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WHITEHEAD GROUPS MAY BE NOT FREE, 
EVEN ASSUMING CH, I 

BY 

S A H A R O N  SHELAH* 

ABSTRACT 

We prove the consistency with ZFC + G.C.H.  of an assertion, which implies 
several consequences  of M A  + 2"o > 1~, which O,~ implies their negation.  

w Introduction 

The author has advocated for several years the problem of finding an assertion 

(X) consistent with ZFC + G.C.H., but still similar to MA + 2 "0 > 1,11, and far 

from V = L (or even ~,~). The reason was a hope it will imply 

(A) there are non-kee Whitehead groups of cardinality I, ll (see [9] or the 

presentation of Eklof in [5]). 

Remember that by [9], V = L (or even ~*) implies not (A), whereas 

MA + 2"~ N~ implies (A). There are many assertions which are in a similar 

situation (i.e., are implied by MA + 2 "0 > 1,ll but contradicted by V = L)  and it is 

natural to try to replace ~ . ,  by CH (two preprints do it for (A)) or find a suitable 

(X) as mentioned above. 

It seemed that the right (X) should solve other problems, and natural 

candidates seemed 

(B) for every stationary S C to1, 

(B)s every graph G of the following form has cromatic number No: its set of 

vertices is to1, and there are increasing to-sequences with limit 8, r/s, for each limit 

6 E S such that the set of edges of G is 

{(r/~(n), 6): n < to, 6 E S, 8 limit}. 

Hajnal and Mate prove MA + 2 "0 > N1 ~ (B), Os ~ ~ (B)s and asked what is 

the situation assuming CH (see [6]). 
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Another problem (see [10] but the part with MA was omitted there): 

(C) Is there a graph G of cardinality N1, with colouring number NI such that 

~---~(G)2:? (see Definition 2.1). 

The most famous of those problems is, of course: 

(D) (1) Are there Suslin trees? 

(2) Is every Aronszajn tree special ? (see, e.g., [7]). 

U. Avraham and the author tried to work on this on the thesis that the right 

way is to solve the equation 

consistency proof of (X)/Jensen proof of Consis (ZFC + G.C.H. + SH) 

= consistency proof of MA/Solovay-Tennenbaum proof of Consis (ZFC + SH) 

(see [3] for Jensen proof, and [14] on Solovay-Tennenbaum proof and [8] on 

Martin axiom). 

As a result they (see [1]) found an (X) consistent with G.C.H., and derived 

from Jensen's proof, but it implies (B) only. 

The author translated (A) to a set-theoretic assertion, Devlin looked at the 

following variant of a disjunct of that assertion (equivalent to it): 

(E) for some stationary S C_ to1, 

(E)s if r/~ is an increasing sequence of ordinals with limit 8 E S and ha ~ "2 

for ~ E S then there is f: tot --* {0, 1} such that for each limit 8 E S for every n big 

enough h,(n)  = f(~ls(n)). 

A great surprise was that Devlin proved CH ~ not (E)~, (for this and more, 

see Devlin and Shelah [4]). 

From this we see that as Jensen's proof does not discriminate toL from any 

other stationary subset of tol, it cannot be used to prove that for some stationary 

S _C to~ (E)s which would imply there is a non-free Whitehead group. 

However in w we show the consistency of ZFC+ G.C.H. + "(E)s for some 

stationary S". In w we mention stronger assertions whose consistency (variants 

of) the proof in w shows, and show they implied (A), (C) and (B)s, and even 

more. We naturally hope more applications will be found. 

A nice feature of our proof is that it generalized easily to higher cardinals, 

unlike MA. Hence it is consistent with ZFC + G.C.H. that the first non-free 

Whitehead group has a large power. 

Let us mention related results. Avraham, Devlin and Shelah [2] deal with what 

can be sucked from Jensen's proof. In [12] we show that if (E)s holds for one 

(7/~: ~ E S ) ,  it does not necessarily hold for another (r/l: B E  S); and 

(E)s, ^ (E)s~ ~ (E)s,us~; hence the question whether G is Whitehead is delicate; 
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e.g., in Theorem 2.4's notation, the knowledge of S is not sufficient. We also 

show (in the notation of [9]) that a Whitehead group can be in case I, by showing 

the consistency with Z F C +  2"' = 2 "~ of an assertion similar to (E)s, where 

Range (r/e)C_ to. Note that this contradicts MA, as by [11] not MA implies every 

l~t-free (abelian) group of cardinality Nt is Whitehead lit it is in case II or III (see 

[9]). 

The author would like to thank Uri Avraham for writing up w The main 

result was announced in [13]. 

Added  in proof, April 1977. 

1) We find another application; it is consistent with ZFC + G.C.H. that there 

is a non-metrizable normal Moore space of cardinality Nt. In the model 

constructed in Theorem 2.1 take, e.g., X -- 0">tot tA {r/~ �9 8 E S} as the space, with 

the topology generated by {{rl} : rt E ~>tol} U{{r/~[a :n _-< a _-< to}: n < w, 8 E S}. 

We can get as an example a special Aronszajn tree in which we refine the Usual 

topology by making some limit points into isolated points. For background and 

details, see Devlin and Shelah [4a]. 

2) Devlin pointed out that 00",-->(V stationary S_-<tot)~s was an open 

question and is solved by this paper. (The answer is not, as in the model 

constructed in Theorem 2.1, ~ ,  holds by Theorem 2.4 by Os fail as Os f f  ~ (E)s  

of course (or as Os ~ -q(B)s by [6] and Conclusion 2.6).) 

3) Notice that for any regular A, {S C )t : Os holds} is a normal ideal. 

w Negation of the ~ consistent with CH 

We saw in [4] that if 2 "0 < 2", a closed unbounded subset of tot cannot be small. 

Can a stationary set be small ? In V -- L the answer is no, however a consistency 

result shows this is possible (with G.C.H.). 

THEOREM 1.1. Suppose 2 "0 = Nt, 2"  = N2; S C_ to1 and tot - S are stationary. 

For 6 < tot, rib is an increasing to-sequence of ordinals with limit 8. Then there is a 

set of forcing conditions (P, <-_ ) such that: 

1) I P[ = I~12, P satisfies the 1~I2-CC and adds no new sequences of length to, so if 

V satisfies G.C.H., then also V P satisfies it. 

2) Every stationary set remains stationary (in V p) (in particular S itself, this is 

the point, for if S becomes non-stationary then 3), which is our aim, holds 

trivially ). 

3) In V p the following holds: For every (c8 : 6 ~ S)  (c8 ~ ~ there is f: tot ~ 2 

such that 
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S C_{a < to1: thereisn~ < tosuchthatforeveryn >= n. /(17o(n)) = c.(n)}. 

PROOF. We describe at first the basic step, the iteration of which will give the 

final set of conditions. Let ~ = (c,: 8 E S) (c, E "2) be given, we define P~ to be 

the set of functions f such that: D o m f  is some ordinal a < to1 and 0/8 -< a )  

(6 E S f f  from some n onward f(17,(n))= c,(n)). The order is inclusion. It is 

easy to see that for a < to1 E~ = {f: a _C Domf} is dense, hence a generic filter 

will give us the desired unifying f. 

To see that P~ does not add a new sequence of length to, we take D,, n < to, 

dense open subsets and have to show that A . < ~ D .  is dense. Let f E P~. Look at 

the model N = (H(to2), IF, ~ ,  P~, D, )  . . . .  We can find an elementary chain 

(increasing and continuous) N. < N (a < toO, N~ _3 a, N~ is countable, f E No. 

As C = { a : N ~ n t o ~ = a }  is closed unbounded choose a E C - S  and let 

a = U.<, .a . ,  a .  < a.+l. We choose by induction on n < to f.  ~ N,,, f.+~ _-> f., 

a .  _C Domf.+l,  f.+l ~ D., f = f0. Now as a ~ S, U.<,of. ~ P~ and U.<o,f. E 

A.< . ,D . .  

Now we show that a stationary S* C_ S remains stationary (for S* _C to1 - S it is 

easier). Suppose f IF "z  is a closed unbounded subset of to~". Define N~, C as 

before and choose 6 E (C') n S* (C' is the set of limit points of C). So there are 

a .  E C, n < to, increasing with limit 6. We shall define f. E N,,., f0 = f, f.  --< f.§ 

a .  _C Dom/.+~ _C a.+l such that: 

1) for any k < to if a .  _-< ~Te(k) < a.+l then f.+l(Tts(k)) = cs(k) (note that only 

a finite number of k 's  satisfy the requirement for each n); 

2) f..1 IF "there is some ~" E r, a .  < ~" < a.+l". 

Now U.<of .  E P because of 1) and U.<,of. IF"'6 E ~- n S* because of 2). We 

define f. by induction on n, f0 = / ;  and for a given f., we first find [ ' .1 ~ N,,.+, 

satisfying 1), f.  _-< f'+,, and then f.+l E N~.§ satisfying 2), f'+~ =</.+~. 

REMARK. Actually the second proof shows that P~ does not introduce new to 

sequences, so here we don't  have to assume that to1- S is stationary. But the 

assumption will be needed in the iteration and we wanted to present the ideas in 

a simple form. 

We now iterate P, extensions to2 times taking inverse limit at stages of 

cofinality ~o. More explicitly we define by induction sets of forcing conditions P,, 

for c~ -< to2 and carefully chosen 6" names in P~ (with boolean value 1) of a 

sequence ( c ~ E ' ~  E S). The elements of P,, are all the functions p with 

D o m p  _C a, D o m p  countable and for ~" ~ Domp, p(~') is a function (in V) such 

that: p I ~" E P~ and p I ~" IF P' "P(~') E P~,", the ordering of P,, is p _-> q iff 

D o m q  _CDomp and for f f ~ D o m q ,  p(~') extends q(~'). Note that p(~') is a 
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function in V (not a name in P~) but this is okay since we will show that P~ does 

not add new ~o-sequences. Now P~=P is the desired set of conditions. 

LEMMA 1.2. P satisfies the I~2-C.C. 

PROOF. Let  p~ ~ P, i < oJ2; as Dom p~ is countable and 2 x~ = M~ we can find 

I C w 2 ,  II1=1% and A such that ~ < o t ~ I ~ D o m ( p ~ ) G D o m ( p ~ ) = A  and 

p~ I A = po I A hold too (remember P e~ has cardinality 1~1) hence p,, po are 

compatible by (p~ U p~). 

DEFINmON 1.1. If p, q are functions, p v q is the function defined on 

Dom p U Dom q such that 

~ ' ~ D o m p - D o m q  ~ [p v q ] ( ~ ' ) = p ( ~ ) ,  

~" ~ Dom q - D o m p  ~ [p v q] (~') = q (~'), 

~'~ D o m q  n D o m p  f f  [p vq](~)=p(~)Uq(~) .  

FACT 1.3. If p E P s ,  qEP~, a<~[3, p > - q l a  then p v q E P o .  

DEFINITION 1.2. Let t be a function defined on a finite subset of a =< to2 such 

that ~ E Dora t ~ t(~') is a finite function from to~ into {0, 1}. A condition p E P~ 

induces t iff  ~" ~ Dom t ~ ~ E D o m p  and t(~')C_ p(~'). We say p is consistent 
with t i f f  for ~ C_ Dora t n Domp,  p(~') U t(~) is a function. 

The following Lemmas 1.4-1.6 are proved simultaneously by induction on a, 

LEMMA 1.4. If  p E Po is consistent with t then for some q, p <=q, q ~ P, and q 
induce t. 

PROOF. Let Dom t={/3~,- �9 we define by induction p~ E P~, i<-k, po = p, 

p,+, => p.,/3~ E D o m p ,  0 < i _-< k and p,([3,) D t([3~), and p, is consistent with t. 

Suppose p~-i is defined. By Lemma 1.6 P~, does not introduce new to- 

sequences hence we can find q, p,_~ r/3~ _-< q E Po, such that q "describes" c ~,, for 

6 =<sup(Domt(/3~)). Now we can extend p~(/3~) and using Fact 1.3 find p~ as 

required. Set q = pk to end the proof. 

LEMMA 1.5. Every p E P. has an extension p* E Po such that for some 6 ~ S 
for every fl E D o m p * ,  ~ = Domp*(/3) .  

PROOF. Let N = (H(w:), ~ ,  P., IF) and taking Ns<N (3 < wl) a continuous 

chain of countable elementary submodels such that p E Ns, we find as before a 

closed unbounded C C_ to1, 8 E C ~ N6 O to1 = & Now for 8 E [C' n to1 - S] we 



198 s.  S H E L A H  Israel J. Math. 

take 8 =  U,<,o6., 6, E C  and define F. EN~. ,  P,=<p,+~, p o = p  and 

/3, E Do m p , ,  such that each /3 E D o m p ,  is /3,. for infinitely many m '  and 

6. C Dom(p.+,(/3.));  hence p * =  U.<,op,  will satisfy the claim of the lemma. 

We can define p,+~ as in the proof of L e m m a  1.4, using L e m m a  1.6, and can 

choose appropriate/3,  because D o m  (/7,) is countable,  p * E P,, because 6 Z S. 

LEMMA 1.6. P~ does not add new to-sequences. 

PROOF. As the proof for P~. We use L e m m a  1.5 to ensure that our conditions 

have even height. 

In order  to see that S remains stationary we need the following lemma, where 

the fact that t o , -  S is stationary is used. This lemma and L e m m a  1.8 are the 

heart  of the proof. 

LEMMA 1.7. Suppose {/3~: i < 3'} is an increasing sequence o[ ordinals, 3' < to~, 

/3~ < to~. Suppose 6 E S and for every sequence 6 = (ci I i < 3'), c, E "2 we have a 

[unction p~, Dom p~ = {/31 : i < 3'}, and ~ ~ Dom p: ~ p~(~) is a [unction from 6 

to 2 such that: 

(i) [ o r i < 3 " , 6 t i = e * t i ~ p , [ / 3 ,  = p,.r/3i ( and we name this common value 

by peri), 

(ii) for i < 3", [p~(/3,)](71~(n))= c,(n) from some n onward, 

(iii) each p~ is the union of an increasing to-sequence of members of P. 

Then for some 6 = (c~: i < 3 ' )  and q E P, p~<=q (this is not well defined as 

maybe p~ ~ P, but the meaning is 

~ :EDomp~  ~ p~(~)= q(~) [Domp~(~)) .  

PROOF. Note that if 3' satisfies the assumptions of the lemma then so does 

each 3" < 3'. We prove by induction on 3' the following stronger claim: 

If 3'(0) < 3', 60 = (c,: i < 3'(0)) and P~o _-< r E P~,~o~ then for some 

extension 6 = (c, : i < 3') of 60 and q E P~?, q>=p~ v r. 

3' = ~ + 1. By induction hypothesis  we can assume 3'(0) = ~'. Given ~o and 

p~o<=r ~ P~, we can find by L e m m a  1.6 r ' ~  r, r ' ~  P~, such that r'lF c~ = q for 

some c~ E ~2. Now let 6 = (c, : i < ~" + 1~ extend 60, then p~ v r' E P~,+, is as 

required.  

3, limit. Let 3' = U,<~3' , ,  3'. < 3',+,. Using again the argument  of e lementary  
submodels  we can find 

N < (H(to2), IF, E ,  & (3' (n): n < w), {(~, p~): e E ~ (" 2)}, {/3~ : i < y }) 
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such that N ('1 to~ = p E to~ - S. Now we construct in N an increasing sequence 

p. E Po~., and c, (i < y(n))  such that, letting 6. = (c,: i < 7(n)), p. =>p~. and 

po => r. The induction step is by (*). Moreover, by Lemma 1.5 we can ensure that 

if ~ ~ D o m p ,  for some n then Uk~,p~(~') is defined on p. As p ~ S we have 

q = U p, ~ P as required. 

LEMMA 1.8. Every stationary subset remains so in V p. 

PROOF. Let S* C_ S be stationary (for S* _C to~ - $ it is easier), ~- a name of a 

closed unbounded set, p E P a condition; we want an extension of it forcing 

El" for some 6 E S *  

Again we can find Nk, k < to, countable elementary submodels of N = 

(H(to2), E , p ,  IF, ~', P, S *), such that Nkt3to~=ak, ak<Ctk+X, Nk<Nk+~, 
U~<~a~ = ~ ~ S*. 

By W we shall denote finite functions, Dora W C_ to2 and W(~')E to for 

E Dora W. For such W and k < to we define Q (W, k) to be the set of all 

functions t such that Dora t is an initial segment of Dora W and t(~') is a function 

from { r b ( / ) : / <  to, a w ~ -  -< r/a(i)< a~} whose Range C_ {0, 1}. 

We call T = {T(t): t E Q(W, k)} a Q(W, k)-tree if the following hold: 

1) T E  Nk, T( t )E  P, 
2) T(t) is consistent with t, 

3) For any Y E Dom W, T(t [ Y)= T(t)Iy .  

Let T~ be Q(W~,k,)-trees, / = 0 , 1 .  We say 7"o<-7"1 if: (a) Wo = WlrDom Wo, 

k0~ kl and (b) for any t E Q(W~, kl), To(t r(Wo, ko))= < T~(t) except possibly 

when Dora Wo _C Dom t~  Dom Wo, where t ' =  t r(Wo, k~) is the unique function 

with domain Dom t f3 Dora Wo and t'(~') = t(s r) r ak,. 

We now define by induction on k < to functions Wk, and O(Wk, k)-trees 

Tk ={Tk(t): t E Q(Wk, k)} such that: 

i) W 0 = O  (Q(Wo,0)={Q~}), T0={To(O)} where To(~ )=p  (the condition 
we started from); Wk+~ _D Wk, Tk+, ~ Tk; 

ii) Tk(t) induce t for every t @ Q(Wk, k); 

iii) for every t ~ Q(Wk+l, k + 1) such that Dom t = Dora Wk+~ (we will say 

that t is of maximal length) 

Tk+l(t) IF "for some ~', ~ E T and ak+l > ~ ~ •k"; 

iv) for every tU O(Wk+,,k +1)  and ~ D o m t  

ak C_ Dom[Tk+,(t)](~); 
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v) for every t E O ( W k ,  k) and ~rEDomTk(t)  there is k * > - k  such that 

~" E Dom W~.. 

Suppose Wk, Tk are defined. 

To obtain Wk+l. We add one element cr to Dora W~ and set Wk+l(O') = k + 1. 

We choose o" such that v) will eventually be satisfied. Let t , , . . . , t j  be the 

elements of Q(W~+I, k + 1) of maximal length. We construct Q(Wk+, k + 1)- 

trees So _--- S~,.. -, = St such that St = Tk+~ will be the required tree, and So = Tk, 

i.e., for i = l , ' " , l  So(t~)= Tk(t~I(W~,k)); So is a Q(W~+~,k +l ) - t ree  by the 

choice of W~+~(o-). We will require that: 

a) Sj(ts) induce ts, l>=j => 1, and S,(ts) is consistent with tj, 

b) a~ CDom[Sj( t j ) ] ( ( )  for ~ 'EDomt, ,  

c) Ss(tj) II-"~" E ~" for some ~', a~ < ~" < a~+~". 

Suppose S~ is defined, we define S~§ in N~+~. S,(t~+O is consistent with t~+l. From 

Lemma 1.4 we can enlarge S,(t~+~) and find a condition that induces t~+~. 

Enlarging it further by Lemma 1.6 we take care of b) and enlarging once more 

we get S~+~(t~+~), so that c) holds too. Now for any t ~ Q(WE.~, k + 1) for some 3', 

t [3 '  = t~+~[ 7 (e.g. 3' = 0), take the maximal such 3' (it always exists); then 

S~(t)I3"=Si(ti+l)r3", hence S~(t)v(S~+~(t~+~)I3")~P. We define S~+~(t)= 

S~(t)v(S~+~(t~+,)[3"). One can check that S~+, is a O(W~+~,k +D-tree  and S~ 

satisfies i)--iv). 

The next stage is to get the conditions of Lemma 1.7. 

Let {/3~: i < 3'} = I, Jk<~Dom Wk. Given a sequence ~=(c~: i < 3') we construct 

the sequence t kE(W~,k) .  If aw~)-~7~( l )<ak ,  ~ ' - - / 3 ~ D o m W k  then 

[t~(~')]0?~(/)) = c,(/). Now, Tk(tk) is an increasing sequence of conditions in P, 

and we set pe = Vk<~Tk(tk) (i.e. for every /3, p,(/3,) = [..Jk<,o([(T~(tk)]([3,)). (Note 

pe is not necessarily a condition.) It is easy to check that the conditions of 

Lemma 1.7 hold, hence for some ~ and q E P ,  p~-<q. Now p=<pe and 

q IF "8 E z"  because of condition iii) is as required. 

w Generalization and applications 

By changing somewhat the proof of Theorem 1.1, we can get by a similar 

forcing (for proof of Theorems 2.1-2.4 see [12]) 

T~EOREM 2.1. Suppose 2 No = ~tz, 2 NL = •2, D is an N~-complete normal filter 
over ~ .  

There is a set of forcing conditions (P, <= ) satisfying 1) and 2) of  Theorem 1.1 

and in V p the following holds: G.C.H. and 
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3) 
(*): for every S C to~, to~ - S E D, and (rt~: `5 E S) where rl~ is an increasing 

to.sequence converging to 5̀ and ~ = (c~: 5̀ E S) where c~ ~ ~ there is a function 

f: to~ ~ to such that for each ,5 E S for every n < to big enough f(Tl~ (n )) = c~ (n ). 

THEOREM 2.2. In Theorem 2.1, instead of (*) we can demand 

(**) Let S C to, to, - S E D, Ta  tree of height tol,T = U T~, T~ the a-th level. 
a < t ~  1 

Then T has an torbranch provided that the following conditions hold: 

a) To ~ ~ ,  and every element of T has at most N~ immediate successors, and at 

least one successor. 

b) Foreach l imi t `5~S,  i f8  = U.<~a., a ,  < a.+l, a , ,E  T,,., a.<=a.+~ (inthe 

tree) then for some d ~ Ts, a.<=a for every n. 

c) Let T = U , ,<~T" ,  T ~ increasing continuous, and each T" is countable, 

then for some closed unbounded C C to~, for each 8 E C n S, and a ~ T~ n T ~, 

a < ,5 there is a subtree T* C_ U,.~sT~ of T such that (see mainly (iv)) 

(i) a E T *  ( a n d b < c ,  c E T *  ~ b E T *  of course), and T * - T s C _ T  ~, 

(ii) every element b of T * -  T~ has an immediate successor, in T*, 

(iii) for every ,5 'EC, ,5'<,5 and a E T * N T ,  N T  ~, a<,5 ' ,  there is 

b ~ T* n T~NT 8, a < bforsome [3 < 8' such that b < c ^ c E U~,<~ T~, n T ~ :::), 

c ~ T*, 

(iv) if a, E T* f'l To., a,<=a,+l, ,5 = U.<,oa , ,  then for some a E T* n Ts, 

a. <- a for every n; 

or even 

(**)' We can replace (b) by 

(b') There is a function f: T ~  T, a <=f(a ) such that for any limit ordinal 

,s ff: S, ,5 < to1, if,5 = U . < ~ a . ,  a .  < an+l, a. E T~., a.<--f(a,) <= a,+~ then for some 

a ~ T~, a, <- a for every n. 

THEOREM 2.3. In Theorems 2.1, 2.2 (and also 2.4-2.7) we can replace 1~o by 

any regular cardinality A, provided that we make the obvious changes, and 

{,5 < A+: cf,5 = A}E D (so, e.g., in Theorem 2.1(3), rib is a A-sequence). 

THEOREM 2.4. In the models (of set theory) we construct in Theorems 2.1 and 

2.2 if V = L (i.e., we start with the constructible universe) O.,  holds. Moreover, if 

S ~ V, S C to~, to~ - S ~ D, then Os holds. In fact for each a < to~, there is a 

countable family __S~ of subsets of a, and there is a normal I~-complete filter D * 

over to~ such that for every S C_to~, {a < to~: S A a  E__S~}ED* 
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Now we turn to applications. In all of them suppose we are in the model of set 

theory satisfying (**)' from Theorem 2.2. 

