WHITEHEAD GROUPS MAY BE NOT FREE, EVEN ASSUMING CH, I

BY

SAHARON SHELAH*

ABSTRACT

We prove the consistency with ZFC + G.C.H. of an assertion, which implies several consequences of $MA + 2^{n_0} > N_1$, which \Diamond_{n_1} implies their negation.

w Introduction

The author has advocated for several years the problem of finding an assertion (X) consistent with ZFC + G.C.H., but still similar to $MA + 2^{M_0} > N_1$, and far from $V = L$ (or even \Diamond_{κ_1}). The reason was a hope it will imply

(A) there are non-free Whitehead groups of cardinality \aleph_1 (see [9] or the presentation of Eklof in [5]).

Remember that by [9], $V = L$ (or even \diamondsuit^*) implies not (A), whereas $MA + 2^{n_0} > N_1$ implies (A). There are many assertions which are in a similar situation (i.e., are implied by $MA + 2^{\kappa_0} > \aleph_1$ but contradicted by $V = L$) and it is natural to try to replace \Diamond_{κ} , by CH (two preprints do it for (A)) or find a suitable (X) as mentioned above.

It seemed that the right (X) should solve other problems, and natural candidates seemed

(B) for every stationary $S \subseteq \omega_1$,

 $(B)_s$ every graph G of the following form has cromatic number N_0 : its set of vertices is ω_1 , and there are increasing ω -sequences with limit δ , η_{δ} , for each limit $\delta \in S$ such that the set of edges of G is

$$
\{(\eta_{\delta}(n),\delta): n < \omega, \delta \in S, \delta \text{ limit}\}.
$$

Hajnal and Mate prove $MA + 2^{n_0} > N_1 \Rightarrow (B), \Diamond_s \Rightarrow \neg(B)_s$ and asked what is the situation assuming CH (see [6]).

^{*}The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research by grant 1110.

Received December 20, 1976

Another problem (see [10] but the part with MA was omitted there):

(C) Is there a graph G of cardinality N_1 , with colouring number N_1 such that $\mathbf{N}_1 \rightarrow (G)_2^2$? (see Definition 2.1).

The most famous of those problems is, of course:

(D) (1) Are there Suslin trees?

(2) Is every Aronszajn tree special ? (see, e.g., [7]).

U. Avraham and the author tried to work on this on the thesis that the right way is to solve the equation

consistency proof of $(X)/J$ ensen proof of Consis $(ZFC + G.C.H. + SH)$

 $=$ consistency proof of MA/Solovay–Tennenbaum proof of Consis (ZFC + SH)

(see [3] for Jensen proof, and [14] on Solovay-Tennenbaum proof and [8] on Martin axiom).

As a result they (see $[1]$) found an (X) consistent with G.C.H., and derived from Jensen's proof, but it implies (B) only.

The author translated (A) to a set-theoretic assertion, Devlin looked at the following variant of a disjunct of that assertion (equivalent to it):

(E) for some stationary $S \subseteq \omega_1$,

 $(E)_{s}$ if η_{δ} is an increasing sequence of ordinals with limit $\delta \in S$ and $h_{\delta} \in \mathcal{L}$ for $\delta \in S$ then there is f: $\omega_1 \rightarrow \{0, 1\}$ such that for each limit $\delta \in S$ for every n big enough $h_s(n) = f(\eta_s(n))$.

A great surprise was that Devlin proved CH \Rightarrow not (E)_{ω_1} (for this and more, see Devlin and Shelah [4]).

From this we see that as Jensen's proof does not discriminate ω_1 from any other stationary subset of ω_1 , it cannot be used to prove that for some stationary $S \subseteq \omega_1$ (E)s which would imply there is a non-free Whitehead group.

However in §1, we show the consistency of $ZFC + G.C.H. + "E)$ for some stationary S ". In §2 we mention stronger assertions whose consistency (variants of) the proof in §1 shows, and show they implied (A) , (C) and (B) _s, and even more. We naturally hope more applications will be found.

A nice feature of our proof is that it generalized easily to higher cardinals, unlike MA. Hence it is consistent with $ZFC + G.C.H.$ that the first non-free Whitehead group has a large power.

Let us mention related results. Avraham, Devlin and Shelah [2] deal with what can be sucked from Jensen's proof. In $[12]$ we show that if (E) _s holds for one $\langle \eta_{\delta}: \delta \in S \rangle$, it does not necessarily hold for another $\langle \eta'_{\delta}: \delta \in S \rangle$; and $(E)_{s_1} \wedge (E)_{s_2} \not\Rightarrow (E)_{s_1 \cup s_2}$; hence the question whether G is Whitehead is delicate; Vol. 28, 1977 **WHITEHEAD GROUPS** 195

e.g., in Theorem 2.4's notation, the knowledge of S is not sufficient. We also show (in the notation of [9]) that a Whitehead group can be in case I, by showing the consistency with $ZFC + 2^{x_1} = 2^{x_0}$, of an assertion similar to $(E)_{s_0}$, where Range (η_{δ}) $\subseteq \omega$. Note that this contradicts MA, as by [11] not MA implies every N_1 -free (abelian) group of cardinality N_1 is Whitehead iff it is in case II or III (see [9]).

The author would like to thank Uri Avraham for writing up $§1$. The main result was announced in [13].

