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ABSTRACT 

The Hausdorff dimension of the range of an arbitrary subordinator is exactly 
determined in terms of the rate of linear drift and the Levy measure of the 
subordinator. This generalizes the result of Blumentha! and Getoor: that 
for a stable subordinator of index 6, the dimension of the range is o. 

1. Introduction. Let T(s), s ~ O, be a subordinator, i.e. a real-valued random 
process having stationary, independent increments and a.s. increasing sample 
paths, defined on a probability space (fl ,~' ,  P). We may assume that T(0) = 0 a.s. 
and that the paths of T(s) are right continuous [2]. Such processes are characterized 
by the Laplace transform E(e -~r(s)) which, for subordinators, takes the form 
E(e -~r~,)) = e -~g(~), where g(2) = u2 + j'~ (1 - e-~Y)n(dy) is the subordinator 
exponent. The constant ~ ~ 0 is the rate of linear drift and the measure n is the 
L(vy measure of T; cf. ['5, p. 31-32]. The purpose of this paper is to determine 
the Hausdorff dimension of the range of T(s) in terms of the parameters • and n. 

Define H(x) = n(x, oo). From the finiteness of g(2) it follows that  H(x) is finite 
on (0, oo) and j'~ H(x)dx < oo. Further, H is nonnegative, nonincreasing, and 
right continuous on (0, oo). The main result is the following: 

THEOREM. Let T be the subordinator with exponent g(;O, and let Q = Q(o~) 
be the range of T(s,to), s ~_ O. Then 

(i) if  a > 0 ,  d i m Q = l  a.s. 
(ii) i f ~ = 0 ,  d i m Q = o ' a . s .  

where tr = sup {? < 1 : x 7-1 S~H(y)dy ~ oo a s  x -~ 0}, and dim Q denotes the 

Hausdorff dimension of Q. 

This generalizes a result of Blumenthal and Getoor [13 on stable subordinators, 
and improves a further result of theirs [2] in the general case. In [2"] it was shown 
that dim{T(s):0 < s < 1} > tr', where o" = sup{? < 1 :2-~g(2)~  oo as A ~  oo}. 
The inequalities 
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f? fo e-121-~ H(y)dy <= 2-7g(2) = 2 I-~ e-XYH(y)dy 

i ,t/x 
(1 + e-1)~. 1-~ J o  H(y)dy 

show that a = a ' ,  and thus Blumenthal-Getoor's lower bound is actually the 
dimension. For the sake of completeness, we will give a new proof of the fact that 
dim Q ~ a. Finally let us mention that in effect we have determined the dimension 
of the zero set for a large class of Markov processes, including those covered by the 
theory of local times as in [3]. 

In §2 we dispose of two easy cases which arise, and then outline the method 
to be used in the remaining cases. §3 contains a brief description of semilinear 
processes - -  the main tool in the proof of the theorem - -  and in ~ we complete 
the proof. 

2. Preliminaries. We refer the reader to [5, p. 53] for the definition of Hausdorff 
/J-dimensional measure and Hausdorff dimension for linear point sets. 

Let us first prove the theorem in two special cases. 

Case 1. H(0 + ) < oo, ~ > 0.Using the IAvy decomposition of T(s) into a linear 
part plus a saltus part [5, p. 31], it is easy to see that the graph of T(s) consists of 
a countable collection of line segments of slope ~, and thus Q has positive Lebesgue 
measure. Therefore dim Q = 1. The details here and in Case 2 are left to the reader. 

Case 2. H(0 + ) < ~ ,  ~ = 0. In this case the graph of T is a countable collec- 
tion of horizontal line segments, so Q is countable and dim Q = 0. 

