the set of C~(,) spans a dense 
subset of L2(0,1). Since {T"~ is bounded,  (3.5) therefore implies T"~ ~ 0 as 
'-----)30 

By Claim 2, 0 E  tow(x); by Claim 1, ~ o ~ ( x ) / { 0 } .  Here we have an example 
where ww(x) properly contains a fixed-point of T; hence is surely not minimal 

under T. 
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