Added in proof, April 1977.

1) We find another application; it is consistent with $ZFC + G.C.H.$ that there is a non-metrizable normal Moore space of cardinality \mathbf{N}_1 . In the model constructed in Theorem 2.1 take, e.g., $X = \omega > \omega_1 \cup {\eta_8 \cdot \delta \in S}$ as the space, with the topology generated by $\{\{\eta\} : \eta \in \infty\} \cup \{\{\eta_{\delta} | \alpha : n \leq \alpha \leq \omega\} : n < \omega, \delta \in S\}.$ We can get as an example a special Aronszajn tree in which we refine the usual topology by making some limit points into isolated points. For background and details, see Devlin and Shelah [4a].

2) Devlin pointed out that $\Diamond_{\omega_1} \rightarrow (\forall$ stationary $S \leq \omega_1) \Diamond_s$ was an open question and is solved by this paper. (The answer is not, as in the model constructed in Theorem 2.1, \Diamond_{ω_1} holds by Theorem 2.4 by \Diamond_s fail as $\Diamond_s \Rightarrow \neg(E)_s$ of course (or as $\Diamond_s \Rightarrow \neg(B)_s$ by [6] and Conclusion 2.6).)

3) Notice that for any regular λ , $\{S \subseteq \lambda : \Diamond_s \text{ holds} \}$ is a normal ideal.

§1. Negation of the \diamond consistent with CH

We saw in [4] that if $2^{\mu_0} < 2^{\mu_1}$ a closed unbounded subset of ω_1 cannot be small. Can a stationary set be small ? In $V = L$ the answer is no, however a consistency result shows this is possible (with G.C.H.).

THEOREM 1.1. *Suppose* $2^{\aleph_0} = \aleph_1$, $2^{\aleph_1} = \aleph_2$; $S \subseteq \omega_1$ and $\omega_1 - S$ are stationary. *For* $\delta < \omega_1$, η_δ *is an increasing* ω *-sequence of ordinals with limit* δ *. Then there is a* set of forcing conditions (P, \leq) such that:

1) $|P| = N_2$, P satisfies the N_2 -CC and adds no new sequences of length ω , so if *V* satisfies G.C.H., then also V^P satisfies it.

2) *Every stationary set remains stationary (in* V^P *) (in particular S itself, this is the point, for if S becomes non-stationary then* 3), *which is our aim, holds trivially).*

3) In V^{*P*} the following holds: For every $\langle c_8 : \delta \in S \rangle$ $(c_8 \in {}^{\infty}2)$ there is f: $\omega_1 \rightarrow 2$ *such that*

 $S \subseteq \{\alpha < \omega_1:$ there is $n_\alpha < \omega$ such that for every $n \ge n_\alpha$ $f(\eta_\alpha(n)) = c_\alpha(n)$.

PROOF. We describe at first the basic step, the iteration of which will give the final set of conditions. Let $\bar{c} = \langle c_{\delta} : \delta \in S \rangle$ ($c_{\delta} \in \ell^2$) be given, we define P_{δ} to be the set of functions f such that: Dom f is some ordinal $\alpha < \omega_1$ and $(\forall \delta \leq \alpha)$ $(6 \in S \Rightarrow$ from some *n* onward $f(\eta_s(n)) = c_s(n)$. The order is inclusion. It is easy to see that for $\alpha < \omega_1$, $E_{\alpha} = \{f: \alpha \subseteq Dom f\}$ is dense, hence a generic filter will give us the desired unifying f.

To see that $P_{\bar{c}}$ does not add a new sequence of length ω , we take D_n , $n < \omega$, dense open subsets and have to show that $\bigcap_{n\leq w} D_n$ is dense. Let $f \in P_{\varepsilon}$. Look at the model $N = (H(\omega_2), \Vdash, \in, P_{\varepsilon}, D_{n})_{n \leq \omega}$. We can find an elementary chain (increasing and continuous) $N_a \le N$ ($\alpha \le \omega_1$), $N_a \supset \alpha$, N_a is countable, $f \in N_a$. As $C = \{\alpha: N_{\alpha} \cap \omega_1 = \alpha\}$ is closed unbounded choose $\alpha \in C-S$ and let $\alpha = \bigcup_{n \leq \omega} \alpha_n, \ \alpha_n \leq \alpha_{n+1}$. We choose by induction on $n \leq \omega$ $f_n \in N_\alpha, \ f_{n+1} \geq f_n$, $\alpha_n \subseteq \text{Dom } f_{n+1}, f_{n+1} \in D_n, f = f_0.$ Now as $\alpha \notin S$, $\bigcup_{n \leq \omega} f_n \in P_\varepsilon$ and $\bigcup_{n \leq \omega} f_n \in$ $\bigcap_{n\leq\omega}D_n$.

