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Summary. — Rigorous e-number solutions of the source-free (but non-
linear, because of the curvature tensor) field equations of a gauge field B,
for the loeal group @ are found. The polarization matrices are forced thereby
to satisfy a Lie algebra. If this is Abelian, one gets the usual gauge-field
theory, with any Lie group G desired. In the non-Abelian case, some
curious new features emerge. The polarizations turn out to be the gen-
erators of the little group of a timelike momentum, and G is fixed as a
group containing the homogeneous Lorentz group L. If one uses these
well-determined polarizations to build the interaction-picture quantized
gauge field, and requires G to be «internal » (i.e. to commute with the «ex-
ternal » Poincaré group), then a continuous infinity of independent polar-
ization states are required, even though as a group-theoretical object B,
belongs to the mass > 0, spin-1 representation space. Interpreting B,
as W,, the intermediate boson, one gets an effective current-current
interaction invariant against this internal Lorentz group which, since
88U, p L, breaks SU; in a specific way.

1. — Introduction.

It is well understood (*) that gauge fields, introduced to secure invariance
against local transformations of some «internal» Lie group ¢/, are nothing
but what has been extensively studied in non-Riemannian geometry under
the name of «linear connection ». Thus we know that any gauge-field equations
must be written in terms of the curvature tensor, the only tensor formable
from the connection. This curvature tensor shows a « self-coupling » nonline-

(1) For example C. N. Yance and R. L. Miris: Phys. Rev., 96, 191 (1954); R. Urr-
Yama: Phys. Rev., 101, 1597 (1956); J. SAKURAT: dan. of Phys., 11, 1 {1960).
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arity (2) of a very special type. We study here what limitations on gauge-field
theory are imposed by taking this nonlinear structure seriously.

In the usual treatement the gauge field in the Interaction Picture (I.P.)
satisfies the Klein-Gordon equation but the polarization vectors (3) eﬂ(k)a”
{space-time vectors that is, matrices of course on the internal space) are unde-
termined by the field equations. We find however that if we wish to get ri-
gorous ¢-number transverse plane wave solutions B, ()= e”(k)a”qa(k-:v) to the
source-free (i.e. only self-coupled) gauge-field equations, we must force the po-
larization matrices (for any k) to form a Lie algebra % (*). In the limit f — 0
as the coupling to the fermion fields vanishes, these rigorous solutions
{(p(k-a) = elliptic functions) go into solutions of the Klein-Gordon equation
(p(k-x) —>linear combination of exp [ ik-z], k*= const) but now with well-
determined polarization matrices. When we build the quantized I.P. gauge
field, we accept the polarizations as determined this way.

There are two cases. Case I): % is Abelian; Case II): & is non-Abelian.
Case I) yields the usual type of theory with invariance under any internal Lie
group G desired, and a finite number of polarizations ¢’ (k);, i =1, ..., n,
with the usual particle interpretation of these states of the quantized field.
Thus Case I) seems to be the proper framework for a theory of vector fields
interacting with the full symmetry ¢ with fermion fields, e.g. Yang-Mills fields
or Sakurai’s vector mesons which mediate the strong interactions, or possibly,
with @ = 8U,, the vector-meson resonances.

Case II) yields some curious and, as far as we know, new concepts. Lorentz
invariance of B, fizes G as L = homogeneous Lorentz group, and Z as the
S U, subalgebra (the e, (k) in fact generate the little group of the timelike mo-
mentum %k, namely 8O, ~ SU,). There is a (continuous) infinity of polariza-
tion states, so that it is not clear what the particle interpretation is, nor how
these states would be recognized experimentally. Finally, this effective in-
teraction, being L-invariant, breaks SU,. This suggests that Case II) could
not apply to a hypothetical carrier of the strong interaction, but might describe
W,, the intermediate boson.

Interpreting B as W, then, weakly interacting particles would have to fall
into internal L-multiplets labeled by (j, k), j and & half-integers. In another

(2) Except for the case dim G =1 (photon).

() Notation: a, b,¢,...=1, .., M arc internal indices, and will usually be sup-
pressed. The foolproof matrix convention on these (or any other) indices is that adjacent
index pairs are contracted. Thus I',p means (I',y), = ”abwb, (kA), =k, 4",, etec.
In general we use the notation of Jaucu and RoHRLICH in their book (Theory of Photons
and Electrons (Cambridge, Mass., 1955)) but with ¢ =% po=y,* A, where A is the
Dirac operator = éy? in the standard representation. Thus ¢ belongs to the G-repre-
sentation adjoint to that of y: if y,— D(9),y, under G, then p°— $°*D-(g),"

(Y & is a subalgebra of the Lie algebra of &, see Sect. 3.
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paper (°) we have investigated the properties of the resulting weak-interaction
theory using only the special multiplets (4, 0).

