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A GENERALIZATION OF QUILLEN'S 
AND ITS APPLICATION TO 

THE WEYL ALGEBRAS* 

LEMMA 

BY 

A. JOSEPH 

ABSTRACT 

Quillen's lemma [17] is generalized to modules of arbitrary Krull dimension. 
This leads to some generalizations of the results of [5] and [12] for the Weyl 
algebras of index > 1. 

1. The generalized Quillen lemma 

1.1 Let k be a commutative field, A a k-algebra and DimkA (or simply, 

D i m A )  the Gelfand-Kirillov dimension of A over k [3, w Define the 

commutative dimension Cd imA of A over k through 

Cdim A = sup{Dim B : B _C A commutative subalgebra}. 

By [3, w we can assume B finitely generated and so Cd im A  E N U~.  

Suppose Cdim A = m < ~. Then there exists a finitely generated commutative 

subalgebra B of A with D i m B  = m .  Write B =S(V) / I  and V ' I =  n{ / , :  

i = l , 2 , . . . , n ;  /, prime}. By say [3, w e)], m=DimS(V)/X/-I= 
max{Dim S(V)/L}. Choose j such that Dim S(V)/Ij = m. Since/j  is prime, there 

exist bl, b2 , . . .b , ,~S(V)  such that k[b~,b2,...,b,,]NIj=O. Yet IC / j ,  so 

CdimA is just the largest non-negative integer m such that A admits a 

polynomial subalgebra on m variables. 

1.2. Let U be a k-algebra with filtration U ~  . . .  satisfying U =  

U { U ' : i  = 0 ,1 ,2 , - . . } .  Assume that the associated graded algebra g r (U )  is 

commutative and finitely generated. Let Kdim denote the Krull dimension of a 

module [18]. 
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PROPOSITION. Let M be a finitely generated U module. Then 
Cdim Homv (M, M) _-< Kdim M. 

Let A _C Homu (M, M) be a polynomial algebra. Choose a system 

ml, m2,- �9 ", m~ of generators for M over U and set 

M ~ = ~ U~Amj. 
j = l  

Then M is a filtered module for the filtered ring 

U(~kA = 0 ( U ' ~ k A )  

and the associated graded module gr(M) is finitely generated on g r ( U ~  A)  = 

gr(U) Qk A. Hence by generic flatness (see for example [6, w there exists 

f E A such that 

~(M~/M~-I),  
i ~ 0  

is a free Ar module. This implies that for each i, the exact sequence 

0 ~  (M'-l)t ~ (M')r --> (M')t/(M'-l)t ~ 0 splits and so there exists for each i an 

isoinorphism of (M')t  onto (M' ~)t~)(M')r/(M'-~)t which is the identity on 

(M'-l)t. Thus for all j E N +, 

i 

(MJ)t = 0 (M')t/(M'-~)r, (A t module isomorphism), 
i = l  

and so M t is isomorphic to gr(M)t as an A t module. Since A is integral, f " ~  0 

for all n and so MI~ 0. Let r  m ~ m ~)1 be the canonical embedding of M in 

MQ,~ AI = MI. Then E = A6p (q-~(E)), for each A t submodule E of Mr. Let 

I ~ I z  be distinct ideals of A t. Since M t is a free A t module, L M  t is a proper UA t 

submodule of I2M r and so ~o-~(ItMt)~-~(I2M~). Hence K d i m M  _-> K d i m A  r = 

D i m A  t = DimA.  Combined with 1.1, this proves the proposition. 

REMARKS. This result represents joint work with R. Rentschler and I should 

like to thank him for his contribution. The special case when M has finite length 

(i.e. Kdim M -- 0) is a well-known corollary of Quillen's original result: but there 

seems to be no way of using the zero Krull dimension result to prove those of 

higher Krull dimension. Again Quillen's lemma has an elementary proof if 

card k > dimk M and in which case the above technical constraints concerning 

the filtration of U may be dropped; yet this does not seem to apply to the higher 

Krull dimension cases. 
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2. Primary applications to the Weyl algebras 

From now on we assume chark = 0. The applications given in this section 

essentially generalize arguments of J. Stein and myself for A ~ [12, Note added in 

proof]. Entirely new applications are given in Section 3. 

2.1. Given n E ~, let A,  denote the Weyl algebra of index n over k [5]. 

Recall that A,  has generators q~, ,9/Oq~: i = 1, 2 , . . . ,  n, and set p~ = - a/,gq,. For 

any subalgebra A CA.,  we have by [8, theor. 1.1] that Cd imA =< n, and in 

particular that Cdim A.  = n. 

2.2. Let A ~  . . .  denote the standard (canonical) filtration of A,. 

Given M a finitely generated A,  module (with generating subspace V) set 

d(M) = li---~ log dim (A k,V) 
~ log k 

Then d(M) is a non-negative integer _-< 2n. Furthermore, after Bernstein [1], 

(2.1) K d i m M  _-< d ( M ) -  n. 

In particular if I is a non-zero left ideal of A,, then 

(2.2) Kdim(A, / I )  <<- n - 1. 