For the rest of the paper we assume that H(0 + ) = oo. It is shown in [4, p. 63] 
that the subordinator T with exponent g(2) may be regarded as the inverse local 
time at zero of the semilinear strong Markov process xt with characteristic 
{ , ,n (x) )  (see §3 below). Roughly speaking, if  we define the random function 
~ t  = t - sup (Q r~ [0, t]) then there is a strongly Markov process X = (xt, ..4~t, P"), 
x ~ 0, such that xt under pO is equivalent to ~t under P. Thus, if Z = {t:xt = 0} is 
the zero set ofxt ,  we have in effect Z = 0.  Since 0/Q is countable, dimQ = dimZ. 
We therefore study xt as the primary process. This connection between sub- 
ordinators and semilinear processes is similar to that between stable processes 
of  index y, 1 < y < 2, and stable subordinators of index/J = 1 - 1/y. The latter 
was exploited (though in the opposite direction) in [7]. 

3. Semilinear Processes. These processes were first studied in [6] under the name 
Markov random sets, and later in [4], from which the following is obtained. A 
Markov process X = (xt,.W~t,P~), with state space E an interval [0, a), a < oo, 
is semilinear if  its trajectories have the following shape: let Z be the zero set of xt 
and let z be the hitting time of {0}, z = inf(t  > 0: xt = 0). Z is assumed to be 
dosed. Then 
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x t= t - s u p ( Z  ~ 1-0,t]) p O _ a . s .  

Israel J. Math., 

x + t  t < z  
x t= f P~ - a.s., O < x e E .  

" t - s u p ( Z n  [O,t]) t >  

When H(0 + ) = oo, z = 0 P* - a.s., so xt is well-defiined. Each trajectory is thus 
an irregular saw tooth with infinitely many teeth in any time interval [0, t], and 
the value of  xt equals the time elapsed since the last zero before time t. 

The characteristic of the semilinear process xt is the pair {fl, h(x)} determined 
(up to a positive multiplicative constant) by 

P~(z > t) = 

= 

h(x + t) 
h(x) 

f 
x 

+ h(y) dy 
o 

h(x) 

(0<x E) 

where z(x) is the hitting time of  {x}, x ~ E. The constant fl is nonnegative, and 
h(x) is a nonnegative, nonincreasing, right continuous function on E such that 
f~ h(y) dy < oo if x ~ E. Conversely, for each pair {fl, h(x)), fl >>- O, h(x) as des- 
scribed, and with h(0 + ) =  oo, there is a unique strongly Markov semilinear 
process xt with characteristic {fl, h(x)}. For any constant c > 0, the pairs {fl, h(x)} 
and {cfl, ch(x)) determine equivalent processes. With no loss of generality we can 
assume that E = [0, oo), h(x) > 0 for x > 0, and h(1) = 1. 

LEMMA 1. [4, p. 46]. For x > O, 

-- ,,!,X 
EO(e-~,(~)) = e 

1 + - - ~  + - ~  foi i xz - 1) dh (z) 

It is shown in I4, ch. 5] that, if x t is a strongly Markov semi-linear process with 
characteristic {fl, h(x)}, where h(0 + ) = ~ ,  then xt has a local time At at zero. 
At may be characterized as the unique continuous additive functional of  xt whose 
set of increase points coincides with the zero set Z of Xr 

The inverse local time of xt is the process T(s)= inf{t:At > s}. The process 
T(s) has right continuous, a.s. increasing sample paths, and T (0 )=  0 p o _  a.s. 
Finally, under the measure pO, T is a subordinator with exponent 

f 0  ° 
f12 + (1 - e -~') m (dy) 
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with m the measure on (0° ~ )  determined by h(x)= re(x, ~ ) ;  see [4, p. 63]. 
The range Q of T satisfies ~ = Z. Thus, if we start with the semilinear process 
x t with characteristic {~, H(x)}, we get as the inverse local time the subordinator T 
with drift g and L6vy measure n as in §1. For the remainder of the paper x, will 
be strongly Markov semilinear, with characteristic {~,H(x)}, H(x) > 0 for x > 0, 
H(1) = 1, H(0 + ) = 0% and At will be the local time at zero for x,. 

4. Proof of the theorem for H(0 +)  = oo. Suppose first that • > 0. It is known 
[4, p. 86] that m(Z n [0, t]) = A ,  where m is Lebesgue measure. But H(0 + ) = oo 
implies T(s) > 0 for s > 0, hence A, > 0 for t > 0. Thus Z has positive Lebesgue 
measure and dim Z = 1. 