2. — Notation and background.

The Lagrangian for a massive (¢) gauge field Wﬂ(m)ab coupled to a set of fer-
mion fields y,(x) is

~ 1 2 el
(2.1) L= eV, + My —5 TrF,, P Jf7 Tr W, e

V¥, is the covariant derivative: ?Mw: aﬂw—ﬁ”w (3), where

3

(22) Fu:‘PLF/l’ PL:(1+@;}5)/27 FHE2’?:]¢‘VM.

W/mb has the form WM“ T, , where the T,, A—1,..., N, are matrices ge-
nerating the internal Lie group & on the internal space spanned by the w,:

(2.3) —%fF =R

uy wy ?

R,=—09,I+0¢I,—[I,1)].

R,(
uy
Internal indices a, b, ... will generally be suppressed; the trace in (2.1) saturates

these indices.
If we write

ERMWb) is the curvature tensor of the (reduced) linear connection ]’M.

(2.4) L — Lot Lo+ &, F, = fWC‘Aj"A ,
where
(2.5) Fa=iTrpp"(l Fiy) Ty,

then j*, is the well-normalized source (fermion) current density, whose vector
and axial parts satisfy the G-current algebra (7).

We have allowed the total linear connection fH to act on hoth the internal
and Dirac spinor indices. Then the separable form (2.2) was chosen, with P,
the left-handed projection in Dirac spinor space and the reduced connection r,

(®) AT =1 rule and the Cabibbo angle, to be published.

(%) It must be emphasized that the introduction of the mass term in (2.1) violates
the whole spirit of linear connection theory, and cannot snrvive in a correct formulation.
We include it as representing some sort of phenomenology, since otherwise the effective
current-current four-fermion interaction (Sect. 5) behaves wrong at small momentum
transfers.

(") Thus the Q,(f) = }{d%»j¢, satisty the G-Lie algebra with the same structure
constants as the 7.
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having only internal indices, to give the interaction the known ¥V —A4 form
(before renormalization).

3. — The polarization algebra.
The field equations for W, are

(3.1) VP — W= —fj" e =19y (1 + ty5) pa

where V, is formed with I',.
For the source-free gauge field (set = 0) we get the nonlinear field
equations

(3.2) OwW* + 42 W,, [W*, W*T] — @2 W’ + 2if[W,, & W*] = 0

since 0=V W+*=0, W*—2if[W,, W¥]=0,W* follows from these field equations.
If we look for e-number plane wave solutions of (3.2), W*.'= ¢’ (k). (k- ),
k€ (k). = 0, the last term in (3.2) vanishes. Then in order that the double com-
mutator be proportional to ¢,’, we demand that the polarization matrices
¢ = ¢"(k) form a Lie algebra (?):
(3.3) [e,, 6,] = i0,,,.k°¢"
The structure constants e,,,(k) must be skew symmetric in u, v, and if we re-
quire that they be linear in k, as in (3.3), then ¢,,,. must be totally antisymmetric
in u,v, A to guarantee k-¢= 0.
Further, in order that (3.3) be self-consistent (= hold for any k), we
must impose a transformaton law

(3.4) e,(kA) = D(A, k) e, (k) D(A, k) A,

for some matrices D(A, k) acting on the internal space (®).

(8) This idea is due to G. GOEDECKE.

(*) Actually the transformation law (3.4) is sufficient, not necessary. And in fact,
in the Abelian case I, the separable solutions e;f"”(k)ab eif’(k)e”m T, transform
aceording to (suppress a, b) e?(kA) = zed Bk)dyp(A, k) AP, where dy (A, k) is the

rotation induced on the space-time polanza’mons by A4, and D(A, k)=1, all 4. This is
more general than (3.4). However, (3.5) still holds for all k¥ and AB because one actually
has the stronger [¢% (), e* P (k)] =0, 1, A'=1, 2, 3.
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If the ¢,,,.=0 we get the Abelian case:
{(3.5) fe (k) , e k)]=0, Cage 1).

Otherwise the ¢, are not all zero, and it can be shown (*°) that they are pro-
portional to the totally antisymmetric quantity ¢,,. Hence by normalizing
the e, appropriately we get

(3.6) Le (k), e,(k)] = ie,, .} (k) K, Case II).

