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Summary. — Reviews of elastic and inelastic hadron scattering data are
discussed; they indicate (de/dt) is universally in the form of a super-
position of Gaussians (in  a transverse-momentum variable x) that
is an asymptotic exponential. After discussing two previous models.
we use the method of asymptotic expansions to show that a mass m.
superposition (de/di),, — F(x) exp [— f(m)x?] with a distribution funetion
G(m)-exp|—g(m)] will vield an asyvmptotic exponential in x if g(m)=
= K2 f(m). Experimental and theoretical implications are discussed.

1. — Introduction.

Attempts to phenomenologically parametrize hadron scattering data have
vielded o number of striking observations, some of them seemingly contra-
dictory.

In inelastic scattering, for example, it has been found that many indivi-
dual two-body-to-two—body reactions have cross-sections that behave like ()
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(M AAcHEN-BERLIN-CERN COLLABORATION: Phys. Lett.. 19. G08 (1965).
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and — v is the transverse momentum (p,) squared

(3) — =p) =p"sin’,

) lim (1) = Jim (t) -

A depends on the particular process involved, but is roughly 10 (GeV/e)™.
However, when the distribution of long-lived secondaries is considered, called
by Coccont (2) the « global distribution », it is found that the cross-section
varies as (%)

. do
3) T exp [, fo],

i.e., an exponential in p,, not a Gaussian. In (5), b is about (150 --200) MeV,
depending on which mass secondary is considered.

A similar situation has been observed in the case of elastic p-p scattering
(and indeed for all small-angle hadron scattering). KRIsCH (*) has obtained an
excellent fit to the p-p elastic data by a sum of Gaussians:

do mb 3
P S A exp[—a. 8202 =
(6) dt [(Ge"’/(‘)"’] Zl 7 e}‘p[ a1ﬂ p.L]
()  =¢0exp[—10.082p%] + 0.74 exp[—3.4542p1 ] +

+ 0.0029 exp [— 1.4582p7] .

B is the centre-of-mass velocity of the protons. For different regions of p, ,
different Gaussians dominate, with decreasing amplitudes (4;) for the Gaus-
sians corresponding to smaller inverse widths (a;). (One should note that
this is ronghly the case when individual inelastic processes are compared. There,
smaller inverse widths correspond to higher-mass secondaries.) Here, in the
elastic case, the cross-section again goes over to an exponential in p, for high
transverse momentum. The form is Orvear’s law (*)

do [mb _ — :
(8) a0 [:r—] =34 exp[—pL/pl, P =~160 MeV/ec .

The above observations raise many questions. Is there a relationship be-
tween the widths for the various inelastic and elastic Gaussians? Are there

2

j G. Cocconi: Nuovo Cimento, 5T A, 837 (1968).
3) G. Coccont, J. KoestEr and D. H. PErxins: UCRL-10022 (1961).
4 A. D. Kriscu: Phys. Rev. Lelt., 19, 1149 (1967).
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(3) J. OREAR: Phys. Rev. Lett., 12, 112 (1964); Phys. Lett., 13, 190 (1964).
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more than three Gaussians for the elastic p-p process? Also, since total cross-
sections do not appear to fall off very rapidly, Gaussians would asymptotically
violate the Cerulus-Martin bound (¢) imposed by analyticity, whereas the expo-
nential form would not. Thus, are we not forced to believe that the Gaussians
must asymptotically go over to an exponential; and if we are, by what
mechanism do they do it?

Recently, CocconT (?) and the group of FrLeMING, GIOVANNINI, and PRE-
pAZZI (7) (FGP) proposed models which yield an asymptotic exponential cross-
section by a superposition of Gaussians. They did this independently and from
very different motivations. In Sects. 2 and 3, we review these models, point
out that they are equivalent, and introduce the technique of asymptotic ex-
pansions to the problem.

We then proceed to demonstrate (Sect. 4) that the above models are special
cases of a general class of superpositions of Gaussians, which yield an asymp-
totic exponential. In particular, we show that if individunal Gaussians (as a
function of a mass or energy variable m) are of the form F(m)exp|[— f(m)x?],
where » is either p, or fp,, then a distribution function for the Gaussians of
the form G(m)exp[—g(m)] will asymptotically yield an exponential in z if

(9) fim) = K*[g(m),

where K is a constant. (Whether x is actually v/—1¢,p,, or fp,, does not
affect our results, since asymptotically f—1.)