Suppose now that ~ = 0. 

LEMMA 2. I f  ~ < tr, then limb, o h - r ( A t + h  - At) = 0 po _ a.s. for  each t > O. 

Set G(t)= E°At. Then G(t) is a nondecreasing continuous function which 
determines a measure on [0, ~ )  which we denote again by G. The Laplace-Stieltjes 
transform of G is given by 

fo ~° 1 t~(2) = e-4' G(dt) = g(2) 

where g(2) is the exponent of T, cf. [4, p. 63]. Clearly e-lG(1/2) < l/g(2). 
Moreover, G(t + h) - G(t) < G(h) for t > 0, h > 0 [-4, p. 68]. 

Now, for t, h fixed, 

:i r' E° r-~d(At+, - At) < h-~E°(At+h - At) + 7 r-~-lE°(At+, - At)dr 
JO 

< h-~G(h) + ~ r -~-1 G(r)dr. 

Let ~ < e be arbitrary, and choose B, ~ < B < a. Since cr -- e '  (see §1), we have 
g(2) > 2 # for sufficiently large 2, hence G(r) = O(r #) as r ~ O. The right member 
of the above inequality is therefore finite, and we conclude 

- A , )  <= f l  r - ' d ( A t + ' - A ' ) ~ O  (h ~,0) P ° - a . s . ,  h-r(A,+ 

which proves I.emma 2. 

By an argument like that following Lemma 4 of [-7] we see that the ~-dimen- 
sional measure of Z n [0,t]  is positive for every t, thus d imZ ~ y. Since y < tr 
was arbitrary, we have proven: dim Z > a. 

It remains to prove the opposite inequality. Because of Lemma 1 it is clear that 
oo > ~(n) 1' oo pO _ a.s., so it suffices to show that dim(Z n [-0,T(n)]) < a for 
n = 1,2, . . . .  We prove this for n = 1, leaving the rest for the reader. (Recall 
~(x) is the hitting time of {x}.) 
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Fix 0 < e < 1 and define Zk = Zk(O to be the kth hitting time of  {e}, Let ak = ak(e) 
be the first zero of  xt after Zk(O. More precisely, 

z 1 = z(e) = inf(t > O:xt = e), zk = Tk-1  -1" "t'l(O1ck_t), 

tro = O , a  k=zk+~(O,k),  k2 -1  

where Ot is the shift operator of the process xt and • is the hitting time of (0}. 
Each of the times z, zk, irk is a stopping time of  the process x r 

Define d,(t) as the number of downcrossings made by xt from e down to 0 during 
the time (0, t]. Notice that d~(t) 2 k iff a k < t, under pO. 

Let I k = Ik(O = Ink- 1, Zk -- el, SO lk is a "random interval" depending on the 
sample path x,. We allow 1 < k < d~(~(1))+ 1. Thus the intervals Ik form a 
covering of  Z c3 [0,~(1)] by dosed, disjoint intervals. Since z(1)< oo p O  a.s. 
(Lemma 1), Z (3 I0, T(1)I is a.s. compact. Also, Z (3 [0, T(1)] has Lebesgue measure 
zero I'4, p. 104], hence 

max [ I k ] ~ 0  P ° - a . s .  as ~ 0 ;  
1 < k < K e  

here Ks - d~(z(1)) + 1, and I I [ denotes the length of the interval I. 

Let 0 = fl < 1, and put A,,p = El--'2 It, l ~. If  E°(A,,a)~ 0 as ~ 0  through an 
appropriate sequence e then A,.~, a ~ 0 p O _  a.s. for some subsequence e.k. It 
follows from this that the fl-dimensional measure of  Z n [0,~(1)] is zero, and 
therefore dim(Z o [0, z(1)']) _-< ft. Thus we must show that, for every fl > a, 
E°(A,..t) -~ 0 for a suitable sequence 5. (which may depend on fl). We can assume 
a < 1; otherwise we would have dim Z = 1 automatically. 

