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FARTHEST POINTS IN WEAKLY COMPACT SETS 

BY 

KA-SING LAU 

ABSTRACT 

Let S be a weakly compact subset of a Banach space B. We show that the set 
of all points in B which have farthest points in S contains a dense G~ of B. 
Also, we give a necessary and sufficient condition for bounded closed convex 
sets to be the closed convex hull of their farthest points in reflexive Banach 
spaces. 

1. Introduction 

Let  B be a Banach  space and let S be a bounded  subset  in B. We define a real 

valued funct ion  r :  B --~R by 

r(x) = sup{l lx - z II :z  ~ S}; 

this is c o n v e x  (it is the s u p r e m u m  of  convex  funct ions)  and cont inuous ,  in fact,  

I r ( x ) -  r(y)l  <= IIx - y II. m point  z • S is called a farthest point of  S if there 

exists an x in B such that  llx - z II = r(x). In [2], Edels te in  showed  that if B is a 

un i fo rmly  c o n v e x  space  and S is no rmed  closed,  then the set 

D = { x ~ B : l l x - z l l = r ( x )  for  some z E S }  

is dense  in B. The  theorem was  general ized by Asplund  [I] to reflexive locally 

un i formly  convex  spaces ;  moreove r ,  the set D was shown to conta in  a dense  

G6 in B. In Sect ion 2, we cons ider  the subdifferential  of  the convex  funct ion  r 

and,  by a ca tegory  a rgument ,  we can show that  the theorem is t rue for  any  

weak ly  c o m p a c t  subsets  of  a Banach  space.  In part icular,  our  result  implies 

Asp lund ' s  theorem.  

In Sect ion 3, we cons ider  the Banach  spaces  B such that eve ry  bounded  

closed c o n v e x  subset  of  B is the c losed convex  hull of  its far thes t  points.  A 

Banach  space  B is said to have property (I) if every  bounded  closed convex  set 

in B is the in tersect ion of  a family  of  c losed balls of  B[4],  [5]; we show that,  if 

B is reflexive, then the above  two proper t ies  are equivalent .  
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2. The main theorem 

Let  B be a Banach  space and let S be a bounded  subset  of  B. For  each  x G B, 

we define the subdifferential of  the convex  funct ion  r at x by 

O r ( x ) = { x * E B * : ( x * , y - x ) + r ( x ) < = r ( y )  fo ra l i  y E B } .  

LEMMA 2.1. Let B be a Banach space and let S be a bounded subset in B. 

Then for x E B, each element of  Or(x) has norm less than or equal to 1. 

PROOF. 

Hence  

For  each x E B, x* ~ Or(x), we have 

( x * , y -  x ) + r ( x ) < = r ( y )  fo ra l l  y E B .  

(x*, y - x ) = ~ r ( y ) - r ( x ) < = l l y - x l l  fo ra l l  y E B ,  

i .e,  I Ix* l l_ -  < I. 

It is clear  f rom the l emma that,  for  any  x in B, x * E O r ( x ) ,  we have 

inf,~s(X *, z - x)  >= - r(x ). 

Let B be a Banach space and let S be a bounded subset in B. LEMMA 2.2. 

Then the set 

F = {x E B :inf,~.~ (x* , z  - x ) >  - r(x)  

is of  first category in B. 

PROOF. l .et 

F, = {x E B : i n f ( x * , z  -x)>= - r ( x )+  1 
z c $  n 

for  some  x* ~ Orfx )} 

for  some  x * E O r ( x ) } ,  

then F = ~.J~=, F,. We will show that,  fo r  any  n, (i) F,  is a c losed subset  o f  B, 

(ii) F, has e m p t y  interior. 

(i) Let  {x,.}~,=, be a sequence  in F, which conve rges  to an x in B. For  each 

m, choose  x*  E Or(x,,) such that 

inf<x*, z-x,,>>= - r ( x , , ) +  I 
zES n 

Since [[x*[[ = 1 for  all m ( L e m m a  2.1), wi thout  loss of  general i ty ,  we assume 

that {x*}~,_t conve rges  weak* to x*.  We have,  fo r  arty y E B, 
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I (x* ,y  - -Xm) - - ( x* , y  --X) I 

~ ] ( x * , y  -- xm>--(x*, y -- x) I  + I(x*, y -- x ) - - ( x * ,  y -- x>I 

--< IlXr, --X I1+ --X>I- 

This shows that {(x *, y - x,. )}7. -, converges  to (x *, y - x). Since x * E Or(Xr, ), 

( x * ~ , y - x , , ) + r ( x m ) < = r ( y )  fora l l  y E B ,  

hence it follows that 

( x * , y - x ) + r ( x ) < - r ( y )  fora l l  y E B ,  

i.e., x* E Or(x). Moreover ,  

(x*,z -x,.)>= -r(x,.)+ I__ 
II 

implies that 

for all z E S ,  

( x * , z - x > > = - r ( x ) +  1 fora i l  z E S ,  
n 

i.e., x E F. and F. is a closed subset  of B. 

(ii) Suppose that some Fk has nonempty  interior; then there exists an open 

ball U in B of radius 2A and center  at yo such that U _C Fk. Let  e = A/4(1 +A)k  

and choose Zo E S such that 

r(yo) - e <= II Yo - Zoll( <= r(yo)). 
Let  

Xo = Yo + A (yo - Zo). 

Choose x, E U _C Fk such that ]1 x, - xo I] < e. Then there exists x *, ~ ar(x,)  such 

that 
1 

i n f (x* , z  - x,) >= - r(x,)  + -~. 
z ~ S  

We shall show that 

(x*, y o -  x,) + r(x,)  > r(yo). 

This will contradict  the fact  that x* is a subdifferential of r at x, and comple te  

the proof.  Indeed, 

r(yo)- r(x.) 

< ( l - - ~ l l x o -  Zol] + E ) -  r fx , )  

( '  ) < T - ~ - - ~ r ( x , ) + 2 e - r ( x , )  
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THEOREM 2.3. 

the set 

A 
- - - r ( x , ) + 2 e  

I + A  

< ( x * , z o - X , ) -  + 2 e  
= I + A  

A 
< ( x * , y o - x j ) -  (I + A)~----k + 4 e  

= ( x * , y o - x , ) .  

Let S be a weakly compact subset in a Banach space B. Then 

{ x E B ' l l x - z H = r ( x )  f o r s o m e  z E S }  

contains a dense G~ of B. In particular, the set of farthest points of S is 

nonempty. 

PROOF. L e t F a n d F ,  be defined as in Lemma 2.2 and let D = B \ F. Then 

D = B \  U F . =  ~ ( B \ F . ) ,  
n = l  n = l  

where each B \ F, is an open,  dense subset in B. Hence  D is a dense G~ in B. 

For each x E D, x* E at(x), we have 

inf (x*, z - x )  = - r(x) .  
z E S  

By weakly compac tness  of S, there exists a point z o E S  with ( x * , z o - x ) =  

- r(x). Hence  

r(x) ~ IIx - z011-  -> I<x*,zo- x)l = r(x) .  

This shows that D C_{x : l l x - z  H- - r (x )  for some z E S } .  

COROLLARY 2.4. If B is a reflexive Banach space, then for every bounded, 

weakly closed subset in B, the set 

{x E B :]Ix - z 11= r(x ) for some z @ S} 

contains a dense G8 subset of B and hence the set of farthest points of S is 
nonempty. 

COROLLARY 2.5 (Asplund). Let B be a reflexive locally uniformly convex 

space, then Corollary 2.4 holds for every bounded, norm closed subset S in B. 
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PROOF. By the locally uniformly convexity, each farthest point of conv S is 

a strongly exposed point of conv S and hence is contained in S. It follows that 

the sets of farthest points of S and conv S coincide. Hence we can apply 

Corollary 2.4 on conv S. 

3. Closed convex hulls of farthest points 

In this section, we assume that S is a bounded closed convex subset of a 

Banach space. Let b(S )  denote the set of farthest points of S. Even in the 

two-dimensional spaces, the set S may fail to be the closed convex hull of its 

farthest points. (E.g., give R2 the maximum norm and let S = 
{(x,y):x2 + y 2<- 1}.) 

A Banach space B is said to have property (I) if every bounded closed 

convex set in B can be represented as the intersection of a family of closed 

balls. This definition was introduced by Mazur [4] and was studied by Phelps 

[5]. The second author showed that there is a large class of Banach spaces 

(which includes those spaces whose duals are locally uniformly convex) with 

property (I). In [2], Edelstein proved that in a uniformly convex space with 

property (I), S is the closed convex hull of b(S).  However, the standing 

hypothesis that B is uniformly convex was used only to show that b(S)  is 

nonempty. Hence, by Theorem 2.3 and the proof of Theorem 2 in [2], we have 

PROPOSITION 3.1 (Edeistein). Suppose B is a Banach space with property 

(I); then every weakly compact convex subset o[ B is the closed convex hull of 
its [arthest points. 

In the following, we shall prove the converse of the above proposition in the 
reflexive spaces. 

LEMMA 3.2. Let B be a Banach space. Suppose there exists a bounded 

closed convex subset S o [  B such that 

n {c: c closed ball containing S} ~ S, 

then there exists a bounded closed convex subset W with nonvoid interior such 

that 

n {c: c closed ball containing W} ~ W. 

PROOF. Let 

S, = n {c :  c closed ball containing S}. 
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Suppose S~ ~ S, let x, E S , \ S .  By the separat ion theorem, we can find an 

x * E  B* such that s u p x * ( S ) <  x*(x~). Let W0 be a bounded closed convex  set 

with nonvoid interior and sup x *(W,) < sup x *(S). Let W be the closed convex 

hull of S and W,,. then x, ~ W and it is clear that 

x, E S, C ["7 {C : C closed ball containing W}. 

THEOREM 3.3. Suppose  B is a reflexive space  ; then B has proper ty  ( I )  if and  

only  if every bounded  closed convex  subset  in B is the c losed convex  hull o f  its 

far thes t  points.  

PROOF. The necessity follows f rom Proposit ion 3.1. To prove  the suffi- 

ciency, let S be a bounded ctosed convex subset  of B and let 

S, = f"l {C : C closed ball containing S}. 

Suppose  S, ~ S. therc exists a point x,  ~ S , \ S .  By the above  lemma, we can 

assume that S has nonvoid interior: let y, be an interior point of S (hence an 

interior point of S,) and choose z, such that 

z, = Ax, + (1 - A ) y ~ .  

with O < A  < 1 and z, Z S. Note that z, is then an interior point of S~, so are any 

points of the form 

(*) o~z ,+( I -o~)x ,  O < a = < l .  x E S .  

Let S._ = c o n v ( S  U {z,}). we claim that b(S . ) ,  the set of farthest  points of S_.. is 

contained in S. Indeed, for any x E B. consider the function 

r(x)=sup{l[x - y  I1 

the ball {y E B : II x - y II --< r (x  ~} contains s and hence contains S~ (by defini- 

tion). Since each point of the form (*) is an interior point of 5;,, its distance to x 

is less than r(x  ) and cannot be a farthest  point. It follows that b (S,_)~ S, hence 

z, ~ cony b(S:) :  this contradicts  that every bounded closed convex set in B is 

the closed convex hull of its farthest  points, and the proof  is complete.  
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