ON DILWORTH'S THEOREM IN THE IN FINITE CASE

BY

MICHA A. PELES

ABSTRACT

The following theorem is proved: Let c be an infinite cardinal. There exists a partially ordered set of cardinal c, which contains no infinite independent subset, and which is not decomposable into less than c chains.

Let P be a partially ordered set, and k a natural number. Dilworth's theorem states that if the maximal number of mutually incomparable elements in P is k, then P is the union of k chains. (The terminology is explained in the preceding note [2].) P. Erdös raised the question, whether Dilworth's theorem can be extended to the case where the cardinals of independent subsets of P are not bounded. The following theorem shows that such an extension is impossible.

THEOREM. For every infinite cardinal \aleph_{α} there exists a partially ordered set T_{α} , such that

(A) $|T_{\alpha}| = \aleph_{\alpha};$

(B) T_a contains no infinite independent subset;

(C) T_{α} is not decomposable into less than \aleph_{α} chains.

(M) denotes the cardinal of the set M.)

Proof. Let ω_{α} be the smallest ordinal power \aleph_{α} . Let T_{α} be the set of all ordered pairs (ξ, η) of ordinals $\zeta < \omega_{\alpha}, \eta < \omega_{\alpha}$. Define $(\xi_1, \eta_1) \leq (\xi_2, \eta_2)$ iff $\xi_1 \leq \xi_2$ and $\eta_1 \leq \eta_2$. The relation \leq is a partial ordering. If $\alpha < \beta$, then $T_{\alpha} \subset T_{\beta}$, and the partial order relation of T_{β} is an extension of the partial order of T_{α} . Clearly $|T_{\alpha}| = \aleph_{\alpha}^2 = \aleph_{\alpha}$.

 (ξ_1, η_1) and (ξ_2, η_2) are incomparable iff $\xi_1 < \xi_2$ and $\eta_2 < \eta_1$, or $\xi_2 < \xi_1$ and $\eta_1 < \eta_2$. Therefore, if S is an independent subset of T_{α} , then distinct elements of S have different first coordinates, and S may be well-ordered according to the magnitude of the first coordinates of its elements. If S were infinite, there would be an infinite sequence $\{(\xi_i, \eta_i) | 0 \le i < \omega\}$ of elements of S, such that $\xi_i < \xi_{i+1}$, and therefore $\eta_i > \eta_{i+1}$, for $0 \le i < \omega$, which is impossible. This proves (B).

In order to prove (C), consider three cases.

CASE 0. $\alpha = 0$. T_0 is not decomposable into less that \aleph_0 chains, since it contains, for every $n < \omega$, an independent subset $S_n = \{(i, n - i) \mid 0 \le i \le n\}$ having n + 1 elements.

Received June 13, 1963.

CASE 1. $\alpha = \beta + 1$. Assume that $\mathscr{C} = \{C_v \mid v < \omega_\gamma\}$ is a system of \aleph_γ totally ordered subsets of T_α (chains), where $\gamma < \alpha$, i.e. $\gamma \leq \beta$. Let C_v^* be the set of all distinct second coordinates of elements of C_v ($v < \omega_\gamma$). Define

$$I_1 = \{ v \mid v < \omega_{\gamma}, \ | C_{\nu}^* | < \aleph_{\alpha} \}, I_2 = \{ v \mid v < \omega_{\gamma}, \ | C_{\nu}^* | = \aleph_{\alpha} \}, D = \bigcup \{ C_{\nu}^* \mid v \in I_1 \}.$$

Clearly, $I_1 \cup I_2 = \{v \mid v < \omega_{\gamma}\}$, $I_1 \cap I_2 = \emptyset$, and $|D| \leq \aleph_{\gamma} \cdot \aleph_{\beta} = \aleph_{\beta} < \aleph_{\alpha}$. Let $\eta^* = \sup\{\eta \mid \eta \in D\} + 1$. $\eta^* > \eta$ for all $\eta \in D$, and $\eta^* < \omega_{\alpha}$, since all elements of D are smaller than ω_{α} .

Now, if $v \in I_2$, then $|C_v| = \aleph_{\alpha}$, hence there exists an element $(\xi_v, \eta_v) \in C_v$ with $\eta_v > \eta^*$. Choose such a pair (ξ_v, η_v) for each $v \in I_2$, and let $\xi^* = \sup \{\xi_v | v \in I_2\} + 1$. Since $|I_2| \leq \aleph_v$ and $\xi_v < \omega_\alpha$ for every $v \in I_2$, we have also $\xi^* < \omega_\alpha$, and $(\xi^*, \eta^*) \in T_\alpha$. But (ξ^*, η^*) cannot belong to any C_v with $v \in I_1$, since η^* is greater than any $\eta \in C_v$. Also, (ξ^*, η^*) cannot belong to any C_v with $v \in I_2$, since (ξ^*, η^*) and (ξ_v, η_v) are incomparable $(\zeta^* > \xi_v \text{ and } \eta^* < \eta_v)$. Thus (ξ^*, η^*) does not belong to any $C_v \in \mathscr{C}$, and therefore $\bigcup \{C_v | v < \omega_v\} \neq T_\alpha$.

CASE 2. α is a limit number, $\alpha \neq 0$. Assume that $\mathscr{C} = \{C_{\nu} | \nu < \omega_{\gamma}\}$ is a system of \aleph_{γ} totally ordered subsets of T_{α} , such that $\gamma < \alpha$ (and therefore also $\gamma + 1 < \alpha$), and $\bigcup \{C_{\nu} | \nu < \omega_{\gamma}\} = T_{\alpha}$. Let $\mathscr{C}' = \{C_{\nu} \cap T_{\gamma+1} | \nu < \omega_{\gamma}\}$; then \mathscr{C}' is a system of at most \aleph_{γ} totally ordered subsets of $T_{\gamma+1}$, and

$$\bigcup \{C_{\nu} \cap T_{\gamma+1} \mid \nu < \omega_{\gamma}\} = T_{\alpha} \cap T_{\gamma+1} = T_{\gamma+1}$$

which is impossible by case 1. Q.E.D.

REMARK. T_{α} is a distributive lattice. We may obtain a complete distributive lattice T'_{α} satisfying the requirements of the theorem by defining

$$T'_{a} = \{ (\xi \ \eta) | \xi \leq \omega_{a}, \eta \leq \omega_{a} \}.$$

BIBLIOGRAPHY

1. Dilworth, R. P., 1950, A decomposition theorem for partially ordered sets, Ann. of Math., 51, 161–166.

2. Perles, M. A., 1963, A proof of Dilworth's decomposition theorem for partially ordered sets, *Israel Jour. Math.*, 1, 105.

THE HEBREW UNIVERSITY OF JERUSALEM

1963]