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FARTHEST POINTS IN WEAKLY COMPACT SETS

BY
KA-SING LAU

ABSTRACT

Let S be a weakly compact subset of a Banach space B. We show that the set
of all points in B which have farthest points in S contains a dense G, of B.
Also, we give a necessary and sufficient condition for bounded closed convex
sets to be the closed convex hull of their farthest points in reflexive Banach
spaces.

1. Introduction

Let B be a Banach space and let S be a bounded subset in B. We define a real
valued function r: B—> R by

r(x)=sup{flx —z|:z2 €S}

this is convex (it is the supremum of convex functions) and continuous, in fact,
[r(x)—r(y)| =|lx —y|. A point z €S is called a farthest point of S if there
exists an x in B such that ||x — z|| = r(x). In [2], Edelstein showed that if B is a
uniformly convex space and S is normed closed, then the set

D={x€B:|x—z|=r(x) forsome :€ES}

is dense in B. The theorem was generalized by Asplund [1] to reflexive locally
uniformly convex spaces; moreover, the set D was shown to contain a dense
G; in B. In Section 2, we consider the subdifferential of the convex function r
and, by a category argument, we can show that the theorem is true for any

weakly compact subsets of a Banach space. In particular, our result implies
Asplund’s theorem.

In Section 3, we consider the Banach spaces B such that every bounded
closed convex subset of B is the closed convex hull of its farthest points. A
Banach space B is said to have property (I) if every bounded closed convex set
in B is the intersection of a family of closed balls of B[4], [5]; we show that, if
B is reflexive, then the above two properties are equivalent.
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2. The main theorem

Let B be a Banach space and let S be a bounded subset of B. For each x € B,
we define the subdifferential of the convex function r at x by

ar(x)={x*eB*: (x*,y—-x)+r(x)=r(y) forall y€ B}.

Lemma 2.1. Let B be a Banach space and let S be a bounded subset in B.
Then for x € B, each element of dr(x) has norm less than or equal to 1.

Proor. For each x € B, x* € dr(x), we have
(x*,y- x)+r(x)=r(y) forall y€eB.
Hence
x*, y—x)=r(y)-r(x)=(y—x| forall y€B,
e [x*|=1.
It is clear from the lemma that, for any x in B, x*€ dr(x), we have

inf,es(x*,2 —x)= — r(x).

LEMMA 2.2. Let B be a Banach space and let S be a bounded subset in B.
Then the set

F={x €B:inf,es(x* z —x)> —r(x) forsome x*€ ar(x)}
is of first category in B.

Proor. L.et

F.={x€B:inf(x*:—-x)= —r(x)+ni forsome x*€ar(x)},
:CS

then F = U7Z_, F.. We will show that, for any n, (i) £, is a closed subset of B,
(i) F, has empty interior.

(i) Let {x..}.-: be a sequence in F, which converges to an x in B. For each
m, choose x}% € ar(x.) such that

. l
inf(x% z—x.)= —r(x.)+ —.
tES n

Since [|[x%[ =1 for all m (Lemma 2.1), without loss of generality, we assume
that {x ¥}~ _| converges weak* to x*. We have, for any y € B,



170 KA-SING LAU Israel J. Math.,

[ Y = Xm) = (x*,y —x)]
S[(xhy —xm)—(xhy )|+ [(x Xy —x)—(x*y —x)|
= [xm —x [+ [k —x*y —x)].
This shows that {{x %, y — x. )} -1 converges to (x*, y — x). Since x X € or(x..),
(x%y —xn)+r(x.)=r(y) forall y€EB,
hence it follows that
(x*,y—-x)+r(x)=r(y) forall y€B,
i.e., x* € dr(x). Moreover,

(XX z2—xm) = —r(x,,)+% forall z €S,

implies that
(x*z—x)zZ —r(x)+ -'ll— forall z €S,

i.e., x EF, and F, is a closed subset of B.

(ii) Suppose that some F, has nonempty interior; then there exists an open
ball U in B of radius 2A and center at y, such that U CF.. Let e = A /4(1 + A)k
and choose z,€ S such that

r(yo) — & =| yo— zo|[ (= r(yo)).
Let

xo=)’o+A()’o_Zo)-

Choose x, € U C F. such that || x, — xo|| < . Then there exists x* € ar(x,) such
that

inf(x*,z-x)= —r(x)+ %
zES

We shall show that
(x¥,yo—x)) +r(x;) > r(yo).