2.3. Let X C A,  be a subspace which generates the symmetric algebra S(X)  

over X in A,. Set m = d i m X  = Dim S(X),  then by 2.1, m =< n. Let C(X)  denote 

the commutant of S(X)  in A.. Let F(X)  (resp. N(X) ,  D(X))  denote the largest 

subalgebra of A.  on which each ad x : x E X is locally finite (resp. nilpotent, 

semisimpte). Clearly C(X)  = N ( X )  O D(X).  With respect to a basis {x,} for X, 

set A(X) = {(hi, As ,"  ", h,,): A, E k: (ad x,)y = h,y, 0 ~ y E A.}. Clearly A(X) is 
an additive sub-semigroup of km. Given h =(A1, A2 , . . - -A , , )EA(X) ,  set 

D,  (X) = {y E A.  : (ad x,)y = h~y}. Then DA (X) is a module over C(X)  and if k is 

algebraically closed D(X)=(~){D~(X):  h ~A(X)}. Given d i m X  = 1, 

0 ~ x E X, we write C(X)  = C(x), etc. Unless otherwise stated (e.g. 4.1) we shall 
assume m : n. 

2.4. LEMMA. 

(i) C(X) is commutative. 

(ii) Given y E C(X), then ad y is locally nilpotent on N(X).  

(iii) C ( X ) -  {0} is an Ore set for N(X).  

(i) is due to Makar-Limanov [16]. (ii) follows from (i) exactly as in the special 

case described in [5, w (iii) follows from (ii) and [4, w 
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Recalling that A.  is integral, we let M ( X )  denote the localization of N ( X )  at 

C(X)  - {0}. 

2.5. Let Frac tA,  denote the left quotient field of A.. Let V be a finite 

dimensional subspace of Fract A.  such that (ad x) V C V, for all x ~ X (notation 

2.3). 

PROPOSITION. There exists O~ z E S ( X )  such that z V CA.  and so z V C 

F(X) .  

Set I = {a ~ A,  : a V  CA,}. Then I is a left ideal of A,  which is non-zero since 

V is finite dimensional. Set M = A , / I  and let N(I )  denote the normalizer of I in 

A,. From Ix, V C I ( a d x , ) V + I V x ,  C A ,  we obtain Ix, CL Hence S ( X ) C N ( I ) .  

Yet N(I ) / I  identifies with Hom,~. (M, M) and so by 1.2 and (2.2), we obtain 

Cdim N(I ) / I  <= Kdim M _-< n - 1. Recalling the Dim S ( X ) =  n, by assumption; it 

follows that S(X)  n IF  O, as required. 

2.6. COROLLARY. 

(i) Fract C(X)  is the commutant of S ( X )  in Fract A.. 

(ii) M ( X )  is the largest subalgebra of Fract A,  on which each ad x: x ~ X is 

locally nilpotent. 

(iii) A(X) is an additive subgroup of Qk: k <- n. 

(i) and (ii) are clear. For (iii) suppose A E A(X) and choose 0 ~ y • D~ (X). 

Then ky -~ is a one-dimensional subspace of Fract A,  which is stable by each 

ad x : x E X. Then by 2.5, - A E A(X) and so A(X) is a group. Finally let {Aj}~'~a 

be a basis for the rational vector space generated by A(X) and choose 

yj E D~ (X). Let A be the subalgebra of A,  generated by the yj over S(X) .  

Then k + n =<DimA =<DimA, = 2n. (Familiarity with computations of Dim 

can be achieved by reading [3].) Hence k =< n, as required. 

2.7. BjSrk [2] conjectured that equality holds in (2.1). In particular if / is a 

non-zero principle left ideal of A.  one should have K d i m ( A , / I ) =  n - 1 .  

Suppose in fact that I = A,a : 0 ~ a ~ A .  and let C(a)  denote the commutant of 

a E A,. Then 

LEMMA. Kdim ( A . / I )  >-_ Cdim C ( a ) -  1. 

Set m = Cdim C(a)  and let A be a maximal commutative subalgebra of C(a)  

with D i m A  = m .  Then A N I = A a .  Hence by 1.2, Kdim (A, / I )  >- 

Dim A / ( A  n I) = Dim A / A a  = m - 1. 
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In particular taking m = n and a ~ C(X),  then K d i m ( A , / 1 ) =  n - l ,  so 

Bj6rk's conjecture is satisfied in this special case. At the other extreme it can 

happen that HomA. ( A , / L  A , / I )  (which we recall identifies with N ( I ) / I )  reduces 

to scalars. For example, take n = 2, a = pip2 + q~ + q~ and I = A2a. 

3. A power theorem 

From now on we assume that k is algebraically closed. 

3.1. We call a non-zero polynomial separating if it has no pair of roots 

a,/3 E k with a - / 3  E N*. Given f a polynomial, let Al.r denote the algebra with 

identity and generators x, y, z satisfying the relations 

(3.1) [ x , y ] = y ,  [ x , z ] = - z ,  y z = f ( x ) .  

Observe that zy = f ( x + l ) .  Given deg f= > l ,  then Al.r identifies with a 

subaigebra of the Weyl algebra A~ and is isomorphic to A~ iff d e g f  = 1 (see 3.6). 