LV.MMA 3. For f ixed ~,fl, E°(A,.p) = H(e) ~ t P  d#~(O, where 1~, is the measure 
on I'0, oo) with Laplace-StieItjes transform 

Io p,(~) = 1/{1 + ( ~ ( 0 ) - 2  (e - "  - 1)dH(z)}.  

Notice first that I I j l = x j - 8 - a j _ l = X l ( 0 ~ j _ , ) - e ,  since xj=aj-X+~l(0, ,_~).  
Now 

(' ) r.°(~..,) = Y, E ° Z (~ , (0 , ,_~) -~) ' ;a . (~(1) )=  k -  1 
kffi l  \ j = l  

= ~, Z E°((xt(O,,_,) - e) 's; d , ( ' c ( X ) )  - -  k - 1 )  
J=2 ~_1 

eO 

= Z E°((~IO, , ) -  0 p; ~j ~_ ~(1)) 
/ = 0  

= Eo(~1 _ ~)p ~ eo(~j ~_ ~(1)). 
J=O 
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The last line follows by the strong Markov property applied to a j, and the fact 
that xCj = 0. 

Since 
P°(trj <= T(1)) = e ° ( t r l  -F o ' j_  1(0¢,) - o" 1 4- z(1, 0,,), al  -<_ ~(1)) 

= P°(trj_l < z(1))P°(trl < x(1)) 

by the strong Markov property, we have P°(trj < z(1))= (P°(a x < z(1))) j. But 
P°(trt _-< z(1)) = P°(z(0,,) _-< 1 - e) = 1 - H(1)/H(e) (see §3), so that the sum of  the 
above series is H(e). 

Let Q~ be the distribution function of ~t = z(e). Because of  the shape of  the 
trajectory xt, it is clear that zx ~ e pO _ a.s. Thus 

fo E°(zl - e) # = (t - e) # dQ~(t) = t # d#~ (t), 

where d#~(t) = dQ~(t + e). Lemma 3 now follows from Lemma 1. 
Write v, = H(O/z~. By Lemma 3, if  fl < 1, 

E°(A,.p) = tPdv~(t) 

The integral is finite since E°(~I) < oo. 
Fix 1 > fl > tr, and choose ~ > 0 such that fl - 6 > a. By definition of a, there 

is a sequence en ~ 0 such that 

g p - a -  1 
n 

Thus e~-x f~"H(y)dy~  O. We show 
Now, for 0 < ~ < 1, 

f/ y-P te -ty dv~ (t) dy 

y _ p ( _  d " 
-d-yy ~'(Y)) dy. 

where Hx(z) = - H ( z )  and 

Io' d ~ z e - ' d H l ( z )  

- d y  v ,  = 

f/ ( :v) f/ f/"+f/ y-P - f. d y =  + - A + B + C ;  
le 

fo 1 fo" l fozdHx(z ) '  A < y-B ze-Y~dHt(z)dY < 1 -  fl 

K (1 + (H(O) -1 (e -y" - 1)dH(z)) 2 

K " ) d  H(y y < M oo. 

that E°(A~.,~) ~ 0. 
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Thus A - ,  0 as ~ --, 0. As for B, we have 

B<Jl Y-# Io e - ' * ( 1 - y z ) H ( z ) d z d y  < ^8 # - 1 [  H ( z ) d z .  
= ~ =I-/# Jo 

By our choice of ~,, B -~ 0 as e ~ 0 through the sequence ~,. Finally, integrating C 

by parts, we obtain 

(1) Io' C < ~#0~ < 8 PH(~) < ~#-1 H(y )  dy.  

Therefore C-~ 0 as ~ ~ 0 through the sequence ~n. Thus E°(A,,,#)~ 0, and the 
theorem is proven. 

A similar proof  yields, for example, the following" 

COROLLARY. Let  T(s) be a stable subordinator o f  index o (i.e. g(2) --- 2"). Then  

the a-dimensional  measure o f  the range o / T  is f inite.  

In fact, it follows from [7] that "f ini te"  may be replaced by "ze ro" .  We have 
included this result merely to indicate some possibilities in computing Hausdorff 

measures for subordinators. 
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