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ABSTRACT 

A short proof of the following theorem is given: Let P be a finite partially 
ordered set. If the maximal number of elements in an independent subset of 
P is k, then P is the union of k chains. 

Let P be a partially ordered set. Two elements a and b of  P are comparable 
if a < b or b < a. A subset C of  P is a chain if every two distinct elements of  C 
are comparable. A subset S of P is independent if no two elements of  S are 
comparable. 

The following theorem is due to Dilworth I-3, Theorem 1.1]: 

THEOREM. I f  the maximal number of elements in an independent subset of P 
is k, then P is the union of k chains. 

This note contains a short proof  of Dilworth's theorem for finite sets P. 

Proof. Denote by I PI the cardinal of  P. The proof  proceeds by induction on 
I P], for all k simultaneously. If  I PI = ~, there is nothing to prove. Assume, 

therefore, that the theorem holds for I PI < n, and let I PI = n. Denote by Pmax 
and Pmin the sets of  all maximal, resp. minimal elements of  P. 

CASE 1. P contains an independent subset Po of  k elements, different from 
both Pm,x and Pmin. Let Po = {Yl ..... YR} be such a set. Define 

P+ = {xlxee,(Ey)1-yePo&y_-< x]}, 

P -  = ( x l x e P , ( E y ) [ y e P o & x  < y]}. 

It is easily verified that  P + n P - = P  o, P + n P - = P ,  P + ¢ P  and P - C P  
(the first relation follows from the independence of  Po, the second from the 
maximality of  Po, the third f tom Po ¢ Pmin and the fourth from Po ¢ Pmax)" 

Now, I P + I < I P[ '  I P - I  < I PI" By induction hypothesis, P + and P -  de- 
compose into k chains: 

k k 

P+= Uv,, P-= UL,. 
i = 1  i = 1  

The elements of  Po, being the minimal elements of P+ and the maximal elements 
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of P -, are the minimal elements of  the chains U~ and the maximal elements of  the 
chains L~. Assume, without loss of  generality, that y~ is the minimal element of  
U i and the maximal element of  L i (1 < i < k). Define Ci = Li U Ui. Cl is a chain, 
and we have 

P = P - L ) P  += [,.JC~. 
/=1 

CASE 2. Every independent subset of  P containing k elements coincides with 
Pma~ or with Pmin" Take some a e Pmi,, and choose a b e Pma~' such that b > a 
(b may equal a). Define Ck = {a,b},ande'= P -  {a,b}. CkiS a chain, IP'l <lP 1, 
and P '  contains k - 1, but no k mutually incomparable elements. Therefore we 

k - I  have, by induction hypothesis, o' = ~.J~ = 1 c~, where the Ci are chains, and 

k 
e = e '  U {a, b} = U c , .  Q.E.D. 

i=1 

REMARK. 1. Other proofs of  Dilworth's theorem for finite sets may be found 
in [21, [31, I-41 and 1-5]. The original proof  in 1-3] is direct, but somewhat compli- 
cated. The proof  in 1-21 uses the duality theorem of  linear programming. In 1-41, 
Dilworth's theorem is shown to be equivalent to a theorem of  K6nig concerning 
bi-chromatic graphs ([8, p. 2321). In [51, it is obtained as a consequence of  a 
theorem on the covering of  a directed graph by a system of disjoint paths. 

REMARK 2. Dilworth's theorem for general sets P can be easily deduced from 
the finite case, applying the following result, which is a special case of  a theorem 
of Rado ([9], [6], [1]). 

THEOREM. Let P be a set, K a finite set, and let ~ be the class of all finite 
subsets of P. For each F ~ ~ ,  let Or be a mapping o f F  into K. Then there exists 
a mapping (a of P into K, having the fol lowing property. For every F e ~ there 
exists a G e ~ ,  such that G D_ F and q~(x) = ~bG(x) for  all x e F. 

A very short proof  of  Rado 's  theorem, using Tychonoff's theorem, may be 
found in [9]. In [3], the infinite case of  Dilworth's theorem is deduced from the 
finite case by another transfinite argument, using induction on k and Zorn's lemma. 
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