Suppose that deg f => 1. 

LEMMA. The following three conditions are equivalent: 

(i) ALl is simple. 

(ii) f is separating. 

(iii) There exists m E N + such that the subalgebra of A 1,f generated by y ", z m, x 

is simple. 

Define the polynomial g through g ( m - l x )  = f ( x ) f ( x  - 1 ) . . . f ( x -  m + 1). 

Observe that f is separating ilI g is separating. Again by (3.1), y'~z ~' = g ( m - l x )  

and so A I,~ is isomorphic to the subalgebra of ALl defined in (iii). Hence it 

suffices to prove (i) r162 (ii). 

Set B = ALr. Let I be a non-zero two-sided ideal of B. Set r = kx E)ky.  Since 

r is solvable and x, y are locally ad-finite, there exists 0 f  a E I such that 

[y, a] -- 0 and [x, a] = ka: k E k. Then by (3.1) one must have k E N and a = y~, 

up to a scalar and then again by (3.1), there exists ~e E N, such that ye, z e E  L 

Then yeze E I N k[x], and it follows easily that d i m B / I  < ~. That is B admits a 

finite dimensional module M. 

Let 0 ~ v ~ M be an r eigenvector. Then yv = 0 and xv = av, for some a ~ k. 

This gives 0 = zyv = f (x  + 1)v = f ( a  + 1)v, so f ( a  + 1) = 0. Since dim M < ~ and 

the z *v~ 0 are linearly independent,  there exists k E N such that zk+~v = 0 and 

z k v ~  O. Then O= yzk+Iv = f ( x ) z k v  = zkf(x  - k )v = f ( a  - k )z~v, so f ( a  - k )=  

0. Hence ( i i ) ~  (i). Conversely given a ~ k ,  k ~ N  such that f ( a  + 1)= 
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f ( a -  k) = 0, the above construction gives the finite dimensional B module 

~){zev:  # = 0, 1 ,2 , ' "  ", k}. Since d imB = o% it follows that B is not simple and 

so (i) ~ (ii). 

3.2. Let f~, f2, '" ", f ,  be separating polynomials. Set f = (f~, f2,'" ", f ,) ,  A,,f = 

A~,f,• " ' x A l . 1 . ,  taking x, y,  z~ to be the generators of Al.l,, and 

assumed non-zero. 

THEOREU. Suppose A~f is contained as a subalgebra in FractA, .  Given 

m E N ~ such that x~, y ?, z ? E A,, for all i = 1, 2,.  �9 �9 n, then A ~  C A, .  

Suppose that degf~ = 0, for some L Then y ? z ?  = (y~z~)" ~ k. Yet y?,  z ? E  A,  

and so the y,, z~ are scalar. Substitution in (3.1) gives y, = z, = 0, contradicting 

their definition. Hence degf~ _-> 1, for all i. Set g = (g~,g2,'" ",g,): g~(x~/m)= 

f~(x~)f~(x~ - 1)...f~(x~ - m + 1). Then the g~ are separating polynomials of posi- 

tive degree, so by 3.1 the subalgebra A~,s of A,  generated by x, yT, z?  and the 

identity is simple. 

Set I = { a ~ A , :  a y ~ , a z ~ E A , ,  for all i = l , 2 , . . . , n ;  k = 1 , 2 , . . . , m - 1 } ,  

Then I is a non-zero left ideal of A,. By (3.1), we obtain A,~s C N ( I )  and so 

N ( I ) / I  D A,,8/(I  n A,,8). By the simplicity of A,~g, either I n A,~ s = A,~g or 

I n A,,g = 0. In the first case, 1 E I and so y,  z~ E A,, as required. In the second 

case, we have by 1.2 and (2.2) that n - l > = K d i m ( A . / l ) > - _ C d i m N ( I ) / I  > - 

Cdim A,~8 -> n. This contradiction proves the theorem. 

3.3. Let A be integral or prime Noetherian and suppose that D i m A  < oo. 

Given ! a two-sided ideal of A, then Dim A / I  = Dim A implies I = 0 [3, w 

Suppose A has an identity 1 and let B be a subalgebra of A with 1 E B and 

Dim A = Dim B. 

LEMMA. B simple implies A simple. 

Let I be a two-sided ideal of A. Then A / I  D B / ( B  n I). Given B simple, then 

B N I = B, or B n I -- 0. In the first case, 1 E B C I, so I = A. In the second case, 

Dim A / I  >= Dim B = Dim A, so I = 0. 

3.4. Adopt  the hypotheses of 3.2, but without assuming the f~ separating. 

THEOREM. Suppose A,, t identifies with a subalgebra of  Fract A .  which con- 

tains A, .  Assume x,, y ?, z 7' E A, ,  for some m E N + and all i. Then A~t = A. .  

One has DimA,~t = 2n = D i m A ,  and so by 3.3, A~,t is simple. Hence by 3.1, 

the f~ are separating and then the assertion of the theorem follows from 3.2. 
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3.5. It is not at all obvious if the conclusion of 3.4 implies that deg f~ = 1, for 

all i. To analyse this we generalize slightly a result of Solomon and Verma [19]. 

