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ABSIT,  A C T  

A basis {Xn}~__ 1 is constructed in co such that there exists no bounded linear 
projection of co onto the subspace spanned by a certain subsequence 

o o  ¢~o 
{X,~}t= 1 of {Xn}n=1. 

I. In~odu¢fion. A. Pelczyfiski raised the following question ([3], Problem 4): 
Let {xn}n% I be a basis of a Banach space X. Is each subspace of X spanned by 
some subsequence {x.~}~°=l of  {x.}~=l complemented in X? 

In this paper we show that the answer is negative by constructing a suitable 
example in co. Our main tools are the following two propositions: 

PROPOSmON 1. (See [1] Theorem 3.) l] +1 can be isometrically imbedded 
into l~" and every linear projection P of 12" onto l~ +1 has norm 

II e I1 (.  + 1)2-" [n/2 • 

(In/2] denotes the greatest integer ~_ n ]2.) 

PROPOSmON 2. (See [2] p. 16, Corollary 3.) IrE is a finite dimensional subspace 
of a Banach space X for which X** is a P~ space and there exists a projection 
with norm c from X onto E, then E is a PT¢ space. (X is called a Py space if for 
every Banach space Z containing X there is a linear projection P from Z onto 

x with II P II 
If  {x~}l~l is a s e t o f  elements of a Banach space X then [x~]~,1 denotes the 

Ye ~2~ the usual basis closed linear space spanned by {xi}i~1. We denote by t ts/--x 
2 n of 12" and by {f~ }l = l the corresponding biorthogonal functionals in 12"= (l~')*. 

2. Preliminary lemmas. Denote by AI the matrix 
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and let A k (k > 1) be the matrix obtained from Ak_ 1 by substituting A1 for + 1 
and - A~ for - 1. It is easily proved that 2-nAn is a 2 n x 2 n symmetric orthog- 
onal matrix. Denote by a~,~ the elements of An and 2 ~ by g(n). 

LV_~VtMA 1. A~ is obtained from A 1 by substituting + Ak_ l fo r  1 and - A~_ t 
for  - 1, k = 2, 3 ,4 , . . . .  

The proof follows by induction from the definition of An. As a consequence of 
Lemma 1 we get 

LEmc~A2. For 2 ~ n ,  l < i < g ( n - 1 )  and l ~ _ j ~ _ g ( n - 1 )  

an _ _ n -  1 n n -  t 

l,J -- aid , al,j+g(n-l) ~- atd 
n n - 1  n n - 1  

al+s(n_l),j aid and = = a i + g ( n - l ) , j + g ( n - 1 )  - -  a L j  • 

3. A basis in le~ n). Denote by En and F n the subspaces 

[e~ + ,,n "le(n- 1) r~,n ,,~n " l g (n -  1) 
© l + g ( n - 1 ) J l = l  and  i..©i - © i + g ( n - 1 ) l i = l  

of/~(")respectively, and let Tn be the transformation from l~ (n- 1) to E,, defined by 

e(n- 1) ) e ( , -  1) 
T, Z cle]- '  = Z c~(e] + e~+,Cn_l) ). 

1 = 1  1 = 1  

It is obvious that T~ is a linear isometry onto E n. 
Let us denote x ; =  ve(n)..n ~, g.dj : l~ l , j© j .  

L ~  3. For 2 ~_ n and 1 < i < g(n - 1), T,(xT-1) = xT. 

g(n-1) n - I  - 1  \ 
Proof. T~(x;-i) = T, Z a~ d ~ ) 

j = l  

g( . -  t )  
ae--1 n n 

= a i d  ( e j  + e j + e ( s _ l )  ) 
j = l  

e(n) 
n B 

a | , j e j .  
J = l  

The last equality follows from Lemma 2. 
Let y~a= x~ ~ for i = 1,2 and define 

T~y~ -1 1 ~_ i < g(k  - 1) 

~-e(k-x) - ~ g ( k - 1 ) + l < i < g ( k )  

i = g(k)  

for k > l .  
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Denote by l(n) the set {i: i = g(k), 0 <- k < n}. 

LEMMA 4. For n >= 1 and i e I(n), x~ = y~. 

k Proof. The case n = 1 is clear. Suppose that xi = yk for k < n and i e I(k). 
By the definition y~(.)=x~(.). Since I ( n ) = { g ( n ) } w I ( n - 1 ) ,  if i~ I (n )  and 
i < g(n) then i ~ I ( n -  1); therefore, by the induction hypothesis 

r,  y7 T. 7 -1 " 
y~ = -1  = x = x I. 

(The last equality follows from Lemma 3.) 

LF~VIA 5. For n > 1, g(n -- 1) < k < m < g(n) and every sequence of  scalars 

H Z cl(e ~ + e~+e(s_l) ) II 
i = l  

g(n- 1) t 
11 n B ~_ Z c~(e'2 + e~+z(._ 1)) + Z ci(e~_g(,_ 1) - ei 

|=1 i=g(n-1)+1 

< c,(e? + e,~+g~,_ 1)) + ~ ci(e~-gc,- 1) - e7 ) 
i = l  i=g (n -1 )+ l  

We omit the trivial proof. 

LEMMA 6. For k >1 ,  
,. "t~(k) 
~ l i t  = 1 

1 < n < q < g ( k )  and every sequence of scalars 

(1) ,~1 c~yk <21t~1 ciyk 

Proof. The ease k = 1 is obvious. Suppose (1) holds for k < m and let us 
prove the assertion for k = m + 1. We discuss separately the following four cases: 

(a) q < g(m) 
In this case (1) follows from the definition of y~+t, the fact that Tin+ 1 is a linear 
isometry from l~ m) onto Era+ 1 and from the induction hypothesis. 

(b) g(m) < n < q < g(m + 1) 
Bythe definitions of Tin+l, and y~,+t, ~+1 ~Em+1 for 1 < i < g(m); Therefore 

s,(~n) ~'(rn) 

Z c~y'~ +I • bi(e~,+i_t. _~,+1, ~ -  ~ e i + g ( r a ) )  
i = l  f = l  

for some bl,b2,...,be(m). On the other hand, for g ( m ) < i < g ( m + l )  
y~,+1 m+1 ~+I 

= e~_gc. ) -e~ , hence, by Lemma 5 



202 M. ZIPPIN [September 

II II (2) ~ c,y,~+t ~ .+1 ~,+1.  b~(et + = ef + ~ (m)) 
1=1 1=1 

Cit, ei-g(m) -- e'~ + t ) 
t = g ( m ) + l  

< i t g _ m + l - - _ m + l  "t / m + l  e~+t 
= t"tkei "~ ¢i+g(m)] ~L ~ c~[e~-e(m) 

I=1 i=g(m)+ l 

= c 'Y?+ '  

(c) n ~ g(m) < q < g(m + l)  
y~+leFm+l for g ( m ) < i ~ g ( m + l )  ,,+1 (Yi(m+ ~) ~ F,.+ 1 by Lemma 2), therefore 

q g(m) 
ciy~ +1 2 di(er +1 . + i .  = - -  ei+g(m)) 

i =g (m)+  1 i = 1 

for some dl, dz,'",dg(m). If 

g(m) e(m) 
m + l  ", c i y ~ + l =  ~ b~(e'~+t+el+g(,.)), 

i = 1  i = l  

(as in (b)) then, by Lemma 5, 

c ,y~  +1 = II~== b , ( e~+ l+e ,+g tm) )  
l= =1 

_ ' 

i = l  
bi(e,~+ t - ,,,+ 1 . .+ 1 ~- e~+:(,.)) + ~ d~(e~ +1 - el+g(., 

l = l  

From case (a) it follows that 

I = I  / = I  = 

(d) g(m) < n < q = g(m + 1) 
Denote by Pm+a the projection of l~ t '+l) onto the one-dimensional subspace 

m + l  I xg(m+ 1)J defined by 
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Pm+tX= ( -  1)= +1 =+1 , + l  ( G ' )  (x) - f;¢m+ ,)(x))XgCm+ 1)" 

(According to §1 {f~=+ i} denotes the usual basis of I[ ('~+ ~).) It is easy to see that 
[I Pm+t [I = 1 and that Pro+ ly~ m+ 1=0 for 1 < i < g(m + 1) - 1. Hence, I - Pm+t 
is a projection of I~ m+ 1)onto [yi m+ 13~(=~+ 1)- 1along ~ m+ 1 ~ - LYg(m+I)J a n d  I I I - P . ÷ 1 1 1 _ < 2  

Since n > g(m), it follows from (2) that 

_ i1~,-~ , - ,  .÷~  ~ ciy~+l II~ c,y, U 
f = l  i = 1  

I1¢, ~ . ,  (=~ q Y~+I) II < 2 Ii ~ ciym+lll ~l ~ + 1 Ci 
| 1 i = t  

This concludes the proof of Lemma 6. 

4. A non-complemented subspace of Co. Denote by {ei}i~ 1 the usual basis 
n Co and let U, be the natural linear isometry from l~(n)onto 

e "lg(n+ 1 ) -  I n ~ai =g(.) = 0, 1, 2, . . . .  ) U. cte7 = ~ ciei+g(n)-I • 
\ i = 1  f = l  

Put z ° =  et and z~'= U.(y~) for n _>_ 1 and 1 <- i <- g(n). 

f~,n'tg(n) LEMMA 7. The sequence t,,~si=l n=o,1,2 .... in its natural order 

0 1 1 2 2 2 2 
Z 1, ZI~ Z2~ Z 1, Z2 ,  Z3~ g4~ . . .  

forms a basis in Co. 

Proof. Obviously [z~]~)l .=o,1.2 .... = Co- 
I f  q =< r =< g(m + 1) then by Lemma 6 

,3, II , o c, z, + c  iz,  ll. 

----- m a x  max X c:zf , ~ c~+'z: +1 
k ~ m  /=1  = I  

< max max Y~ c~z~ , 2 
k_Nm i = l  t = l  

_ x c,~z, ~ + :~ 
k=O / = I  i = l  

Similarly, for m > n, q < g(n + 1) and r < g(m + 1) it follows from (3) that 
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(4) = o ~ =  c~z~ + ,=1 ~ c,~+l-'+lz, 

g(k) } 
2 max ~ ~ ~ ¢i Zl 

k~n+l 1=1 

{ u/Ii u l 2 max max c~z~ , ~., c~ ÷1z'÷1 
k~_rn ~,= ~ 1  

~ 2 Z c z  + 
=0 \ i = 1  ~=1 

The last inequalities show that the sequence {zT} in its natural order forms a 
basis in Co and Lcmma 7 is proved. 

By [1], p. 459, [xT]~ ~1(n) is isometrically isomorphic to /~+1 and since U, is 
a linear isometry, we get by Lemma 4 that [z~. ]~ ,z(n) is also isometrically isom- 
morphic to l~ ÷1. Suppose that P is a bounded linear projection from Co onto 
the subspace Y spanned by the sequence {z i }, ~i(~) n = 0,1,2, . . . .  It is obvious 
that the sequence {z~}, ~ t(,) n = 1,2,... forms a basis in Z From the proof of  
Lemma 7 it follows that there exists a sequence of projections {Qn} from Y onto 

II Q- I[ <[z']'/~'(') 211hp II Qn It < 2...__ NOW,. Q,P is a projection from Co onto [z~l  ~,(, ) and 
- It; Co = m IS a P1 space; it follows from Proposition 2 that I~ +1 

is a P~ space, n = 1,2,3,. . . ,  where ~ =  211PII. This contradicts Proposition 1; 
therefore, there exists no bounded linear projection from Co onto Y. Since Y is 

[~n'(g(n spanned by a subsequence of the basis ~,.i s~ = 1 n = 0, 1, 2, ... of c o we have con- 
structed the desired example. 

As J. Lindenstrauss has remarked, a similar example can be constructed in the 
~o l~ (*) The proof will be almost the same. reflexive space ~ = 1 @ p • 
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