Thus, the problem of understanding the theory of the increase of Gaussian
widths with mass (the form of f(m)) is intimately related to finding the distri-
bution function of Gaussians, which will yield an asymptotic exponential in
transverse momentum. We close with a few comments on physical models.

2. — Cocconi model.

In seeking a model that yields an asymptotic exponential cross-section,
CoCcoNI (?) observed three points: a) the physical results mentioned in
Sect. 1; b) recent K p and =*p inelastic scattering data (®) show that Gaussian
cross-sections have decreasing A (larger widths) as the secondary mass becomes

(®) F. Cerures and A, MartiN: Phys. Letf.. 8. 80 (1964).

() H. FLemMiNg, A. GiovaNNInT and E. Prepazzi: Nuove Cimento. 56 A, 1131
(1968).

(®) AAcHEN-BERLIN-CERN CorLaBoraTiox and AacHEN-BERLIN-CERN-LoNDON
(I.C)-VIEXNA COLLABORATION: Phys. Lett., 27 B. 336 (1968).



108 M. M. NIETO

higher; ¢) analysis of scattering data in the Glauber formalism (°) using quark
models (**!!) can be interpreted () as yielding Gaussian cross-sections with
wider widths for multiple quark scattering (i.e. higher-mass secondaries).

With this physical motivation, Coccont proposed that the inelastic cross-
section for producing a secondary of mass m is (12)

do 1 my
1 29 o —exp|—a 202 .
(10) (d_Q),,,OC m exp[ 4 m pJ‘]

m, is the mass of the simplest quark-scattering structure, and the factor m-!
is for normalization. The «global » cross-section is then

—g_?: max P(m) mo 2
(11) (d.Q) ocfdm m OXP [—A et Y

where m,,. depends on the energy of the system and m,, is approximately
the incident-particle mass. P(m) is the probability of producing a secondary
of mass m.

Using physical intuition and the mass-spectrum analysis of ref. (%), Coc-
CONI took

(12) P(m—>0)= P(m—>00) ~0, P, (m)=P(m,).
He therefore proposed that P(m) can be described by (12)
(13) P(m) o mexp[—m/mg] .

By then approximating m,, = 0 and m_, =oo, he obtained (p, = x)

do R . mo omeAd 1
(14a) 0 ocfdm exp [— e m x ] =
0
(14d) = (4Ami P K (V4Adxz) —
(14e) oo Mg XD [—x \/H] =
(14d) m, exp[—x/b] .

(*) R. J. GLaUBER: in Boulder Lectures in Theoretical Physics. edited by W. I
BRIrTIN et al.. vol. 1 (New York, 1959); in High Fnergy Physics and Nuslear Stru-iure,
edited by G. ALEXANDER (Amsterdam, 1967), p. 311.

(1 T. T. Crov and C. N. Yaxag: Phys. Rer., 170. 1591 (1968).

(1Y) N. T. DraN: Nuel. Phys., BT, 311 (1968).

(1?) Coccont considered do/d Q. However, if one wants to discuss do/dt, the factor pp’
could be incorporated in the normalization or in the probability function P(n). In any
event, as we will see in Sect. 3, such factors would not affeet the exponential behaviour
of the result.
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In (14), K,(y) is the modified Bessel function ('*) which goes to y=*e™" as y — co.
The value of b in (14d) is

(15) b= (44)*= 158 MeV ,

in good agreement with experiment.

For the case of elastic scattering, ('0cCONI reasoned that, if we let =
be the order of scattering in the quark model, then higher-order scattering con-
tributions would yield Gaussian widths with a distribution function of » iden-
tical to that for inelastic scattering as a function of m. Thus, the above re-
sults would carry over in the same way, with m becoming n. Letting n,=1,
the value of b in (15) is then in excellent agreement with Orear’s law (°).

3. — FGP model and asymptotic expansions.