Now we show that a stationary $S^* \subseteq S$ remains stationary (for $S^* \subseteq \omega_1 - S$ it is easier). Suppose $f \Vdash ``\tau$ is a closed unbounded subset of ω_1 ". Define N_{α} , C as before and choose $\delta \in (C') \cap S^*$ (C' is the set of limit points of C). So there are $\alpha_n \in C$, $n < \omega$, increasing with limit δ . We shall define $f_n \in N_{\alpha_n}$, $f_0 = f$, $f_n \leq f_{n+1}$, $\alpha_n \subseteq$ Dom $f_{n+1} \subseteq \alpha_{n+1}$ such that:

1) for any $k < \omega$ if $\alpha_n \leq \eta_{\delta}(k) < \alpha_{n+1}$ then $f_{n+1}(\eta_{\delta}(k)) = c_{\delta}(k)$ (note that only a finite number of k 's satisfy the requirement for each n);

2) f_{n+1} "there is some $\zeta \in \tau$, $\alpha_n < \zeta < \alpha_{n+1}$ ".

Now $\bigcup_{n\leq\omega}f_n\in P$ because of 1) and $\bigcup_{n\leq\omega}f_n\Vdash ``\delta\in \tau\cap S^*$ because of 2). We define f_n by induction on n, $f_0 = f$; and for a given f_n , we first find $f'_{n+1} \in N_{\alpha_{n+1}}$ satisfying 1), $f_n \leq f'_{n+1}$, and then $f_{n+1} \in N_{\alpha_{n+1}}$ satisfying 2), $f'_{n+1} \leq f_{n+1}$.

REMARK. Actually the second proof shows that $P_{\bar{c}}$ does not introduce new ω sequences, so here we don't have to assume that ω_1-S is stationary. But the assumption will be needed in the iteration and we wanted to present the ideas in a simple form.

We now iterate P_{ε} extensions ω_2 times taking inverse limit at stages of cofinality ω . More explicitly we define by induction sets of forcing conditions P_{α} for $\alpha \leq \omega_2$ and carefully chosen \bar{c}^{α} names in P_{α} (with boolean value 1) of a sequence $\langle c_8^{\alpha} \in \mathcal{C}^{\circ} \rangle$: $\delta \in S$). The elements of P_{α} are all the functions p with Dom $p \subseteq \alpha$, Dom p countable and for $\zeta \in$ Dom p, $p(\zeta)$ is a function (in V) such that: $p \nmid \zeta \in P_\zeta$ and $p \nmid \zeta \Vdash^{P_\zeta} {^{\omega}} p(\zeta) \in P_{\zeta} {\zeta}$, the ordering of P_α is $p \geq q$ iff Dom $q \subseteq$ Dom p and for $\zeta \in$ Dom q, $p(\zeta)$ extends $q(\zeta)$. Note that $p(\zeta)$ is a function in V (not a name in P_i) but this is okay since we will show that P_i does not add new ω -sequences. Now $P_{\omega} = P$ is the desired set of conditions.

LEMMA 1.2. *P* satisfies the N_2 -C.C.

PROOF. Let $p_i \in P$, $i < \omega_2$; as Dom p_i is countable and $2^{x_0} = \mathbf{N}_1$ we can find $I \subseteq \omega_2$, $|I| = \mathbf{N}_2$ and A such that $\beta < \alpha \in I \Rightarrow \text{Dom}(p_{\alpha}) \cap \text{Dom}(p_{\beta}) = A$ and p_{α} | $A = p_{\beta}$ | A hold too (remember P_{ξ} ^{*} has cardinality \aleph_1) hence p_{α} , p_{β} are compatible by $(p_{\alpha} \cup p_{\beta})$.

DEFINITION 1.1. If p, q are functions, $p \vee q$ is the function defined on Dom $p \cup$ Dom q such that

$$
\zeta \in \text{Dom } p - \text{Dom } q \Rightarrow [p \vee q](\zeta) = p(\zeta),
$$

$$
\zeta \in \text{Dom } q - \text{Dom } p \Rightarrow [p \vee q](\zeta) = q(\zeta),
$$

$$
\zeta \in \text{Dom } q \cap \text{Dom } p \Rightarrow [p \vee q](\zeta) = p(\zeta) \cup q(\zeta).
$$

FACT 1.3. If $p \in P_{\alpha}$, $q \in P_{\beta}$, $\alpha \leq \beta$, $p \geq q \restriction \alpha$ then $p \lor q \in P_{\beta}$.

DEFINITION 1.2. Let t be a function defined on a finite subset of $\alpha \le \omega_2$ such that $\zeta \in$ Dom $t \Rightarrow t(\zeta)$ is a finite function from ω_1 into {0, 1}. A condition $p \in P_\alpha$ *induces t* iff $\zeta \in \text{Dom } t \implies \zeta \in \text{Dom } p$ and $t(\zeta) \subseteq p(\zeta)$. We say p is consistent with t iff for $\zeta \subseteq$ Dom t \cap Dom p, $p(\zeta) \cup t(\zeta)$ is a function.

The following Lemmas 1.4–1.6 are proved simultaneously by induction on α ,

LEMMA 1.4. *If* $p \in P_\alpha$ is consistent with t then for some q, $p \leq q$, $q \in P_\alpha$ and q *induce t.*

PROOF. Let Dom $t = {\beta_1, \dots, \beta_k}$, we define by induction $p_i \in P_\infty$, $i \leq k$, $p_0 = p$, $p_{n+1} \geq p_n, \beta_i \in \text{Dom } p_i, 0 < i \leq k \text{ and } p_i(\beta_i) \supseteq t(\beta_i)$, and p_n is consistent with t.