The linking of space-time and internal indices through (3.6) is the basic reason
why the internal symmetry ¢ is usually broken by Case II).

A complete set of solutions (°) of 1) (where we define ¢, (k)= e, (k)* T ) can be
taken in the separable form ¢7®(k)* = ¢P(k)e™*, where ¢P(k), 1=1,2, 3,
are orthonormal spacelike and k-e®(k) = 0, and ¢4, B=1, ..., N' <N, is any
orthonormal set in the adjoint representation space of . (The theory will
be G-invariant if and only if N'=N.)

By «complete » we mean a sufficiently large set of polarizations that the
two-point function (W, (x) W,(y)), of the LP. gauge field be proportional,
in momentum space, to (g,, + k,k,/u*).

As for Case II), we recognize (3.6) as none other than the commutation
relations for the generators w,(k) of the little group of k! Hence e (k) = w,(k)
= 1€,k M*¥ is a solution for any finite-dimensional representation M*
of the L-Lie algebra. Thusin Case II) G is forced to be the homogeneous Lorentz
group, or a group containing it. In the transformation law (3.4), D(A, k) be-
comes S(A) = exp[¢/2]w* M,,, where " are the parameters of /.

Now given one set of matrices M,,, then of course M®, = 8"M,8S, for
any nonsingular matrix S, gives another, usually different, solution of II);
and whether these represent «independent polarizations » can only be decided
with reference to the two-point function (or the propagator). We shall find
that completeness, in the sense of above, demands a continuous infinity of
«independent » polarizations.

Getting back to the problem posed at the beginning of this Section, we
find from (3.2) and (3.5), (3.6) that the phase function @(k-z) satisfies

3.7) O—uw)p=0=¢=-exp[ L ik-2], k?+ pu2=0; Case I),
(3.8) ¢ 4 g —8f2gt=0, kL p*=0; Case 1I),

(%) Write (3.3) for the e;(kA) and use (3.4). The D(A, k) cancel, and one is left
With ¢,,364P o A% A% A8, = 6orpy,e ThUS €06 = Ce e, ¢ = complex number and # 0 since
Cpae# 0, g.e.d.
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where ¢'(2) = dp/dz. (3.8) is the anharmonic oscillator equation and can be
solved exactly in terms of elliptic functions. As f-—0, ¢ —exp[L ik-x].
We remark that if there is no mass term, however, since the double com-
mutator term in (3.2) is proportional to %2, just like the term L1W”, ¢ satisfies
the equation ¢" —8f2¢*=0 in Case II) where k*= any constant. I.e. in the
case u®= 0 in the Lagrangian, the wave functions need not be massless.

4, — The quantum field and its propagator.

We concentrate on the new Case II). The quantized gauge field in the
I.P. is then (1)
(A1) Wiw) = @n)tuN f AU kB(R)O (k2 + p?) 3 € (k)-

-{a"(k) exp [ik-«] + a9 (k)* exp [—ik-a]} ,

where the polarizations e;f’ satisfy the algebra (3.6) and ¢ runs over a complete

set, t0 be determined. N normalizes the sum over 4. Since e’ =", lit-

tle group generators, u 'e.” are dimensionless.

One then finds
(4.2) W (@) Wo(y) Do = (271)‘3fd4k0(7€)5(k2 + p?)exp [ik- (2 —y)]4 (k) ,
where

(4.3) AP (k)= A, (k). ") =p" N* z e (k)® 6 (k) .

Now since @ and b are internal indices, they should not be rotated by (ex-
ternal) Poincaré transformations. So we impose the conventional relativistic

transformation law
(4.4) UWL)WH) ULy = A4 WL te),, Ll'ez=A"Yr—a),

(note the unaffected internal indices). Specializing to a pure Lorentz trans-
formation (¢ = 0), this gives via (4.2)

(4.5) A, (k) = (k) A A5, .

(1) We have chosen to make W, (x}4 (obtained by factoring out the generators
T, = My a self-adjoint field. By using the polarizations corresponding to the inequiv-
alent L-representations (, k) and (k, j) in the annihilation and creation parts respectively,
a more general theory might be obtained.
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But from the definition (4.3) and the law (3.4) with {4, k) = 8(4) we get
(4.6) A (k) = S @ SA) Ak S S(A) A}, A5,

Thus for each index pair A8, 4,.(k) must be invariant under conjugation by 8(A1).
This can never be realized by a finite number of polarizations. If we take
an infinite number, however, one for each Lorentz rotation 4, and define

