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ABSTRACT 

An r-graph is a graph whose basic elements are its vertices and r-tuples. It is 
proved that to every I and r there is an e(l, r) so that for n > n 0  every r-graph 
ofn vertices and n ' -  ~(t, ,) r-tuples contains r .  I vertices x(J),l < j  < r, 1 < i _< 1, 
so that al l the r-tuples (xl(1), xt2(2),..., xi(r)) occur in the r-gr~-ph. = - -  

By an r-graph G (')(r > 2) we shall mean a graph whose basic elements are its 
vertices and r-tuples; for r = 2 we obtain the ordinary graphs. These generalised 
graphs have not yet been investigated very much. G(')(n; m) will denote an r-graph 

of n vertices and m r-tuples; G(')(n;(rn)), the complete r-graph of n vertices, 

will be denoted by K(')(n), i.e., Kt')(n) contains all the r-tuples formed from 
n elements. K(')(nl , . . . ,  n,) will denote the r-graph of ~ =  1 nl vertices and 1-I~ = 1 nl 
r-tuples defined as follows: The vertices are 

x~ j), 1 <= j <= r, 1 ~_ i ~_ nj 

and the r-tuples of our r-graph are the I-I~-- 1 n~ r-tuples 

(X~:), v(a) v(r)~ 1 < i/<-- nj,  1 < j < r. 

Thus K(2)(2, 2) is simply a rectangle. 
Denote byfz(')(n) the smallest integer so that every G(')(n;f~ (')) contains a com- 

plete r-graph of I vertices. 
As is well known Turin [5] determinedf~t2)(n) for every I and n and also proved 

that there is a unique G(2)(n;f~2)(n) - 1) which contains no complete 2-graph 
of I vertices (ordinary graphs have to be denoted as 2-graphs here). In particular 
f ta2(n)= [n2/4] + 1. 

For r > 2 the determination of f~'~(n) seems to be a very difficult question 
which is unsolved for all r > 2, l > r. (This question was also posed by TuHm. 
Tuffm in particular conjectured that 

(1) f(53)(n) = n2(n - 1). 
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Vera T. S6s observed that if (1) is true then the extreme graphs are certainly 
not unique, and this may be one reason why the proof of (1) is difficult. 

It is easy to see that 

exists, but the value of c~ ") is not known for any r > 2, l > r. 

Denote byf(n; K(')(I,...,I,)) the smallest integer so that every 

G(')(n ; f (n ; K(')(ll , ... , I,)) 

contains a K(')(ll,  ..., l,). If ~ . [ = l l , > n  we define: f ( n ;  K(')(ll, ..., l,))= ( n ) +  1. 
/ 

In particular, f ( n ;  K(2)(2, 2)) is the smallest integer so that every 
G(2)(n ; f (n;K(2)(2,  2)) contains a rectangle. E. Klein and I [1] proved that 

Cl n 3/2 < f (n ;  K(2)(2, 2)) < c2n 3/2. (2) 

Very likely 

(3) lira f ( n ;  K(2)(2, 2))]n 3/2 = 2 x / 2 "  
n ~ 0 0  

but it is not even known that the limit in (3) exists. 
Ktivfid, the Turfins [4] and I showed that 

f ( n  ; Kt2)(/,/)) < cn 2-1/~ 

Probabby 

(4) f ( n ;  K(2)(I,/)) > c' n 2-01o ,  

but we are unable to prove (4) for l > 2. 

Stone and I [2] proved that for every 8 > 0 and a sufficiently small c, and 
n > no( ) 

(4') f ( n ;  K(2)([c,log hi, [c,log hi)) < ~n 2. 

It can be shown by probabilistic methods (similar to those used in [4] that for 

sufficiently large ~, 

(4 #) f ( n ;K t2 ) ( [~ , logn] , [~ , logn] ) )  > (1 - ~ ) (  2 )" 

In the present paper we first of all shall prove the following 
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THEOREM 1. Let n > n o (r, l), l > 1. Then for sufficiently large C = (C is inde- 
pendent of n, r, l) 

(5) n,-C(/t'-') < f(n;K(')( l ,  ...,/)) < n,-(t/l'-~). 

We only prove the upper bound and will discuss the lower bound later. We use 
induction with respect to r. First we prove the right side inequality of  (5) for 

r = 2, (this is substantially contained in [6], then we use induction with respect 

to r. 
Consider now the case r = 2. Denote the vertices of  our graph G(2)(n; t), 

t > n 2-1]z by xl,...,x,,, and by v(xi) we denote the valence of x~ (i.e. v(xi) denotes 

the number of edges incident to x~). Clearly 

(6) ~ v(x~) > 2n 2-ul • 
t = 1  

Let x~S ,, ..., ~o(~,~'A° be those xj's which are joined to xi. Form all the l-tuples from 
these vertices for all i, 1 < i < n. The number of these l-tuples (each counted 

with the proper multiplicity) clearly equals 

(7) ~ ( v(xi) ) 
i = 1  1 " 

An elementary inequality states that the sum (7) is a minimum if all the v(xi) are 

equal(~'~=lv(x~)satisf ies(6)((Y) = O i f y < l ) l  . Thus by a simple computation 

for n > no(/) 

Hence there are l vertices Yl, "",Ys which are all joined to the same l vertices 
x j,, ... x j , ,  which means that our graph contains a K(2)(l,/) as stated. 

Assume now that the right side inequality of (5) holds for r - 1, we shall prove 
it for r. First we need the following 

LEMMA. Let S be a set of N elements Yl, "",YN and let A~, l <_i<n, be subsets of 
f. (Assume that t l( ,~ denotes the number oJ elements o.f Al) 

(8) ~ ~ ~ nN 
I = I  W 
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Then i fn ~212w t there are 1 distinct A's, A~t,...,At ,, so that 

| N (9) Pl-= At, ~_ 2-~w~" 

Denote byfl(y) the characteristic function of At (i.e., f~(Yi) = 1 if yj is in At, and 
is 0 otherwise). Put 

F(y) = '~f~(y). 
I J l  

Clearly by (8) 

N nN 
(I0) ]~ F(y#) > 

1=1 - -  W 

Thus from (10) we obtain by an elementary inequality that 

N 

J - 1  

is minimal if for all j F(yj) = n/w, or 

(11) 
) = 1  

On the other hand we obtain by a simple argument 

N 

(12) ~ F(Yj) t=  ~ At1 ~ Ata n . . .  n At, 
j = l  

where the summation in (12) is extended over all the choices of i,, ..., it(1 _-< i, < n). 
There are I-l~-lo (n - 0 < n t choices of i,, ..., it where all the indices are distinct, 
and if (9) would be false the contribution of these terms to the sum (12) would be 
less than 

(13) Nnt 
2w t 

The number of the summands in (12) where not all the indices are distinct is 
easily seen to be less than 12n 1-1. The contribution of each of these terms to the 
right side of (12) is clearly at most N. Thus finally from (12) and (13) 
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N Nnt 12n 1-1N (14) Y~ F(Ys) t < + 
J = l  2 - - 7  " 

I87 

Now since n > 21Zw I (14) contradicts (11). Thus (9) must hold for at least one 
choice of distinct A:s, 1 < i < I which completes the proof of the Lemma. 

The Lemma is clearly not best possible, but is good enough for our purpose. 
Now we are ready to prove the right hand inequality of (5) for r > 2. Assume 

that it has already been proved for r - 1 if n > no(r - 1, l), and we are going to 
prove it for r if n > no(r,l ). Suppose then that we have a G(')(n; 0 with 
t >  n r- (z / t ' -D.  Denote by x~ , . . . , x ,  the vertices of our G (') and by Yt , ' " ,YN ,  
N-= (nr_ l ) ,  the set of all ( r -  1)-tuples formed from the x , ,1  _<i _< n. P['), ...,P:') 

denotes the t r-tuples of our Gt')(n; t). To apply our I.~mma denote by A t the set 
of all (r - 1)-tuples Ys such that YsUxl = P~') for some 1 < k < t. We evidently 

~ =  r t~_rn  "- l / t ' - I  > n N r l  n -1/t'-1 
t = l  

have 

Thus our Lemma applies with N - ( r  ._n )1 , w-- -n t / t ' - ' / r  v., since for 

n > no(r, l) n ~_ 21Zw ~ is clearly satisfied. We thus obtain that there are/distinct 
A's  At1, " ' ,  A .  for which 

(15) 1 ( n ) n_Z/t,_,)l t - (za ' -~ )  
s . z A o  ~- -2  r -  I (r! > n'- 

By (15) there are more than n '-1-1/t'-* ( r -  1)-tuples 

(16) p~,-1) p~;-1) t I > n r-l-l]l'-I 

so that all the r-tuples 

(17) (xt. ¢ Ptj'-') x,.uPJ '-'), 1 < s < l, 1 _gj 6 t1 

is clearly satisfied by our construction) are one of the P~°'s of our Gt')(n; t). 
These (r - 1)-tuples define a 

G ( r - l )  (n - -  l ; t t ) ,  tt > n - t - ( i / t~ ' -= )  

which by our induction hypothesis contains a K ('- 1)(/, ...,/) if n > I + no(r - 1, l). 
By (17) this implies that our G(')(n;t) contains a K(')( l , . . . , l )  which proves the 
right side inequality of (5). 
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Theorem 1 easily implies the following 

COROLLARY. Let n > no (r, 1), ti >- n, i = 1,. . . ,  r. Let 

[September 

( )  'r'fi 
G (') ~ t i ; U  , U > nl/Z,-t ti 

= 1  i = 1  

be s subgraph of  K (') (ti,. . . ,  t,). Then  G(°( ~ ' = t  ti ; U) contains a K(')(l, ..., l) 
A set of  tt elements can be decomposed into the (non-disjoint) union of  

[h/[(n/r)]] + 1 sets having In~r] elements. Hence clearly a K(')( t t ,  ..., t,) can be 
decomposed into the union of at most 

i=1 + 1  < n "  1 - I t ,  

_ r j , -1  

K (" ([n/r] , . . . ,  [n/r]) 's (the union is non-disjoint but every r-tuple of  K(O(tl,  ..., t,) 
occurs in at least one of the K(')([n/r], ..., [n/r])'s). Thus at least one of these 
Kt')([n/r],  ..., [n/r]'s say Ki  ') contains at least n ' - tar- lr- tuples.  Our K~t ') has 
r[n]r] < n vertices, hence the corollary follows from theorem 1 (the right side 
inequality of  (5)). 

The corollary has applications in number theory, this will be discussed in a 
subsequent paper. 

Without much change in the proof  of Theorem 1 we could show that the right 
side inequality of (5) holds for every n ~ rl. But in fact the right side of (5) is 
trivial if l > 2 (log n) t / ' -  1 , for then 

(7 )  <o. ,1. . 

Further we can prove the following 

THEOREM 2. Let ,t > 0 be any  number,  n > no(ot, l ,r),  2 < l < ct(logn) t / ( ' - l ) .  
Then  we have for  a sufficiently large absolute constant C t 

We do not prove the upper bound of  (18) since it is similar to that of (5), we have 
only to carry out the estimations and the induction with respect to r a little more 
carefully. The most interesting special cases are those which correspond to (4') 
and (40. For every e > 0 and a sufficiently small c~ ) 

(18') f (n;K(°([c(~)( logn) l / ( ' - t ) ] ,  ".., [c (a')(log n) t/( '- 1)] < 8n ~. 
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(18') in fact follows from the fact that the right side inequality of (5) holds for 
every n ~ lr. Further we have for a sufficiently large ~( ')  

(18") f(n;K(r)(['~)(logn)l/(r-l)])...:)[';r)(logn)I/(r-l)]))> (I- 8)(~ ) 
To give the reader an illustration how to prove the lower bound of (5) and (18) 

we prove in full detail (18") for 8 = ½. In fact we prove a stronger result. If  G(')(n;m) 
is an r-graph then G(')(n; m) will denote its complementary graph i.e. the 

G <') n" [ n~ _ ( '~ r J m) whose r-tuples are precisely those which do not occur in ; m). G(')(n 

THEOREM 3. Put  t = [4(logn) 1/c,- 1)] + 1. For every n there is a G(')(n) * so that 
neither G(')(n) nor G(')(n) contains a K(')(t ,  ..., t). 

The proof will follow very closely the method used in [3]. The total number 
of r-graphs G(')(n) is clearly 2(n/').The number of those r-graphs for which either 
G(')(n) or G(°(n) contains a K(')(t, ..., t) having the vertices x} j), 1 < i < t; 1 <: j < r 
clearly equals 

2 " 2 (nlr)-t', 

since the t" r-tuples of our K(')(t,  ..., t) either all have to belong to our G(°(n), or 
none of them belong to our G(')(n). The number of choices for our K(')(t, ..., t) 
is clearly less than n"/r ! < ½ n't. Therefore the number of graphs G(')(n) for which 
G¢')(n) or G("(n) contains a K (')(t,-.-, t) is clearly less than 

n rt  . 2 ( n / r ) - - t r  < 2 ( n / r )  . 

Thus there is a G(')(n) so that neither G(r)(n) nor G(r)(n) contains a K (')(t,..., 0, as 
stated. 

The proof of the lower bound of (5) and (18) uses the same methods combined 
with the methods of [4]. 

It is possible that  

lim f (n ;K(r ) ( l ,  ..., l))/n ,-(1/i ,-  1) 
?J ~ O0 

exists and is different from 0 (by (5) it is < A 1), but as stated in (3) this is not 
even known for r = l = 2. 
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