Suppose p_{i-1} is defined. By Lemma 1.6 P_{β_i} does not introduce new ω sequences hence we can find q, $p_{i-1} \mid \beta_i \leq q \in P_{\beta_i}$ such that q "describes" $c^{\beta_i}_{s}$, for $\delta \leq \sup (Dom t(\beta_i))$. Now we can extend $p_i(\beta_i)$ and using Fact 1.3 find p_i as required. Set $q = p_k$ to end the proof.

LEMMA 1.5. *Every* $p \in P_a$ *has an extension* $p^* \in P_a$ *such that for some* $\delta \not\in S$ *for every* $\beta \in \text{Dom } p^*, \ \delta = \text{Dom } p^*(\beta).$

PROOF. Let $N = \langle H(\omega_2), \in, P_\alpha, \Vdash \rangle$ and taking $N_\delta < N$ ($\delta < \omega_1$) a continuous chain of countable elementary submodels such that $p \in N_s$, we find as before a closed unbounded $C \subseteq \omega_1, \delta \in C \Rightarrow N_\delta \cap \omega_1 = \delta$. Now for $\delta \in [C' \cap \omega_1 - S]$ we

take $\delta = \bigcup_{n \leq \omega} \delta_n$, $\delta_n \in C$ and define $p_n \in N_{\delta_n}$, $p_n \leq p_{n+1}$, $p_0 = p$ and $\beta_n \in \text{Dom } p_n$, such that each $\beta \in \text{Dom } p_n$ is β_m for infinitely many m' and $\delta_n \subseteq \text{Dom}(p_{n+1}(\beta_n))$; hence $p^* = \bigcup_{n \leq \omega} p_n$ will satisfy the claim of the lemma.

We can define p_{n+1} as in the proof of Lemma 1.4, using Lemma 1.6, and can choose appropriate β_n because Dom (p_n) is countable, $p^* \in P_n$ because $\delta \notin S$.

LEMMA 1.6. P_{α} does not add new ω -sequences.

PROOF. As the proof for P_{ε} . We use Lemma 1.5 to ensure that our conditions have even height.

In order to see that S remains stationary we need the following lemma, where the fact that ω_1-S is stationary is used. This lemma and Lemma 1.8 are the heart of the proof.

LEMMA 1.7. *Suppose* $\{ \beta_i : i < \gamma \}$ *is an increasing sequence of ordinals,* $\gamma < \omega_1$, $\beta_i < \omega_2$. Suppose $\delta \in S$ and for every sequence $\bar{c} = \langle c_i \mid i < \gamma \rangle$, $c_i \in \mathcal{L}$ *we have a function* $p_{\tilde{c}}$ *, Dom* $p_{\tilde{c}} = {\beta_i : i < \gamma}$ *, and* $\xi \in$ *Dom* $p_{\tilde{c}} \Rightarrow p_{\tilde{c}}(\xi)$ *is a function from* δ *to 2 such that:*

(i) for $i < \gamma$, \bar{c} $|i = \bar{c}^*| i \Rightarrow p_{\varepsilon} | \beta_i = p_{\varepsilon} \cdot | \beta_i$ (and we name this common value by p_{eff}),

(ii) *for* $i < \gamma$, $[p_e(\beta_i)](\eta_s(n)) = c_i(n)$ *from some n onward*,

(iii) *each* $p_{\tilde{c}}$ *is the union of an increasing* ω *-sequence of members of P.*

Then for some $\bar{c} = \langle c_i : i \leq \gamma \rangle$ *and* $q \in P$, $p_{\bar{c}} \leq q$ (this is not well defined as *maybe* $p_{\bar{e}} \not\in P$, but the meaning is

$$
\xi \in \text{Dom } p_{\varepsilon} \Rightarrow p_{\varepsilon}(\xi) = q(\xi) | \text{Dom } p_{\varepsilon}(\xi).
$$

PROOF. Note that if γ satisfies the assumptions of the lemma then so does each $\gamma' < \gamma$. We prove by induction on γ the following stronger claim:

If $\gamma(0) < \gamma$, $\bar{c}_0 = (c_i : i < \gamma(0))$ and $P_{\bar{c}_0} \le r \in P_{\beta_{\gamma(0)}}$ then for some $(*)_{\gamma}$ extension $\bar{c} = \langle c_i : i \le \gamma \rangle$ of \bar{c}_0 and $q \in P_{\alpha}$, $q \ge p_{\epsilon} \vee r$.

 $\gamma = \zeta + 1$. By induction hypothesis we can assume $\gamma(0) = \zeta$. Given \bar{c}_0 and $p_{z_0}\leq r \in P_{\beta_{\zeta}}$ we can find by Lemma 1.6 $r' \geq r$, $r' \in P_{\beta_{\zeta}}$ such that $r' \Vdash c_{\delta}^{\zeta} = c_{\zeta}$ for some $c_i \in \mathcal{C}_2$. Now let $\bar{c} = \langle c_i : i \leq \zeta + 1 \rangle$ extend \bar{c}_0 , then $p_{\bar{c}} \vee r' \in P_{\beta_{\zeta+1}}$ is as required.