Let g be a semi-simple Lie algebra over k, U(g) its enveloping algebra, Z(g) the 

centre of U(g) and I a two-sided ideal of U(g). Set U = U(fl) /I  and let Z denote 

the centre of U. 

LEMMA. [ U, U] ~ Z = U. 

One has [g, U] ~) Z = U, through the reductivity of g, so the assertion holds iff 

[g, U] = [U, U]. Let zr: U(g)---~ U be the natural projection. Then since the 

assertion holds for I = 0 [19], we have [U, U] = zr[U(g), U(g)] = 7r[g, U(g)] = 

[g, U], as required. 

3.6. In 3.5, we consider the special case when g is a direct sum of n copies of 

s~r and I is a two-sided ideal generated by a maximal ideal of Z(fl). Then 

Z = k .  

COROLLARY. In 3.4 one has deg f~ = 1 for at least one value o f  i. 

Suppose degf~ > 1, for all i. Then we can write f~(x,) = (x, + a,)(x, +/3,)g,(x,): 

m,/3~ E k, g, polynomial and so Ai.f, is isomorphic to the subalgebra of A1 

defined through the relations 

y, = q,, x, + a, = - q,p,, z, = - p, ( - q,p, - .  a, + fl, )g, ( - q,p, - a,) .  

Since the algebra generated by q,  q~p, + 3", q,p~ + 23'~p~ : i -- 1, 2, �9 �9 n, is isomor- 

phic to a U of the above form for all 3', E k, it follows that we can take A.4  C U. 

Then k C[A,, A.]  = [A.,I, A..r] C [U, U], which contradicts 3.5. 

To show that degf~ = 1, for all i, it suffices to prove that A.  = A~ x B implies 

A._~ = B (algebra isomorphisms). Unfortunately as McConnell points out [15], 

this sort of "cancellation theorem" is generally quite hard even for very special 

B. 

3.7. let 0 # a , b , c @ A ~  satisfy 

(3.2) [ a , b ] = 2 c ,  [ a , c ] = a ,  [ b , c ] = - b .  

Following [10] we say that (3.2) defines a realization of s~e(2) in A~ and that this 

realization is of type S. if A(c) = 1/n l .  By [10, theor. 2.6], one can only have 

n = 1 or 2. Theorem 3.2 above gives additional information on $2. In fact the 

following result replaces lemma 4.3 and corollary 4.5 in [10] which are incorrect 

owing to an error in [10, p. 125, line 19]. Set C = ab + ba - 2c 2, and recall [10, 

prop. 2.1], that C is scalar in A~. 
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LEMMA. TO each realization of type $2 there exist y, z E Fract A ~ and r E N § 

such that a = �89 b = ~z 2 and 

y z = ( x - 1 ) ~  +2i+2i , w h e r e x = - 2 c - r + ~ .  

Furthermore yZ,-~, zZ,-, E A~; y2,-3, z2,-3 f~ A1 and C = - �89 - 3)(r + �89 

By [12, theor. 1.2], C ( x ) =  k[x]. Since the latter is a principle ideal domain 

and A(x) = Z, it follows (cf. 4.4) that D,(x):  n E Z is cyclic as a module over k[x] 

and we let y, be a generator. By (3.2), ay, =/ , (x)y,+2: /n  polynomial. As shown 

in [10, lemma 4.3], inspection of leading terms shows that f,  E k, for all but 

finitely many n E N. Assume f, scalar for some n odd and set r = (n + 1)/2. Then 

(cf. [10, lemma 4.3]) [a, yz,-~] = 0  and so a 2'-1= y~,_l, up to a scalar. Set 

y = ~ 2 a - ' + l y z , _ l .  Then y EFrac tA1  and yZ=2a .  Similarly there exists 

z E Fract A~, with z ~ = 2b and z~'-IE A~, for some s E N +. By interchanging y 

and z if necessary we can assume that r = s and y2,-3 ~ A1. 

By 2.6 (i) there exists a rational function h such that yz = h(x).  Then 

y Z ' - ' z Z ' - ~ = h ( x ) h ( x - 1 ) " ' h ( x - 2 r + 2 ) E k ( x ) N A ~ ' = k [ x ] .  Again 4ab= 

yZz2 = h (x )h (x  - 1) is a polynomial in x of degree 2 and so deg h = 1. Hence up 

to translation of x by a scalar we must have 

'-~ (x + 2 i - ~ ) ,  for some t E N. h ( x ) = ( x - 1 ) l - I  +2i  
i = l  

Furthermore h ( x )h ( x  - 1 ) . . . h ( x  - 2 u  + 2) is polynomial if[ u => t and so t -< r. 