In distinetion to that of (‘occoxi, the phenomenological model of FGP (7)
is an ad hoc four-parameter infinite sum of Gaussians:

® a—n Al,.z
I e —a
o cn -+ 1) en +1

where X is a normalization constant, and a, 4, ¢, and v are parameters. FGP
took

(16) o da/dl

(17) c=2, a=>5, y=73, A =10 (GeV/e)?,
to have the first three terms agree with Krisch’s three Gaussians (*) and also
to have a rough fit to all elastic data.

FGP calculated the asymptotic form of (16) for the restricted case of
¢=2,v=7%. Even so, it suits our purpose to evaluate the general asymptotic
form of (16).

To do this, we realize that as x — oo, the sum in (16) becomes the integral

8

" dn A2
Y = - Xp|— n— .
(18) J (en 41y exp[ nilna on b 1]
0

Already, by comparing (14a) and (18), the similarity between the Cocconi
and FGP models can be seen. It is due to a= really being an exponential in

(%) 1. 8. GrapsteYN and [. M. Ryzuik: Table of Integrals, Series and Products
(New York, 1965).
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n. However, we shall not proceed in the same way as Coccoxi. We will
evaluate (18) by using the method of asymptotic expansions (14), since this
is the tool we will need to evaluate our general model.

First, we let 2 =c¢n + 1, so that

avefd~ . zdlna AI’\
¢ )P e oz )
1

(19) Y =

This is of the form

©

(20) A= f dzh(z) exp [— j(2)]

£

where k(z) and j(z) are polynomially bounded, and j(z) has a positive maxi-
mum 2 ==2,» 0, i.e.,, j'(2) = 0. If we expand z about z,, we can say

P

21) X :—fd—:h,(z) exp [— [j(zo) Lo+ »(i_‘)f’i‘if (20 - H ~

&

= e exp =izl exp | = 7 s

The last step is valid, because the exponential dominates the polynomial. For
3> €, we can approximate the lower limit by — oo, giving a perfect Gaus-
sian integral with the value [2a/j"(2,)}f. Thus,

. RE AN )
(22) X o= (?-,,(y )) h(zo) exp [— j(20)] .
<0
For the FGP case of (19)
(23 P (?Arj !
=3) “  \lna
and hence
P via—1 .
(24) Y = gl l/c I%L (:z (:Z) exp [—2¢V A Inaje].

In agreement with our asymptotic assumptions, the slope of the exponential
does not depend on ». The decay constants of the FGP and Cocconi models

(1*) A. ErpELYL: Adsymptotic Expansions (New York, 1956).
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differ by the factor

(25) (e/ina) =v2/ns= 1.1.

4. — General model.

For a more general superposition model of Gaussians, we assume mass
cross-section and normalized disiribution functions of the form

(26) (i—f) = F(m) exp{—fim)r2],
(27) Pim) = C(m)exp[—g(m)l.

The only restrictions we place on F(m), f(m), G(m), and g(m) are that they
be polynomially bounded functions of m and do not vary rapidly. Then we
can use the asymptotic expansion method, as in Sect. 8, to obtain

Mmax

. (do ‘ do
9 — % ~
(28) ggg (dt) fde(m) (dt)m ~

Mnin

3
exp[—g(H)~—f(M)r?].

.

~G(M)F( ;‘{)[g”(ﬂl)é e ;u)]

M is defined by (%)

(29) g+ f(M)a2=0.

The function g(m) that satisfies (29) and allows (28) to be an exponential
in & is

(30) gim) = K3/f(m)

where K is a constant. To prove this, we first note that (29) implies

‘ o~ = [ 20 (m))e
(31) grim) = o [f(m)— o)

Then, putting (30) into (29) gives

(32) (M) = K]z

(1%) In the general case, there will be more than one solution to (29). Then there
will be a sum of terms in (28), one for each solution of (29). However, usually one term
will dominate the others. See ref. (1) for a more detailed discussion.
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Using this in (31) and (28) gives our result

do aK \}
(33) (~d—t) =G(M)F(M) (?“f’_(:lj) exp[—2Hx].

The Cocconi and FGP models are both special cases of (30) with g(m)ec m.
In fact, it is an enlightening exercise to prove explicitly that, if g(m)cc m” and
f(m)ec m’, the dominant exponential in (28) will be proportional to a only
it r=-—s.