 γ limit. Let $\gamma = \bigcup_{n \leq \omega} \gamma_n$, $\gamma_n < \gamma_{n+1}$. Using again the argument of elementary submodels we can find

$$
N \leq (H(\omega_2), \Vdash, \in, \delta, \langle \gamma(n): n < \omega \rangle, \{(\bar{c}, p_{\bar{c}}): \bar{c} \in \lceil (\omega_2) \rceil, \{ \beta_i : i < \gamma \})
$$

such that $N \cap \omega_1 = \rho \in \omega_1 - S$. Now we construct in N an increasing sequence $p_n \in P_{\beta_{\preceq n}}$ and c_i $(i < \gamma(n))$ such that, letting $\bar{c}_n = \langle c_i : i < \gamma(n) \rangle$, $p_n \geq p_{\bar{c}_n}$ and $p_0 \ge r$. The induction step is by (*). Moreover, by Lemma 1.5 we can ensure that if $\zeta \in$ Dom p_n for some n then $\bigcup_{k \geq n} p_k(\zeta)$ is defined on p. As $\rho \in S$ we have $q = \cup p_n \in P$ as required.

LEMMA 1.8. *Every stationary subset remains so in V^P.*

PROOF. Let $S^* \subseteq S$ be stationary (for $S^* \subseteq \omega_1 - S$ it is easier), τ a name of a closed unbounded set, $p \in P$ a condition; we want an extension of it forcing $\delta \in \tau$ for some $\delta \in S^*$.

Again we can find N_k , $k < \omega$, countable elementary submodels of $N =$ $\langle H(\omega_2), \in, p, \Vdash, \tau, P, S^* \rangle$, such that $N_k \cap \omega_1 = \alpha_k$, $\alpha_k < \alpha_{k+1}$, $N_k < N_{k+1}$, $\bigcup_{k<\omega}\alpha_k=\delta\in S^*$.

By W we shall denote finite functions, Dom $W \subseteq \omega_2$ and $W(\zeta) \in \omega$ for $\zeta \in$ Dom W. For such W and $k < \omega$ we define $Q(W, k)$ to be the set of all functions t such that Dom t is an initial segment of Dom W and $t(\zeta)$ is a function from $\{\eta_{\delta}(i): i < \omega, \ \alpha_{w(\zeta)} \leq \eta_{\delta}(i) < \alpha_{k}\}$ whose Range $\subseteq \{0, 1\}.$

We call $T = \{T(t): t \in Q(W, k)\}\$ a $Q(W, k)$ -tree if the following hold:

1)
$$
T \in N_k
$$
, $T(t) \in P$,

- 2) $T(t)$ is consistent with t,
- 3) For any $\gamma \in \text{Dom } W$, $T(t | \gamma) = T(t) | \gamma$.

Let T_i be $Q(W_i, k_i)$ -trees, $l = 0, 1$. We say $T_0 \le T_1$ if: (a) $W_0 = W_1 |$ Dom W_0 , $k_0 \leq k_1$ and (b) for any $t \in Q(W_1, k_1), T_0(t \mid (W_0, k_0)) \leq T_1(t)$ except possibly when Dom $W_0 \subseteq$ Dom $t \neq$ Dom W_0 , where $t' = t \restriction (W_0, k_1)$ is the unique function with domain Dom $t \cap$ Dom W_0 and $t'(\zeta) = t(\zeta) \log \alpha_{k_0}$.

We now define by induction on $k < \omega$ functions W_k , and $Q(W_k, k)$ -trees $T_k = \{T_k(t): t \in Q(W_k, k)\}\$ such that:

i) $W_0 = \emptyset$ $(Q(W_0, 0) = {\emptyset}$, $T_0 = {T_0(\emptyset)}$ where $T_0(\emptyset) = p$ (the condition we started from); $W_{k+1} \supseteq W_k$, $T_{k+1} \geq T_k$;

ii) $T_k(t)$ induce t for every $t \in Q(W_k, k)$;

iii) for every $t \in Q(W_{k+1}, k+1)$ such that Dom $t =$ Dom W_{k+1} (we will say that t is of maximal length)

$$
T_{k+1}(t)
$$
 \Vdash "for some ζ , $\zeta \in \tau$ and $\alpha_{k+1} > \zeta \geq \alpha_k$ ";

iv) for every $t \in Q(W_{k+1}, k+1)$ and $\zeta \in \text{Dom } t$

$$
\alpha_{k} \subseteq \text{Dom}[T_{k+1}(t)](\zeta);
$$

v) for every $t \in Q(W_k, k)$ and $\zeta \in \text{Dom }T_k(t)$ there is $k^* \geq k$ such that $\zeta \in \text{Dom } W_{\kappa}$.

Suppose W_k , T_k are defined.

To obtain W_{k+1} . We add one element σ to Dom W_k and set $W_{k+1}(\sigma) = k + 1$. We choose σ such that v) will eventually be satisfied. Let t_1, \dots, t_i be the elements of $Q(W_{k+1}, k+1)$ of maximal length. We construct $Q(W_{k+1}, k+1)$ trees $S_0 \leq S_1, \dots, \leq S_i$ such that $S_i = T_{k+1}$ will be the required tree, and $S_0 = T_k$, i.e., for $i=1,\dots, l$ $S_0(t_i)= T_k(t_i)(W_k, k)$; S_0 is a $Q(W_{k+1}, k+1)$ -tree by the choice of $W_{k+1}(\sigma)$. We will require that:

- a) *S_i*(t_j) induce t_j , $l \geq j \geq 1$, and $S_i(t_j)$ is consistent with t_j ,
- b) $\alpha_k \subseteq \text{Dom}\left[S_i(t_j)\right](\zeta)$ for $\zeta \in \text{Dom } t_i$,
- c) $S_i(t_i) \Vdash ``\zeta \in \tau$ for some ζ , $\alpha_k \leq \zeta < \alpha_{k+1}$ ".