One has yZz2 = (x - 2)(x + 2t - 3) and so the subalgebra U of A~ generated by 

y~, z 2, x is simple by 3.1. Again by 3.1 the subalgebra of A~ generated by y4,-2, 

z ~'-2, x is simple and since yZ'-~zZ'-~ is polynomial in x, it follows by 3.2 that 

yZ,-~ E A~ and so t = r. Then 8c = 4[a, b] = [yZ, z 2] = 

( x - 2 ) ( x + 2 r - 3 ) - x ( x + 2 r - 1 ) = - 4 ( x + r - 3 ) , s o  x =  - 2 c - r + 3  and C =  

l{yZz: + zZy ~-  2(x + r - ~)~} = - �89 - ~)(r + �89 as required. Finally suppose 

~2r-3~ A~. Then yZ~-~ZZ"-3~ Dz(x)= yzk[x]. Yet yZ'-3Z"-3 is not polynomial in 

x and so yZ is not a scalar multiple of yz. Equivalently a is divisible in A~ by a 

linear function in x which contradicts [10, lemma 3.2]. 

REMARKS. Given r as above, we say such realizations are of type $2,. They 

are inequivalent for different r [10, w Sz~ is non-empty and determined up to 

End A1. It is not established if $2, is empty for r > 1. As pointed out in [10, sect. 

4], this is about as difficult as showing that E n d A ~ A u t A ~  and in fact 

unpublished computations of mine show that one must have deg x =-> 147 for 

r > l .  
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3.8. Take r = 2  in 3.7. Then y z = ( x - 1 ) ( x + l ) x  - ~ = x - x  -~, y2z2= 

(x - 2)(x + 1), y 3 z 3  = ( X  - -  3)(x - 1)(x + 1). Set z '  = �89 z2]. Then [y, z'] = 1, 

yz '  = - x and z = z'(1 - x-5). Hence the algebra generated by x, y, z satisfying 

the above relations is isomorphic to (A l ) s  where S is the multiplicative subset of 

A~ = k[y,z ' ]  generated by the (x + n): n E Z. (This is an Ore set for A~ by 

[4, w The subalgebra B generated by x, y2, z 2, y~ contains the se(2) sub- 

algebra generated by x, y2, z 2 and is locally ad-finite as an s~e(2) module. By 2.6 

(i) the commutant C(y 2) of y2 in B coincides with k(y) tq B and so by the above 

local ad-finiteness we obtain C(y 2) --k[y 2, y3]. In particular y ~ B, and as an 

ad-s((2) module, B is a direct sum of simple modules of dimensions 3, 4, 5 , - . - .  

Again D imB =2 ,  so by 3.1 and 3.3, B is simple. Computation gives 1E 

[M, M] C[B, B], where M is the simple 4 dimensional se(2) submodule of B. 

Clearly Ftact B = Fract A~ and B is the largest subalgebra of Fract B which is 

locally ad-st~ finite. Yet B is not isomorphic to A~ since the commutant of the 

locally ad-nilpotent element y2 is not a polynomial algebra (cf. [5, w (i)]). 

3.9. Set y = p - ' - q p q .  Then (cf. [7, sect. 10]) y 2 = ( . q p q ) 2 - 2 q 2 E A ~ .  Set 

x = - qp, z = p. Then (3.1) holds with f ( x )  = (1 - x)(1 + x). This shows that the 

conclusion of 3.2 fails if f is not separating. Again take x, y as above, but now set 

z = q-~ - pqp. Then y",  z "  E At, for all integer m - 2. Yet yz = - x-~(x 2 - 1) 5, 

which is not polynomial. Observe that y2z2= (x + 1)2(x-2)2(x-  1)x is not 

separating, so the algebra generated by x, y2, z 2 is not simple. 

3.10. The following resolves problem 14 in [9]. 

LEMMA. Suppose y,z E F r a c t A t  satisfy y z - z y  = - 1 .  Given  y ' , z ' E  A l ,  

for some m E N § then y, z E A t .  

Set x = yz. Then x, y, z satisfy (3.1) with f linear and hence separating. Then 

by 3.1 and 3.2, it is enough to show that x E A1 to establish the lemma. By 2.6 (i), 

there exists a non-zero polynomial g for which g ( z m ) z  E A ~ .  Set k = degg. 

Application of ad ym shows that (y,,-1)km+~ E A1. Since m and ( k m  + 1)(m - 1) 

are coprime, we have y e+l ~ A 1, for all ~r sufficiently large. Interchanging y and z 

shows that there exists n E N, such that y~,z ~ E AI: k = n + 1, n + 2 , - . . .  Set 

a~ = y~z ~, bk = zky k. We have ak = F(x + 1)/F(x - k + 1), bk = 

F(x + k + 1)/F(x + 1), where F is the Gamma function. 

Suppose 

2ri 

(akak + ~ b k )  = 0, for some ak, flk E k. 
k = n + l  
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Take x = s E { 1 , 2 , - . . , n } .  Then E / 3 k ( s + k - 1 ) ! / ( s - 1 ) ! = 0 .  Let N, be the 

n x n matrix with entries (N,),s = (r + s + n - 1)! Then det N , / 0  and so/3k = 0, 

for all k. Interchanging x and - (x + 1) shows that ak = 0, for all k and so a~, b~ : 

k = n + 1, n + 2,- �9 2n are linearly independent.  Since they form a system of 2n 

polynomials of degree _-<2n, it follows that we can write x as a linear 

combination of them. Hence x E A1, as required. 