In the asymptotic region, the result (30) could be considered a transforma-
tion from the Cocconi-FGP case to a new, more complicated variable. Thus,
with hindsight, it might have been expected.

However, the value of the result (30) lies in making clear the general rela-
tionship that must hold between the mass cross-section half-widths and the
mass probability distribution function.

5. — Discussion.

If the experimental data continue to show Gaussian cross-sections asymp-
totically going over to exponentials, then our general result (30) must hold,
no matter what the exact mass and x variables are. This result would then
in principle allow information to be inferred on the form of g(m) if one had
experimental information on f(m) and vice versa. Furthermore, it clearly would
place a restriction that a dynamical theory would have to meet.

Most previous models, although often quite successful, have been of a sta-
tistical nature. The new discussions in terms of quarks, although still quite
phenomenological, are opening possibilities for a more fundamental approach
to the problem. (Indeed, as mentioned, the quark model results were one of
Cocconi’s motivations.) In addition, there has been much investigation in
terms of diffraction scattering and Reggeized particle exchange. The recent
survey by VAN HoVE (') serves as a good introduction to this literature.

Future work on the Gaussian-to-exponential cross-section problem will
hopefully be quite fruitful. The growing volume of experimental data is con-
tinually showing that this question is of fundamental importance to all of
high-energy hadron scattering. The insight that may be gained here could
be an important tool in obtaining a truly dynamical theory.

e sk ok

Thanks are due K. HanseEN for helpful suggestions in preparing the man-

useript.

(*) L. VAN Hove: CERN report Ref. TH. 917, lecture delivered at the International
Symposium on Contemporary Physics, Trieste, June, 1968.
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RIASSUNTO (%

Si discutono le analisi dei dati dello scattering elastico ed inelastico degli adroni;
essi indicano che deo/d¢ & sempre nella forma di una sovrapposizione di gaussiane (nella
variabile x della quantitd di moto trasversale), e cioé nella forma di un esponenziale
asintotico. Dopo aver discusso due modelli precedenti, si usa il metodo dello sviluppo
asintotico per dimostrare che una sovrapposizione della massa (m) (do/d)y,=
= F(x) exp [— f(m)=?] con una funzione di distribuzione G(m) exp [— g(m)] fornisce un
esponenziale asintotico in » se g(m)=K?2/f(m). Si discutono le implicazioni sperimen-
tali e teoriche.

(") Traduzione a cura della Redazione.

Ofmee pacnpenenenne rayccoBckux IufibepeHinaIbHbIX CeveHHi
N0 NONepPevHOMY HMIYJIbCY AJPOHOB, HMEIIMX JKCHOHEHIHAILHYI0 ACHMITOTHKY.

Pesiome (*). — IIpoBoautcs 0630p JAHHBEIX IO YIPYTOMY M HEYOPYIOMY PaCCEsHUIO
anpoHOB; AAHHBIE YKa3bIBaloOT, 4TO do/di B Hamboiiee OOIEM BHme MpPENCTABIACTCH KaK
CYNepHoO3ulps TayCCOBCKMX WIEHOB (MO BEJIMMHHE MOMEPEYHOTO HMIYJIbCA &), ACHMII-
TOTHYECKH IPEACTaBisifolias 3kcmoHeHTy. [locie OOGCYXKOEHWS BYX MPEIBIIYLUIMX
MOJENEH, HCNOb3yeTCss METOA ACHMIITOTHYECKMX Ppa3NIOKEHHH, 4TOOBI I0Ka3aTh, 4TO
cynepnosuiusa Macc (m) (do/dt),=F(x) exp [— f(m)2*) ¢ dyuxumeis pacnpenencans G(m)-
‘exp[— g(m)] maer SKCIOHEHIMANBHYIO aCHMOTOTHKY MO z, ecnd g(m)=K2/f(m). O6cyx-
OAXOTCA DKCIIEPUMEHTATBHBIE Y TEOPETHYECKHE CIICICTBUSL.

(") Hepesedeno pedaryueii.

8 — Il Nuovo Cimento A.