Suppose S_i is defined, we define S_{i+1} in N_{k+1} . $S_i(t_{i+1})$ is consistent with t_{i+1} . From Lemma 1.4 we can enlarge $S_i(t_{i+1})$ and find a condition that induces t_{i+1} . Enlarging it further by Lemma 1.6 we take care of b) and enlarging once more we get $S_{i+1}(t_{i+1})$, so that c) holds too. Now for any $t \in Q(W_{k+1}, k+1)$ for some γ , $t \upharpoonright \gamma = t_{i+1} \upharpoonright \gamma$ (e.g. $\gamma = 0$), take the maximal such γ (it always exists); then $S_i(t)$ $\gamma = S_i(t_{i+1})$ γ , hence $S_i(t) \vee (S_{i+1}(t_{i+1}) \wedge \gamma) \in P$. We define $S_{i+1}(t)$ = $S_i(t) \vee (S_{i+1}(t_{i+1})\gamma)$. One can check that S_{i+1} is a $Q(W_{k+1}, k+1)$ -tree and S_i satisfies i)- iv).

The next stage is to get the conditions of Lemma 1.7.

Let $\{B_i: i < \gamma\} = \bigcup_{k < \omega}$ Dom W_k . Given a sequence $\bar{c} = \langle c_i: i < \gamma \rangle$ we construct the sequence $t_k \in (W_k, k)$. If $\alpha_{W_k(\zeta)} \leq \eta_s(l) < \alpha_k$, $\zeta = \beta_i \in \text{Dom }W_k$ then $[t_{k}(\zeta)](\eta_{\delta}(l)) = c_{i}(l)$. Now, $T_{k}(t_{k})$ is an increasing sequence of conditions in P, and we set $p_{\varepsilon} = \bigvee_{k \leq \omega} T_k(t_k)$ (i.e. for every $\beta_i p_{\varepsilon}(\beta_i) = \bigcup_{k \leq \omega} ([T_k(t_k)](\beta_i))$. (Note p_{ε} is not necessarily a condition.) It is easy to check that the conditions of Lemma 1.7 hold, hence for some \bar{c} and $q \in P$, $p_{\bar{c}} \leq q$. Now $p \leq p_{\bar{c}}$ and $q \Vdash ``\delta \in \tau"$ because of condition iii) is as required.

w Generalization and applications

By changing somewhat the proof of Theorem 1.1, we can get by a similar forcing (for proof of Theorems 2.1-2.4 see [12])

THEOREM 2.1. *Suppose* $2^{\kappa_0} = \aleph_1$, $2^{\kappa_1} = \aleph_2$, *D* is an \aleph_1 -complete normal filter *over* ω_1 .

There is a set of forcing conditions (P, \leq) *satisfying* 1) *and* 2) *of Theorem* 1.1 *and in V^p the following holds: G.C.H. and*

(*): *for every* $S \subseteq \omega_1$, $\omega_1 - S \in D$, and $\langle \eta_3 : \delta \in S \rangle$ where η_5 is an increasing ω -sequence converging to δ and $\bar{c} = \langle c_s : \delta \in S \rangle$ where $c_s \in \omega$ there is a function *f*: $\omega_1 \rightarrow \omega$ such that for each $\delta \in S$ for every $n < \omega$ big enough $f(\eta_s(n)) = c_s(n)$.

THEOREM 2.2. *In Theorem* 2.1, *instead of (*) we can demand*

(**) Let $S \subseteq \omega_1 \omega_1 - S \in D$, T a tree of height ω_1 , $T = \bigcup_{\alpha \leq \omega_1} T_\alpha$, T_α the α -th level.

Then T has an ω_1 -branch provided that the following conditions hold:

a) $T_0 \neq \emptyset$, and every element of T has at most \aleph_1 immediate successors, and at *least one successor.*

b) *For each limit* $\delta \notin S$, if $\delta = \bigcup_{n \leq \omega} \alpha_n$, $\alpha_n \leq \alpha_{n+1}$, $a_n \in T_{\alpha_n}$, $a_n \leq a_{n+1}$ (in the *tree) then for some* $d \in T_s$, $a_n \leq a$ *for every n.*

c) Let $T = \bigcup_{\alpha < \omega_1} T^{\alpha}$, T^{α} increasing continuous, and each T^{α} is countable, *then for some closed unbounded* $C \subseteq \omega_1$ *, for each* $\delta \in C \cap S$ *, and* $a \in T_a \cap T^s$ *,* $\alpha < \delta$ there is a subtree $T^* \subseteq \bigcup_{i \leq \delta} T_i$ of T such that (see mainly (iv))

(i) $a \in T^*$ (and $b < c$, $c \in T^* \Rightarrow b \in T^*$ of course), and $T^* - T_s \subseteq T^s$,