4. Strictly semisimple elements 

Recall the notation of 2.3 and assume that D(X) = A,. That is each x E X is 

locally ad-semisimple on A1. For n = 1, Dixmier [5, w showed that S(X)= 
k[qp], up to AutA~. Unfortunately his analysis does not easily extend to A~ 

since it entails a description of Aut A,, a pi-oblem which is almost certainly 

intractable for n > 1. However  by entirely different techniques we are able to go 

quite far in analysing S(X) and in 5 resolve completely the analogue problem for 

the Poisson algebra. Though we make use of the generalized Quillen lemma, all 

the results of this section can be obtained without it and in this connection we 

remark that in the present special case, 2.6 (i) t~ollows from [13, w Neverthe- 

less we believe that a more complete description of S(X) may derive from an 

extension of the ideas developed in Section 3. 

4.1 (Notation 2.3; m = 1, 2 , . - . ,  n). The following result generalizes [5, w 

LEMMA. There exists k @{1,2 , . . . n} ,  such that A ( X ) = 7  k, up to an 
isomorphism. Furthermore dim X =< k. 

Let V be the rational vector space generated by A(X) and set k = dimo V. Let 

{hj}~j be a basis for V. Given A E A(X), write 

h = ~  rsh s" r jE~,  
j=J 

and define linear maps dj : D, (X) ~ D, (X), thl'ough dsy, = rye. The dj extend to 

derivations of D ( X ) =  A,  and so by [6,w there exist x ; E  A.  such that 

dj = a d x ; .  Set X'= linspanx',. Then X '  generates a polynomial subalgebra 

S(X') of A,  and so k _-< n, by 2.1. Clearly A(X) = A(X') up to isomorphism and 

we show that A ( X ' ) =  Z k, for a suitable choice of scalars. 

By construction A(X') is an additive sub-semigroup of Qk. Since A,  = D ( X )  is 

finitely generated we can choose scalars such that A(X') C Z k. It remains to show 

that A(X') is a group and through the x~ we can assume that k -- 1 without loss of 

generality and set X ' =  X. 
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It is clear that A(X) is not a group only if A(X)C N (up to a change of sign). 

Let qO (resp. pO) denote the component of qi (resp. p~) lying in Do(X)= C(X) 

under the root space decomposition of A,  defined by D(X). Given A(X)C N, 
then qO, pO: i =  1 , 2 , . . . ,  n, generate a Weyl algebra A,  and so DimC(X)>= 

D i m A ,  = 2n. This contradicts [8, theor. 1.1] and so proves the lemma. 

4.2. LEMMA. Choose 0 ~ End Fract An. The commutant C(O(A.)) of 0 (A.) 
in Fract A. reduces to scalars. 

Set y ,=0 (q , ) ,  y ,+ ,=0(p , ) :  i = l , 2 , . . . , n .  Take U = F r a c t A , ;  B = C =  

(Fract A,)Y~'Y2'"% 0 = ad y,,+l in [13, prop. 3.2]. For each m E {0, 1 , 2 , . . . ,  

2 n -  1}, one has B y-+, / B  and so by [13, prop. 3.2] we obtain 

Dim gr (Fract A.  ) > Dim gr (Fract A.  )~' > Dim gr (Fract A.)Y,'Y2 > . .. 

> Dimgr  C(O(A.)). 

Since each of the above terms is integer-valued and 2n ---Dimgr(Fract A,) ,  it 

follows that Dimgr  C(O(A.)) = 0. Hence gr C(O(A.)) and so C(O(A,)) reduces 

to scalars. 

REMARK. This was first proved in my unpublished lecture notes on the Weyl 

algebras [9, w167 2.11]. it has the important corollary that Fract A,, cannot be 

embedded in Frac tA,  if m > n. (The corresponding assertion for A,  is 

elementary.) 

4.3. From now on we assume that m = n in 2.3 (and D(X)= A.). 

LEMMA. For each x E C(X), N(x)= C(x). 

By definition N(x)D C(x) and suppose this inclusion is strict. Then there 

exists y E A,  such that [x, y] / 0, Ix, Ix, y]] = 0. Since x E C(X) and D(X) -- A,, 

we can assume that y E D, (X), for some 3. E A(X), without loss of generality. 

Then by 2.6 (i), we may write l x, y] = yz, with z E Fract C(X). By 2.4 (i), this 

gives 0 = [x, [x, y]] = Ix, y]z = yz 2 and so z = 0, which is a contradiction. 

4.4. 

(i) 

(ii) 

(iii) 

PROPOSITION 

c ( x )  = s ( x ) ,  

For each A E A(X), D~ (X) is finitely generated as a module over S (X). 

There exists q~ @ Aut Fract A, such that ~o(X) = ~)7=1 (q,p, + a,), for some 
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By 4.1, A(X) = Z", for some basis of X. Let p~: i = 1,2,- �9 n, be positive real 

numbers linearly independent over Q. Given K = (kt, k 2 , " - ,  k , ) E  Z" and 

y ~ Dr  (X), set 

d (y)  = ~ p~k,. 
i = 1  

Then d extends to a valuation on A,  and hence defines a filtration on A.. Let gr 

denote the associated gradation functor and observe that we can identify gr (A,)  

with A,. Set Y = gr (k[q~, q2,'" ", q,]). Then Y is commutative and each y E Y is 

locally ad-nilpotent in A,. Now given Z C A , ,  set I ~ ( Z ) = { K E Z  ~: 

gr (z)  E Dr  ( X ) -  {0}}. Then I~ (Y) -  {0} admits a hyperplane of support through 

the origin in Z". Otherwise by Caretheordory's theorem, there exist 

y~, y2, '" ", y, ~ Y-{k}  and positive integers ml, m2,-- ' ,  m, such that d ( y ) =  0, 

where y = 1-ljy,J. We can assume the y, to be adxj: j = 1 , 2 , . . . ,  n, eigenvectors 

and then y E C(X). So by 4.3, C ( y ) =  N ( y ) =  A,, which gives y E k. Then 

yj ~ k, for each/' ,  in contradiction to their choice. 

Now choose the p~, so that (p~, p2," �9 ", p,) considered as an element of A(X)* is 

normal to a support hyperplane for f~(Y). Then d ( y ) = 0 ,  for all y ~ Y, so the 

filtration defined by d is bounded from below on Y. This gives Dim Y = 

Dimk[q~,q2,- . . ,q , ]  = n. Again given KElP(Y) and y,z  ~ YADx(X), then 

y- lz  E Frac tC(X) .  Since y, z commute and are locally ad-nilpotent, the 

localization (A,)y of A.  at y is defined and y-lz is locally ad-nilpotent on (An)y. 

Now 4.3 extends in the obvious fashion to Fract C(X) and by its conclusion, y-~z 

commutes with the whole of (An)y and is hence scalar. It follows that 

n ~ dim (lin span f~(Y)) > Dim Y. Then we can choose y,, y2,'" ", yn E Y and a 
basis {x'~};'-i for X such that 

(4.1) [x~, y,] = 8~jyj : 8~j the Kronecker delta. 

One does not in general have A(X) = Z" (identically) in this basis, thus for each 

A = (A1, A 2 , " ' , A , )  we write D,(X')= {y E A, :  (adx'~)y = A,y}. Then for each 

K = (kl, k 2 , . . . , k , ) E  N", we have 

(~  adk'y~)C(X)CDK(X')C(~ y~')Fract C(X), 

by 2.6 (i). Since the y, are locally ad-nilpotent, there exists for each z E C(X), a 
K E N", such that 
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where the last step follows from (4.1) and 4.2. Taking account of (4.1) this gives 

(i). 

For (ii), recall that A(X) is an additive group and choose 0 ~ y E D-A(X). 
Define the S(X) module homomorphism ~: D~(X)--.-~ C(X) = S(X),  through 

O(x) = xy. Since A,  is integra'., ~b is injective. Then (ii) follows from the fact that 

S(X) is Noetherian. 

Let C(Y)  denote the commutant of Y in A,. Let f~(C(Y)) denote the smallest 

subgroup of Z" containing I~(C(Y)). We show that I~(C(Y))=  Z". Given 

K E 7", fix 0 ~ c E DK(X). Through the local ad-nilpotence of the y,, there exists 

L = (~,  ~e2, �9 �9 4,) E N" such that 

0 = (I~I ad',y,)c~C(Y)ADK+L,(X), for some L ' E ~ ( Y )  
j=l 

(determined by L and the eigenvalues of the y,). Then K + L' ~ ~(C(Y))  and so 

K E f l(C(Y)) ,  as required. 

By 2.4, C(Y)  is a commutative algebra of locally ad-nilpotent elements. Thus 

for each y E C(Y)-{0},  the localizations C(Y)y and (A,)y can be defined ([4, 

w Since f~(C(Y))= Z", there exists y E C(Y)-{0},  such that f~(C(Y)y)= 
Z". Let 1, ~ Z", denote the n-tuple with one in the ith entry and zeros elsewhere 

and choose non-zero p'~ E C(Y)y n D~, (X). Then for all K = 

(k~, k2, . . . ,  k , ) E  Z", we have by 2.6 (i) and the local ad-nilpotence of the p'~ on 
(A,)y that 

DK ( X ) C  (, =1-~ (P',)k')C(X). 

Set q'~ = x~p', -~ E (A,)y. Then the q', p'~ are the required canonical generators. 

4.5. 4.4 (iii) is weaker than Dixmier's result in the special case n = 1, since we 

require the bigger automorphism group Aut Fract A,  instead of Aut A.. An 

attempt to obtain this refinement in the general case motivated much of Section 

3 and posed the following 

CONJECTURE. Suppose N(X)= A,. Then C(X) is a unique factorisation 
domain (UFD). 

This holds for n = 1, and in fact C(X) -- k[q~], up to AutA1 [5, w (i)] (but 

this stronger assertion fails if n = 2 [11]). Again given A , ~ N ( X ) ~ C ( X ) ,  then 

C(X) is not necessarily a UFD even when n = 1. For example, set y = p-~ - qpq. 
Then y m E A~: m = 2, 3 , - . . ,  and C(y 2) = k[y 2, y3], since there exists [7, sect. 10] 

E Aut Fract A~ such that y = ~p (q). Furthermore p E N(y2), yet p g C(y2). 
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To see how the analysis might carry through given a positive reply to this 

conjecture, we resolve the analogue problem for the Poisson algebra in the next 
section. 