(4.7) e, = 8(A) el 8(4),

where ¢}’ is defined with some standard matrices My", and

(4.8) A (k) = 2N f dA,e40(k) @ eav(k)

L

where the integration goes over the whole group manifold L and ddA, is the
invariant group volume element, then A,.(k) is indeed invariant under conju-
gation by any 8(dA), since these matrices simply get « absorbed ».
To evaluate (4.8), note that A4 (k) must have the form

(4.9) A, (k)= u—k*g,, + kL) (a/2) M, & M*

where ¢ is a pure number, and M,, = S(A)™ M) S(A) for any Ae L. This
follows from k*4, =kr"4,=0, [S(A)® S(A), 4,"]= 0,and 4, quadratic ho-
mogeneous in k. Hence to evaluate 4 , it is enough to evaluate A . Putting
in the explicit expressions for e;;’l”(k), the integrals ean be done ('?) and we

get finally a=-%. Equation (4.1) becomes now

(4.10) W, () = (2n)—3u-1Ade4k6(k)é(k2 4 M‘Z)fd./l(»‘/;”(k)-
“{a(k) exp [ik-x] + a“P(k)* exp [—ik- 2]},

“(A)u(k) - (%)ﬁwaghv M(AM& , M(A)AE = S(A)_IJM(O)MS(A) .

(12) These are evaluated by considering k;=(kA,), a complex variable and rotating
the path to the imaginary axis. The justification is that otherwise we get a noninvariant
result, nonsensical because we know that 4, commutes with 8(A4) ® S(A) and is thus
o« M, ® M#. This « paradox » is not so surprising when we consider that these integrals
are divergent, because L is noncompact (N-1= oo), and a limiting procedure must be
used.
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Then the transformation law (4.4) implies
(4.11) UA) @ (k) U(A) " = a0 (kA) ,

as is easily worked out by changing dummy variables a few times, using (3.4)
and the invariance of the volume elements d*% and d4. The commutation
relations are

(4.12) [aP(k), " (k') ] = 20 6(k — k') 6(A—A") ,

and these are invariant under (4.11).

The quantum field thus shows several new features relative to the usual
case I). There is a continuous infinity of « polarization states» correlated
1-1 with Lorentz rotations. These do not maintain their identity under Lorentz
transformations (ef. (4.11)). Moreover, the interpretation of the « one-gauge-
particle state» a““(k)*|0> is not clear. Group-theoretically speaking, W”(x),,”
given by (4.10) belongs to the mass= u, spin = 1 representation of the Poin-
caré group for each a, b, as one sees from (4.4) together with 0, W#=0. It dif-
fers thus dynamically from the usual such gauge vector (Case I)), i.e. in its
structure as an operator in state-vector Hilbert space. The infinite number
of operators a“’(k), linearly independent by (4.12), is not the same thing as
the finite number of operators in the Case I) theory.

5. — The effective weak interaction.

The propagator turns out, after some labor, to be (**)

B0 KW We =3 (T, @ T — K, 8 K-

} kuk,\ exp [ik- (@ —y)]
(2m) 4fd4k (g/w -+ ;;2 ) k24 ur—id

where J,=Ji= M, (ijk cyclic permutation of 123),
K=K=M,, i, k=1,2,38.

Hence taking O(f2) Moller scattering type graph, we find that in the small
momentum transfer limit |k |? < u2, v =1, ..., 4, the theory leads to the ef-

(13) Here, just as in ordinary vector meson theory, the vanishing of certain singular
integrals in the complex kt.plane allow the replacement (k%)nsessnen= @;—>k* in the
factor (—k?g,, + k,k,)n. in the propagator. We chose to make this replacement in
the term k,k, but kept — &%= p® in the — k?g,, term.
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fective current-current weak interaction

5.9 o — ¢ < Jr . i j2
(5.2) Ho= S Tudr KK, =g

Here the currents J and K are defined by the general formula (2.5), taking
T,= My, My, My, and M,y, M,,, M,, respectively.

To make contact with physies, it remains the assign to weakly interacting
particles to L-multiplets (j, k) (« weak multiplets ») and more (since SU, 3 L =
= 80,, and thus SU; is broken) to assign the actual matrices M w With whose
bases the hadrons are identified. This is explored in another paper (ref. (%)),
so we shall conclude here by just making a few general remarks.

M, is «rotationally invariant», meaning that it commutes with the J
(actually it commutes with the K also). Hence neutral currents are necessarily
implied. In ref. (%) it is shown how this allows a derivation of the AT =1
rule, with the correct small admixture of A7 = 3 for the nonleptonic decays.
However, these neutral currents also lead to some of the usual difficulties.

Note that the currents J and K have the same commutation relations as
vector and axial parts. However %, has no cross terms in these, 7.e. we cannot
describe 5, by a total current with 7 and 4 parts. This was a direct conse-
quence of having the Lorentz group as internal group. What significance this
may have, we do not know.

RTASSUNTO (%

81 trovano rigorose soluzioni in numeri ¢ ¢ delle equazioni di eampo libere da sorgenti
(ma non lineari, a causa del tensore di curvatura) del campo di gauge B » Per il gruppo
locale G. 8i costringono cosi le matriei di polarizzazione a soddisfare a un’algebra di Lie.
Se questa ¢ abeliana, allora si ha la normale teoria dei campi di gauge, con un qualsi-
voglia gruppo di Lie ¢. Nel caso non abeliano, emergono alcune nuove caratteristiche
abbastanza insolite. Le polarizzazioni risultano essere i generatori del piccolo gruppo
di una quantitd di moto temporale, e G & fissato come un gruppo contenente il gruppo
omogeneo di Lorentz L. Se si usano queste polarizzazioni ben determinate per costruire
il campo di gauge quantizzato del modello di interazione e si richiede che @ sia «interno »
{cio¢ che commuti eol gruppo di Poincaré « esterno »), allora si richiede un’infinitd continua
di stati di polarizzazione indipendenti, anche se B, della teoria dei gruppi appartiene
allo spazio delle rappresentazioni con massa > 0 ¢ spin 1. Considerando B, come W,
il bosone intermedio, si ha un effettivainterazione corrente-corrente invariante rispetto a
questo gruppo interno di Lorentz che, poiché ST, 9 L, rompe la simmetria di ST, in
modo specifico.

(") Traduzione a cura della Redagione.

6 — 1l Nuove Cimento A,
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KammOpoBanuble noJjis u ajredpa noasipu3anmii,

Pestome (). — TTony4eHsl CTPOTHE C-YMCIICHHBIE PeIleHHs ypaBHeHHi noss 6e3 ucTo-
YHUKOB (HO HENMHeWHBIC M3-3a TE€H30pa KPHBH3HBL) 1/ KanuOposouHoro nons B, ans
JokanbHoi rpymnbl G, IIpu 3TOM TpebyeTcs, YTOOBbl MATPHIBL MOJIAPAU3ALUMN YIOBIETBO-
psum anrebpe Jlu. Ecam 310 abeneB ciyuyait, TO moiyYaercsi oObIMHAA KamuOpoBOYHAS
Teopusi moJid, ¢ Moboi xenaemoit ¢ rpymmo#t Jlu. B nHeabeneBoM crnyyae HOSIBISIOTCS
HEKOTOpBIE NFOGONBITHBIE HOBble 0COOeHHOCTH. OKa3bIBACTCS, YTO MOIAPU3ALNY IPEACTAB-
JIAIOT TEHEPATOPbI MATEHBKOM IPYIILI BpeMeHH-I0A00HOI0 UMITYIbCa, | F OTperenseTC,
Kak Ipymma, cozepxaiias oanopoasnyro rpymmy Jlopentna L. Ecnu uCnons30BaTh 3TH
XOPOIIO ONpeeSIeHHbIE TOIAPU3ALMH IS TOCTPOSHUS. KAPTHHBI B3aUMOIEUCTBUS KBAHTO-
BaHHOTO Kann6pOBOYHOIO MOJIsA, ¥ TPeOOBaTh, YTOOKI (7 ABIANACL « BHYTPEHHEH » (: - 3aMe-
HETb C « BHEIIHel » rpymmoit Ilyankape), To TpebyeTcs HempephiBHAS OeCKOHEYHOCTh
HE3aBHCUMBIX COCTOSHUM MOJISIPU3ALUH, JaXKe €CIU TEOPETHKO-TPYIIIOBOH 00beKT B, npuHa-
IUIEXHUT TIPOCTPAHCTBY MpeacTaBieHuit ¢ Maccoit > 0 u cmuHoM 1. WMurtepnpetupys B,
xak W, npoMexyTouHsli 6030H, MOKHO NONYYHTE 3hdeKkTUBHOE TOK-TOKOBOE B3anMO-
IefdCTBHE, MHBAPDMAHTHOE OTHOCHTENBHO 3TON BHYTpeHHEW rpymnbl JlopeHTna, KOTOpO®
Hapywaer SU, ompemeneHHbiM obpa3oM, Tak kak SU; p L.

(*) Iepesedeno pedaxyueil.



