FARTHEST POINTS IN WEAKLY COMPACT SETS

BY

KA-SING LAU

ABSTRACT

Let S be a weakly compact subset of a Banach space B . We show that the set of all points in B which have farthest points in S contains a dense G_{α} of B. Also, we give a necessary and sufficient condition for bounded closed convex sets to be the closed convex hull of their farthest points in reflexive Banach spaces.

1. Introduction

Let B be a Banach space and let S be a bounded subset in B . We define a real valued function $r: B \rightarrow R$ by

$$
r(x) = \sup\{\|x - z\| : z \in S\};
$$

this is convex (it is the supremum of convex functions) and continuous, in fact, $|r(x) - r(y)| \leq ||x - y||$. A point $z \in S$ is called a *farthest point* of S if there exists an x in B such that $||x - z|| = r(x)$. In [2], Edelstein showed that if B is a uniformly convex space and S is normed closed, then the set

$$
D = \{x \in B : ||x - z|| = r(x) \text{ for some } z \in S\}
$$

is dense in B. The theorem was generalized by Asplund [I] to reflexive locally uniformly convex spaces; moreover, the set D was shown to contain a dense G_6 in B. In Section 2, we consider the subdifferential of the convex function r and, by a category argument, we can show that the theorem is true for any weakly compact subsets of a Banach space. In particular, our result implies Asplund's theorem.

In Section 3, we consider the Banach spaces B such that every bounded closed convex subset of \vec{B} is the closed convex hull of its farthest points. A Banach space B is said to have *property* (I) if every bounded closed convex set in B is the intersection of a family of closed balls of $B[4]$, [5]; we show that, if B is reflexive, then the above two properties are equivalent.

Received April I0, 1975

Vol. 22, 1975 FARTHEST POINTS 169

2. The main theorem

Let B be a Banach space and let S be a bounded subset of B. For each $x \in B$, we define the *subdifferential* of the convex function r at x by

$$
\partial r(x) = \{x^* \in B^* : \langle x^*, y - x \rangle + r(x) \le r(y) \quad \text{for all} \quad y \in B\}.
$$

LEMMA 2.1. *Let B be a Banach space and let S be a bounded subset in B. Then for* $x \in B$ *, each element of* $\partial r(x)$ *has norm less than or equal to 1.*

Proof. For each $x \in B$, $x^* \in \partial r(x)$, we have

$$
\langle x^*, y - x \rangle + r(x) \le r(y) \quad \text{for all} \quad y \in B
$$

Hence

$$
\langle x^*, y-x\rangle \leq r(y)-r(x) \leq ||y-x|| \text{ for all } y \in B,
$$

i.e. $||x^*|| \leq 1$.

It is clear from the lemma that, for any x in B, $x^* \in \partial r(x)$, we have

$$
\inf_{z\in S}\langle x^*,z-x\rangle\geq -r(x).
$$

LEMMA 2.2. *Let B be a Banach space and let S be a bounded subset in B. Then the set*

$$
F = \{x \in B : \inf_{x \in S} \langle x^*, z - x \rangle > -r(x) \quad \text{for some} \quad x^* \in \partial r(x)\}
$$

is of first category in B.

PROOF. Let

$$
F_n = \{x \in B : \inf_{z \in S} \langle x^*, z - x \rangle \geq -r(x) + \frac{1}{n} \quad \text{for some} \quad x^* \in \partial r(x) \},
$$

then $F = \bigcup_{n=1}^{\infty} F_n$. We will show that, for any n, (i) F_n is a closed subset of B, (ii) F_n has empty interior.

(i) Let $\{x_m\}_{m=1}^{\infty}$ be a sequence in F_n which converges to an x in B. For each *m*, choose $x_m^* \in \partial r(x_m)$ such that

$$
\inf_{z\in S}\langle x^*,\ z-x_m\rangle\geq -r(x_m)+\frac{1}{n}.
$$

Since $||x^*|| \le 1$ for all m (Lemma 2.1), without loss of generality, we assume that $\{x_{m}\}_{m=1}^{n*}$ converges weak* to x^* . We have, for any $y \in B$,

$$
\begin{aligned} \left| \langle x^*, y - x_m \rangle - \langle x^*, y - x \rangle \right| \\ &\leq \left| \langle x^*, y - x_m \rangle - \langle x^*, y - x \rangle \right| + \left| \langle x^*, y - x \rangle - \langle x^*, y - x \rangle \right| \\ &\leq \left| \left| x_m - x \right| \right| + \left| \langle x^*, y - x^* \rangle - x \rangle \right|. \end{aligned}
$$

This shows that $\{(x_m^*, y - x_m)\}_{m=1}^{\infty}$ converges to $\langle x^*, y - x \rangle$. Since $x_m^* \in \partial r(x_m)$,

$$
\langle x_m^*, y - x_m \rangle + r(x_m) \leq r(y) \quad \text{for all} \quad y \in B,
$$

hence it follows that

$$
\langle x^*, y - x \rangle + r(x) \leq r(y) \quad \text{for all} \quad y \in B,
$$

i.e., $x^* \in \partial r(x)$. Moreover,

$$
\langle x_m^*, z - x_m \rangle \geq -r(x_m) + \frac{1}{n} \quad \text{for all} \quad z \in S,
$$

implies that

$$
\langle x^*, z - x \rangle \geq -r(x) + \frac{1}{n} \quad \text{for all} \quad z \in S,
$$

i.e., $x \in F_n$ and F_n is a closed subset of B.

(ii) Suppose that some F_k has nonempty interior; then there exists an open ball U in B of radius 2 λ and center at y₀ such that $U \subseteq F_k$. Let $\varepsilon = \lambda/4(1 + \lambda)k$ and choose $z_0 \in S$ such that

$$
r(y_0)-\varepsilon \leq ||y_0-z_0|| (\leq r(y_0)).
$$

Let

$$
x_0=y_0+\lambda(y_0-z_0).
$$

Choose $x_1 \in U \subseteq F_k$ such that $||x_1 - x_0|| < \varepsilon$. Then there exists $x_1^* \in \partial r(x_1)$ such that

$$
\inf_{z\in S}\langle x^*, z-x_1\rangle \geq -r(x_1)+\frac{1}{k}.
$$

We shall show that

$$
\langle x^*, y_0-x_1\rangle + r(x_1) > r(y_0).
$$

This will contradict the fact that x^* is a subdifferential of r at x_1 and complete the proof. Indeed,

$$
r(y_0) - r(x_1)
$$

$$
< \left(\frac{1}{1+\lambda} \|x_0 - z_0\| + \varepsilon\right) - r(x_1)
$$

$$
< \left(\frac{1}{1+\lambda} r(x_1) + 2\varepsilon\right) - r(x_1)
$$

 $\hat{\mathbf{r}}$

$$
= -\frac{\lambda}{1+\lambda}r(x_1)+2\varepsilon
$$

\n
$$
\leq \frac{\lambda}{1+\lambda}\left(\langle x^*, z_0-x_1\rangle-\frac{1}{k}\right)+2\varepsilon
$$

\n
$$
<\langle x^*, y_0-x_1\rangle-\frac{\lambda}{(1+\lambda)k}+4\varepsilon
$$

\n
$$
=\langle x^*, y_0-x_1\rangle.
$$

THEOREM 2.3. *Let S be a weakly compact subset in a Banach space B. Then the set*

$$
\{x \in B : ||x - z|| = r(x) \text{ for some } z \in S\}
$$

contains a dense G_b *of B. In particular, the set of farthest points of S is nonempty.*

PROOF. Let F and F_n be defined as in Lemma 2.2 and let $D = B \setminus F$. Then

$$
D=B\setminus\bigcup_{n=1}^{\infty}F_n=\bigcap_{n=1}^{\infty}(B\setminus F_n),
$$

where each $B \setminus F_n$ is an open, dense subset in B. Hence D is a dense G_a in B. For each $x \in D$, $x^* \in \partial r(x)$, we have

$$
\inf_{z\in S}\langle x^*,z-x\rangle=-r(x)\,.
$$

By weakly compactness of S, there exists a point $z_0 \in S$ with $\langle x^*, z_0 - x \rangle =$ $-r(x)$. Hence

 $r(x) \ge ||x - z_0|| \ge |\langle x^*, z_0 - x \rangle| = r(x)$.

This shows that $D \subseteq \{x : ||x - z|| = r(x) \text{ for some } z \in S\}.$

COROLLARY *2.4. If B is a reflexive Banach space, then for every bounded, weakly closed subset in B, the set*

$$
\{x \in B : ||x - z|| = r(x) \text{ for some } z \in S\}
$$

contains a dense G_8 subset of B and hence the set of farthest points of S is *nonempty.*

COROLLARY 2.5 (Asplund). *Let B be a reflexive locally uniformly convex space, then Corollary* 2.4 *holds for every bounded, norm closed subset S in B.*

PROOF. By the locally uniformly convexity, each farthest point of conv S is a strongly exposed point of conv S and hence is contained in S. It follows that the sets of farthest points of S and conv S coincide. Hence we can apply Corollary 2.4 on conv S.

3. Closed convex hulls of farthest points

In this section, we assume that S is a bounded closed convex subset of a Banach space. Let *b(S)* denote the set of farthest points of S. Even in the two-dimensional spaces, the set S may fail to be the closed convex hull of **its** farthest points. (E.g., give R^2 the maximum norm and let $S =$ $\{(x, y): x^2 + y^2 \le 1\}.$

A Banach space B is said to *have property* (I) if every bounded closed convex set in B can be represented as the intersection of a family of closed balls. This definition was introduced by Mazur [4] and was studied by Phelps [5]. The second author showed that there is a large class of Banach spaces (which includes those spaces whose duals are locally uniformly convex) with property (I). In [2], Edelstein proved that in a uniformly convex space with property (I) , S is the closed convex hull of $b(S)$. However, the standing hypothesis that B is uniformly convex was used only to show that *b(S)* is nonempty. Hence, by Theorem 2.3 and the proof of Theorem 2 in [2], we have

PROPOSITION 3.1 (Edeistein). *Suppose B is a Banach space with property* (I) ; then every weakly compact convex subset of B is the closed convex hull of *its [arthest points.*

In the following, we shall prove the converse of the above proposition in the reflexive spaces.

LEMMA 3.2. *Let B be a Banach space. Suppose there exists a bounded closed convex subset So[B such that*

 \bigcap {C: *C* closed ball containing S} \neq S,

then there exists a bounded closed convex subset W with nonvoid interior such that

 \bigcap {C: *C* closed ball containing W } $\neq W$.

PROOF. Let

 $S_1 = \bigcap \{C : C \text{ closed ball containing } S\}.$

Suppose $S_1 \neq S_2$, let $x_1 \in S_1 \setminus S$. By the separation theorem, we can find an $x^* \in B^*$ such that $\sup x^*(S) \leq x^*(x_1)$. Let W_0 be a bounded closed convex set with nonvoid interior and sup $x^*(W_0) < \sup x^*(S)$. Let W be the closed convex hull of S and W_0 , then $x_1 \notin W$ and it is clear that

 $x_1 \in S_1 \subseteq \bigcap \{C : C \text{ closed ball containing } W\}.$

THEOREM 3.3. *Suppose B is a reflexive space ; then B has property (I) if and only if every bounded closed convex subset in B is the closed convex hull of its farthest points.*

PROOF. The necessity follows from Proposition 3.1. To prove the sufficiency, let S be a bounded closed convex subset of B and let

 $S_1 = \bigcap \{C : C \text{ closed ball containing } S\}.$

Suppose $S_1 \neq S$, there exists a point $x_1 \in S_1 \setminus S$. By the above lemma, we can assume that S has nonvoid interior; let y_1 be an interior point of S (hence an interior point of S_1) and choose z_1 such that

$$
z_1 = \lambda x_1 + (1 - \lambda) y_1,
$$

with $0 < \lambda < 1$ and $z_1 \notin S$. Note that z_1 is then an interior point of S_1 , so are any points of the form

$$
(\ast) \qquad \alpha z_1 + (1 - \alpha)x, \quad 0 < \alpha \leq 1, \quad x \in S.
$$

Let S_2 = conv(S \cup {z₁}), we claim that *b*(S₂), the set of farthest points of S₂, is contained in S. Indeed, for any $x \in B$, consider the function

$$
r(x) = \sup\{\Vert x - y \Vert : y \in S\},\
$$

the ball $\{y \in B : ||x - y|| \le r(x)\}$ contains S and hence contains S_1 (by definition). Since each point of the form $(*)$ is an interior point of $S₁$, its distance to x is less than $r(x)$ and cannot be a farthest point. It follows that $b(S_2) \subseteq S$, hence $z_1 \notin \overline{\text{conv}} b(S_2)$; this contradicts that every bounded closed convex set in B is the closed convex hull of its farthest points, and the proof is complete.

ACKNOWLEDGEMENT

The author would like to express his appreciation to Professor R. Phelps for his comments and suggestions for preparing this paper.

REFERENCES

1. E. Asplund. *Farthest points in re[texit'e locally uniformly rotund Banach spaces,* Israel J. Math. 4 (1966), 213-216.

2. M. Edelstein. *Farthest points of sets in uniformly convex Banach spaces*. Israel J. Math. 4 (1966), 171-176.

3. M. Edelstein and J. Lewis, *On exposed and [arthest points in normed linear spaces, J.* Austral. Math. Soc. 12 (1971), 301-308.

4. S. Mazur, *Über Schwache Konvergenz in den Raumen* (L^P), Studia Math. 4 (1933), 128-133.

5. R. Phelps. *A representation theorem ,for bounded convex sets,* Proc. Amer. Math. Soc. 11 (1960), 976-983.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF PITTSBURGH PITTSBURGH, PA. 15260 U.S.A.