5. The Poisson algebra 

5.1. Let P, denote k[X, ,X2, . . . ,2 ( , ,  Y~, Y2,'" ", Y,] considered both as a 

polynomial algebra and as a Lie algebra through the classical Poisson bracket 

( ol o8 _ o8 r,g e. (5.1)  (f, g} = ,.., 
, ~ , o x ,  o Y, o x ,  o Y, 

Although P. and A,  are not isomorphic (even as Lie algebras) they have many 

similar properties. In particular, for each x C P, we can define a derivation ad x 

of P, through (ad x)y = {x, y} and then S ( X ) ,  C ( X ) ,  F ( X ) ,  N(X),  D ( X )  can be 

defined in a manner analogous to 2.3. A simplification in studying P. derives 

from the fact that it is a UFD. This gives, as in [14, w 

LEMMA (Notation 2.3; m = 1 , 2 , . . . ,  n).  Suppose N ( X )  = A , .  Then 

(i) The irreducible e lements  o f  C ( X )  are irreducible in P.. 

(ii) C ( X )  is a UFD. 

5.2. By Aut P, we shall mean the subgroup of 

Aut k[ Y~, Y2," �9 ", Y., Z~, Z2,- �9 ", Z .  ] which preserves Poisson bracket. The main 

result of this section is the following. Take m = n in 2.3 and set X~ = Y~Z~. 

Assume D ( X )  = P,. 

THEOREM. There exists q~ EAut  P., such that q~(X) = O?-l  (X~ + a~), for some 

a~ E k .  

This is established below. In the proof we shall assume that the results of 

Sections 2 and 4 can be applied here, leaving the reader to fill in the necessary 

details. It is a general rule that the same argument applies and even with a little 

simplification. However one should note that P, as a Lie algebra admits an outer 

derivation (see for example [7, theor. 3.1]), and we do not know if 2.6 holds for 

P,. In the special case when F(X) = P. the latter result obtains from [13, w 

and 4.1 above. 

5.3. LEMMA. There exist y~, y2, . . ., y,  E P,, and  a basis {x,}7=~ of  X with the 

fol lowing properties : 

(i) {x,, xl} = {y,, yj} = 0, {x,, yj} = ~qYi (notation (4.1)), 

(ii) The yi are irreducible, 
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(iii) N(~')  = P,, where l?=linspan y,, 

(iv) For all K = (kl, k2 ,""  k , ) ~  Z", one has 

One has A ( X ) =  Z" as in 4.1 and we define Y, C ( Y )  as in 4.4. Clearly 

(ad x ) C ( Y ) C  C ( Y )  for all x ~ X. Then given y, z E DK(X)N  C(Y) ,  we have 

y - ' z  E Fract C ( Y )  n Fract C(X)  = k, by (4.1) and 4.2. Taking 5.1 into account, it 

follows that C ( Y )  satisfies all the conditions of [14, w and is hence a 

polynomial algebra on generators y, : i = 1 ,2 , . . . ,  n, which are irreducible. This 

gives (i)-(iii). From 2.6(i), 4.4(i) and the result Ft(C(Y)) = Z", established in 4.4, 

we obtain 

D~(X)  C (,=1 y~' Fract S(X), for all K = (kl, k2, . . . ,  k , ) E  Z". 

Combined with (iii), this gives (iv). 

5.4 (Notation 5.3, 4.4). 

LEMMA. For each i = 1,2,. �9 n, there exists a~ E k such that y ?l(x, + a,) E P.. 

Consider D_~, (X). By 5.3(iv), there exists for each i a non-zero polynomial f~ 

such that y;~f~(xl, x2,'" ", x , ) E  P,. By 5.3(i), repeated application of the ad yj: j 

( r i) = 1, 2,. �9 n, to this expression gives a non-zero polynomial g~ for which 

y?, y?lg,(x,)EP.: m i E N .  
i (  1 

By 5.3(ii), y, divides g,(x,) and hence one of its linear factors. 

5.5 (Notation 5.4). Set z, = - y~-l(x~ + a,). 

LEMMA. For all i,j = 1 ,2 , . . . ,  n, 

(i) {z,, z ,}  = 0, {y,, z ,}  = 6,j, 
(ii) the z, are locally ad-nilpotent on P.. 

(i) follows from 5.3(i) and (ii) from 5.3(iv) and (i). 

To establish the theorem, it remains to show that the y,, zj generate P. over k. 

By 5.3(iii) and 5.4, they generate a Heisenberg Lie algebra whose elements form 

locally ad-nilpotent derivations of P,. Then a standard argument using the 

so-called Taylor lemma (see [9, lemme 1.5], for example) establishes the 
required assertion. 
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5.6. In the more general situation when k is not algebraically closed, passage 

to the algebraic closure k- and use of 4.1 shows that XQkk- is spanned by 

elements x satisfying A(x) = aZ: a E k-. It follows easily that a 2 ~  k, and hence 

5.2 holds with Xi =/3,Y~+ Z~, for suitable non-zero /3, E k. 
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