This will contradict the fact that x % is a subdifferential of r at x, and complete
the proof. Indeed,

r(yo)—r(xy)

<<]l/\ ||x0—zo”+s)—r(xl)

< ( 1+1,\ r(x.)+2£) — r(x)
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A
TSl
<L<(x* z —x)—l>+2£
:]+A 1540 1 k
A

<{x¥ yo—Xxi)— a+ ik +4¢

=<X1‘,)’0‘X|)-

THEOREM 2.3. Let S be a weakly compact subset in a Banach space B. Then
the set

{x EB:|jx —z||=r(x) forsome z€S}

contains a dense Gs of B. In particular, the set of farthest points of S is
nonempty.

Proor. Let F and F, be defined as in Lemma 2.2 and let D = B\ F. Then
D=B\ L_JI Fn= O (B\F,‘),

where each B\ F, is an open, dense subset in B. Hence D is a dense G, in B.
For each x € D, x* € dr(x), we have

inf(x*,z—-x)=—r(x).
TES
By weakly compactness of S, there exists a point z,€ S with (x*,zo—x)=
—r(x). Hence
r(x)= || x —zof| Z|(x* zo—x)| = r(x).

This shows that D C{x :|x —z || = r(x) for some z € S§}.

CoroLLary 2.4. If B is a reflexive Banach space, then for every bounded,
weakly closed subset in B, the set

{x EB:||x —z|=r(x) forsomez € S}
contains a dense Gs subset of B and hence the set of farthest points of S is

nonempty.

CoroLLARY 2.5 (Asplund). Let B be a reflexive locally uniformly convex
space, then Corollary 2.4 holds for every bounded, norm closed subset S in B.
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Proor. By the locally uniformly convexity, each farthest point of conv S is
a strongly exposed point of conv S and hence is contained in S. It follows that
the sets of farthest points of S and conv S coincide. Hence we can apply
Corollary 2.4 on conv S.

3. Closed convex hulls of farthest points

In this section, we assume that S is a bounded closed convex subset of a
Banach space. Let b(S) denote the set of farthest points of S. Even in the
two-dimensional spaces, the set S may fail to be the closed convex hull of its
farthest points. (E.g., give R? the maximum norm and let S =
{(x,y):x*+y*=1})

A Banach space B is said to have property (I) if every bounded closed
convex set in B can be represented as the intersection of a family of closed
balls. This definition was introduced by Mazur [4] and was studied by Phelps
[5]. The second author showed that there is a large class of Banach spaces
(which includes those spaces whose duals are locally uniformly convex) with
property (I). In [2], Edelstein proved that in a uniformly convex space with
property (I), S is the closed convex hull of b(S). However, the standing
hypothesis that B is uniformly convex was used only to show that b(S) is
nonempty. Hence, by Theorem 2.3 and the proof of Theorem 2 in [2], we have

ProposiTioN 3.1 (Edelstein). Suppose B is a Banach space with property
(I); then every weakly compact convex subset of B is the closed convex hull of
its farthest points.

In the following, we shall prove the converse of the above proposition in the
reflexive spaces.

LemMA 3.2. Let B be a Banach space. Suppose there exists a bounded
closed convex subset S of B such that

M {C: C closed ball containing S} 2 S,

then there exists a bounded closed convex subset W with nonvoid interior such
that

M {C: C closed ball containing W} ; w.
Proor. Let

S,= M {C: C closed ball containing S}.
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Suppose S.; S. let x,€ S\\\S. By the separation theorem, we can find an
Xx* € B* such that sup x*(S) < x*(x,). Let W, be a bounded closed convex set
with nonvoid interior and sup x *(W,) < sup x *(S). Let W be the closed convex
hull of S and W,. then x, & W and it is clear that

X, €S,/ C M {C:C closed ball containing W},

THEOREM 3.3. Suppose B is a reflexive space ; then B has property (I) if and
only if every bounded closed convex subset in B is the closed convex hull of its
farthest points.

Proor. The necessity follows from Proposition 3.1. To prove the suffi-
ciency. let S be a bounded closed convex subset of B and let

Si= M {C: C closed ball containing S} .

Suppose S, ; S. therc exists a point x, € S,\ S. By the above lemma, we can
assume that S has nonvoid interior: let v, be an interior point of S (hence an
interior point of S) and choose z, such that

..|:/\X[+(l_/\)}’].

with0 <A <l and z, £ S. Note that z, is then an interior point of S,. so are any
points of the form

*) az,+(l-a)x, 0<a =1, x€S8§.

Let S:=conv (S U{z\}), we claim that b(S.). the set of farthest points of S.. is
contained in S. Indeed, for any x € B, consider the function

rex)=sup{llx —v|:v €S},

the ball {v € B :|x — y||=r(x)} contains S and hence contains S, {(by defini-
tion). Since each point of the form (*) is an interior point of S, its distance to x
is less than r(x) and cannot be a farthest point. It follows that b(S,) C S, hence
o & convb(b ). this contradicts that every bounded closed convex set in B is
the closed convex hull of its farthest points, and the proof is complete.
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