(ii) *every element b of* $T^* - T_s$ has an immediate successor, in T^* ,

(iii) for every $\delta' \in C$, $\delta' < \delta$ and $a \in T^* \cap T_a \cap T^s$, $\alpha < \delta'$, there is $b \in T^* \cap T_{\beta} \cap T^s$, $a < b$ for some $\beta < \delta'$ such that $b < c \land c \in \bigcup_{x < \delta} T_x \cap T^s \Rightarrow$ $c \in T^*,$

(iv) *if* $a_n \in T^* \cap T_{a_n}$, $a_n \leq a_{n+1}$, $\delta = \bigcup_{n \leq \omega} \alpha_n$, then for some $a \in T^* \cap T_{\delta}$, $a_n \leq a$ for every n;

or even

$$
(**)'
$$
 We can replace (b) by

(b') *There is a function f:* $T \rightarrow T$, $a \le f(a)$ such that for any limit ordinal $\delta \notin S$, $\delta < \omega_1$, if $\delta = \bigcup_{n<\omega} \alpha_n$, $\alpha_n < \alpha_{n+1}$, $a_n \in T_{\alpha_n}$, $a_n \leq f(a_n) \leq a_{n+1}$ then for some $a \in T_s$, $a_n \leq a$ for every n.

THEOREM 2.3. In Theorems 2.1, 2.2 (and also 2.4–2.7) we can replace \aleph_0 by *any regular cardinality A, provided that we make the obvious changes, and* $\{\delta < \lambda^* : c f \delta = \lambda\} \in D$ (so, e.g., in Theorem 2.1(3), η_{δ} is a λ -sequence).

THEOREM 2.4. *In the models (of set theory) we construct in Theorems 2.1 and* 2.2 *if* $V = L$ (*i.e., we start with the constructible universe*) \Diamond_{κ_1} *holds. Moreover, if* $S \in V$, $S \subseteq \omega_1$, $\omega_1 - S \notin D$, then \Diamond_s holds. In fact for each $\alpha < \omega_1$, there is a *countable family* \mathcal{S}_α of subsets of α , and there is a normal \mathbb{N}_1 -complete filter D^{*} *over* ω_1 such that for every $S \subseteq \omega_1$, $\{\alpha < \omega_1 : S \cap \alpha \in S_\alpha\} \in D^*$.

Now we turn to applications. In all of them suppose we are in the model of set theory satisfying (**)' from Theorem 2.2.

CONCLUSION 2.5. If $G = \bigcup_{i \leq \omega_1} G_i, G, G_i$ abelian groups, G_i free and countable, G/G_{i+1} is \mathbf{N}_1 -free, and $S = \{i: G/G_i$ is not \mathbf{N}_1 -free}, $\omega_1 - S \in D$. Then G is a Whitehead group.

PROOF. Use $(**)'$ from Theorem 2.2 and [9].

We suppose $f: H \to G$ is a homomorphism onto G, with kernel $Z \subseteq H$ (= the integers), let $H_i = f^{-1}(G_i)$, and let $T_a = \{g: g: G_{i+1} \to H_{i+1} \text{ a homomorphism, } \}$ $(f \upharpoonright H_{i+1})g = 1_{G_{i+1}}.$

CONCLUSION 2.6. Suppose G is a graph whose set of vertices is ω_1 , for every α , $A_{\alpha} = {\beta: \beta \text{ is connected to infinitely many } \gamma < \alpha}$ is countable, and $S = \{ \delta \le \omega_1 : \text{ some } \beta \ge \delta \text{ is connected to infinitely many } \gamma \le \delta \}.$ If $\omega_1 - S \in D$ then G has cromatic number \aleph_0 .

PROOF. By renaming we can assume $A_{\alpha} \subseteq \alpha + \omega$ for each α , and $A_{\omega(\alpha+1)} = \emptyset$. Let T_{α} be the set of functions f from $\omega(\alpha + 1)$ to ω , such that for β , γ connected in *G*, $f(\alpha) \neq f(\beta)$. Now apply (**)' (in fact, (**)).

DEFINITION 2.1. 1) For a graph G let $cl(G)$, the colouring number of G, be the minimal cardinal G such that we can enumerate the vertices of G by $\{v_i: i < \alpha\}$ such that for every $i, |\{j < i: (v_i, v_j) \in G\}| < \lambda$.

2) $\mathbb{N}_1 \rightarrow (G)_2^2$ means that for every 2-colouring of the (unordered) pairs of ω_1 , (i.e. $f: [\omega_1]^2 = \{\{i, j\}: i < j < \omega_1\} \rightarrow \{0, 1\}$) there is a one-to-one function F from G to ω_1 , and $i < 2$ such that $(\forall (a, b) \in G)$ $(a \neq b \rightarrow i = f(F(a), F(b))$.

CONCLUSION 2.7. 1) There are graphs G with colouring number N_1 , such that $\mathbf{N}_1 \rightarrow (G)_2^2$

2) Suppose G is a graph whose set of vertices is ω_1 , for $\alpha \geq \delta + \omega \alpha$ is connected only to finitely many $\gamma < \delta$, for $\alpha > \beta > \delta$ only finitely many $\gamma < \delta$ are connected to α and β , and $S = {\alpha < \omega_1:\alpha \text{ limit and some } \beta \geq \alpha \text{ is connected}}$ to infinitely many $\gamma < \alpha$ is a set of limit ordinals and $\omega_1 - S \in D$. Then $\mathbf{N}_1 \rightarrow (G)_2^2$, and when S is stationary, cl(G) = \mathbf{N}_1 .