CONCLUSION 2.5. If G = U~<,., G~, G, G~ abelian groups, G~ free and counta- 

ble, G/G~+~ is N:free,  and S = {i: G/G, is not ~m-free}, to~- S E D. Then G is a 

Whitehead group. 

PROOF. Use (**)' from Theorem 2.2 and [9]. 

We suppose f:  H ~ G is a homomorphism onto G, with kernel Z C H ( = the 

integers), let ~ =f-re(G,), and let T,,={g: g : G ~ H ~ H , + I  a homomorphism, 

([ r H,+m)g = l a,+,}. 

CONCLUSION 2.6. Suppose G is a graph whose set of vertices is tom, for every 

a, A~ = { / 3 : / 3  is connected to infinitely many y < a }  is countable, and 

S = {8 < to1: some/3 -> 8 is connected to infinitely many 3' < 8}. If to~ - S E D 

then G has cromatic number 1%. 

PROOF. By renaming we can assume A~ _C a + to for each a, and A~a+l) = ~ .  

Let T~ be the set of functions f from to(a + 1) to to, such that for/3, 3' connected 

in G, f(a)~ f(/3). Now apply (**)' (in fact, (**)). 

DEFINITION 2.1. 1) For a graph G let c l (G),  the colouring number of G, be 

the minimal cardinal G such that we can enumerate the vertices of G by 

{vi: i < a} such that for every i, I{J < i: (v,, vj)E G } I <  A. 

G 2 2) l~m--~ ( )2 means that for every 2-colouring of the (unordered) pairs of win, 

(i.e. [:  [tom] 2 = {{i, j}: i < j < tol}-~ {0, 1}) there is a one-to-one function F from G 

to to~, and i < 2  such that (V(a, b ) E  G) (a~ b--*i =f(F(a),F(b)). 

CONCLUSION 2.7. 1) There are graphs G with colouring number Nm, such that 

~1~ m ~ (G)2 2 

2) Suppose G is a graph whose set of vertices is tom, for ~ => 6 + to a is 

connected only to finitely many 3' < & for a >/3  > 6 only finitely many 3' < 6 

are connected to ~t and/3, and S = {ct < to,: a limit and some/3 => a is connected 

to infinitely many Y < a} is a set of limit ordinals and t o , - S  E D. Then 

Nm--~ (G)~, and when S is stationary, cl ( G ) =  Nm. 

REMARK. By [10] if Os then l~,-z~ (G)~. 

PROOF. The part on the colouring number is immediate. So suppose f is a 

2-colouring of tom. 

Let E be a uniform ultrafilter over to,, for each a let i, E {0, 1} be such that 
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A ,  = {/3 < tot: f (a ,  fl ) = L} E E (as E is an ultrafilter, L exists). Now for some 

i ~ { 0 , 1 } , A  = { a : L = i } E E ,  andw.l .o.g,  i = 0 .  

Case L 

y > / 3 :  

and 

There are n, a(o) , ' " ,c tc , )< a such that for every /3 > a  for some 

3, E A fq (~ Ao,) ,  
1=O 

(V~) (a --- ~ </3 ^ ~ E A N (~ A~(,)--* f(~, 3') = 1). 
l = 0  

For each [3 < a let us call the y we assure its existence g(/3). Now define 

yj(j < to~)inductively: 3'0 = g (a  + 1), y,+l = g(y j )and  for limit & 3'8 = g(I,-,Ij<83'j). 

Clearly for j(1) < j(2),/(3'jr1), 3'j(2)) = 1, so the mapping j ~ yj is as required. 

Case H. Not I. 

So for every n, a(O),." ", a ( n ) ,  a there is a/3 contradicting I. As for a fixed a, 

there are only countable many n, a(O),." ", a (n ) .  We can choose a/3 depending 

only on a and call it g(a) .  So we can define /3j (j < to1) increasing, such that 

g(/3;) </3;+1, and for every a (0 ) , - . . ,  a ( n ) E  ~j+, f~ A,  

1=0 

Now let T~ be the set of functions F, D o m F =  to(a + 1), /3, =<F(i)</3, . t ,  

R a n g e F  C_/3,(~+1) N A, and (a, b ) E  G, a, b < to(a + 1) implies f ( F ( a ) , F ( b ) )  = 

0. Now use (**)'. 
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