REMARK. By [10] if \Diamond_s then $\mathbf{N}_1 \not\rightarrow (G)^2$.

PROOF. The part on the colouring number is immediate. So suppose f is a 2-colouring of ω_1 .

Let E be a uniform ultrafilter over ω_1 , for each α let $i_{\alpha} \in \{0, 1\}$ be such that

 $A_{\alpha} = \{\beta \leq \omega_1 : f(\alpha, \beta) = i_{\alpha}\} \in E$ (as *E* is an ultrafilter, i_{α} exists). Now for some $i \in \{0,1\}, A = \{\alpha : i_{\alpha} = i\} \in E$, and w.l.o.g. $i = 0$.

Case I. There are *n*, $\alpha_{(0)}, \dots, \alpha_{(n)} < \alpha$ such that for every $\beta > \alpha$ for some $\gamma > \beta$:

$$
\gamma\in A\,\cap\,\bigcap_{l=0}^n\,A_{\alpha(l)},
$$

and

$$
(\forall \xi) \; (\alpha \leq \xi < \beta \land \xi \in A \; \cap \; \bigcap_{i=0}^{n} \; A_{\alpha(i)} \rightarrow f(\xi, \gamma) = 1).
$$

For each $\beta < \alpha$ let us call the γ we assure its existence $g(\beta)$. Now define γ_i ($i < \omega_1$) inductively: $\gamma_0 = g(\alpha + 1), \gamma_{i+1} = g(\gamma_i)$ and for limit $\delta, \gamma_0 = g(\bigcup_{i < \delta} \gamma_i)$. Clearly for $j(1) < j(2)$, $f(\gamma_{i(1)}, \gamma_{i(2)}) = 1$, so the mapping $j \rightarrow \gamma_j$ is as required.

Case H. Not I.

So for every *n*, $\alpha(0), \dots, \alpha(n)$, α there is a β contradicting I. As for a fixed α , there are only countable many *n*, $\alpha(0), \dots, \alpha(n)$. We can choose a β depending only on α and call it $g(\alpha)$. So we can define β_j ($j < \omega_1$) increasing, such that $g(\beta_i) < \beta_{i+1}$, and for every $\alpha(0), \dots, \alpha(n) \in \beta_{i+1} \cap A$,

$$
\bigcap_{i=0}^n A_{\alpha(i)} \cap A \cap \beta_{j+1} \neq \varnothing.
$$

Now let T_a be the set of functions F, Dom $F = \omega(\alpha + 1)$, $\beta_i \leq F(i) < \beta_{i+1}$, Range $F \subseteq \beta_{\omega(\alpha+1)} \cap A$, and $(a, b) \in G$, $a, b < \omega(\alpha + 1)$ implies $f(F(a), F(b)) =$ 0. Now use (**)'.

REFERENCES

1. U. Avraham and S. Shelah, *A generalization of MA consistent with CH,* mimeograph, circulated in fall 1975.

2. U. Avraham, K. Devlin and S. Shelah, in preparation.

3. K. Devlin and H. Johnstraten, The *Souslin Problem,* Springer-Verlag Lecture Notes 405, 1974.

4. K. Devlin and S. Shelah, A weak form of \Diamond which follows from a weak version of CH, to appear in Israel J. Math.

4a. K, Devlin and S. Shelah, *A note on the normal Moore space conjecture,* to appear in Canad. J. Math.

5. P. Eklof, *Whitehead problem is undecidable,* Amer. Math. Monthly 83 (1976), 173-197.

6. A. Hajnal and A. Mate, *Set mappings partitions and chromatic numbers,* in Proc. Logic Colloquium, Bristol, 1973 (Rose and Shepherdson, eds.), Studies in Logic and the Foundations of Mathematics, Vol. 80, North-Holland Publ. Co., 1975, pp. 347-380.

7. J. T. Jech, *Trees,* J. Symbolic Logic 36 (1971), 1-14.

8. D. Martin and R. M. Solovay, *Internal Cohen extensions,* Ann. Math. Logic 2(1970), 143-178.

9. S. Shelah, *Infinite abelian groups. Whitehead problem and some constructions,* Israel J. Math; 18(1974), 243-256.

10. S. Shelah, *Notes in partition calculus,* Vol III (Colloquia Mathematica A Societatis Janos Bolavi 10), to Paul Erdös on his 60th birthday (A. Hajnal, R. Rodo and V. T. Sos, eds.), North-Holland Publ. Co., Amsterdam, London, 1975, pp. 1257-1276.

11. S. Shelah, *Two theorems on abelian groups,* in preparation.

12. S. Shelah, *Whitehead group may not be free, even assuming CH, II,* in preparation.

13. S. Shelah, *Whitehead problem under CH and other results,* Notices Amer. Math. Soc. 23(1976), A-650.

14. R. M. Solovay and S. Tennenbaum, *Iterated Cohen extensions and Souslin's problem,* Ann. of Math. 94(1971), 201-245.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL