A PROOF OF DILWORTH'S DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS

BY

MICHA A. PERLES

ABSTRACT

A short proof of the following theorem is given: Let P be a finite partially ordered set. If the maximal number of elements in an independent subset of P is k , then P is the union of k chains.

Let P be a partially ordered set. Two elements a and b of P are *comparable* if $a < b$ or $b < a$. A subset C of P is a *chain* if every two distinct elements of C are comparable. A subset S of P is *independent* if no two elements of S are comparable.

The following theorem is due to Dilworth $\lceil 3, \text{Theorem 1.1} \rceil$:

THEOREM. *If the maximal number of elements in an independent subset of P is k, then P is the union of k chains.*

This note contains a short proof of Dilworth's theorem for finite sets P.

Proof. Denote by $|P|$ the cardinal of P. The proof proceeds by induction on | P|, for all k simultaneously. If $|P|=1$, there is nothing to prove. Assume, therefore, that the theorem holds for $|P| < n$, and let $|P| = n$. Denote by P_{max} and P_{min} the sets of all maximal, resp. minimal elements of P.

CASE 1. P contains an independent subset P_0 of k elements, different from both P_{max} and P_{min} . Let $P_0 = \{y_1, \dots, y_k\}$ be such a set. Define

$$
P^{+} = \{x \mid x \in P, (Ey)[y \in P_{0} \& y \leq x]\},\
$$

$$
P^{-} = \{x \mid x \in P, (Ey)[y \in P_{0} \& x \leq y]\}.
$$

It is easily verified that $P^+\cap P^- = P_0$, $P^+\cap P^- = P$, $P^+ \neq P$ and $P^- \neq P$ (the first relation follows from the independence of P_0 , the second from the maximality of P_0 , the third ftom $P_0 \neq P_{\text{min}}$ and the fourth from $P_0 \neq P_{\text{max}}$).

Now, $|P^+| < |P|$, $|P^-| < |P|$. By induction hypothesis, P^+ and P^- decompose into k chains:

$$
P^+=\bigcup_{i=1}^k U_i, \quad P^-=\bigcup_{i=1}^k L_i.
$$

The elements of P_0 , being the minimal elements of P^+ and the maximal elements

Received June 10, 1963.

of P^- , are the minimal elements of the chains U_i and the maximal elements of the chains L_i . Assume, without loss of generality, that y_i is the minimal element of *U_i* and the maximal element of L_i ($1 \le i \le k$). Define $C_i = L_i \cup U_i$. C_i is a chain, and we have

$$
P = P^{-} \cup P^{+} = \bigcup_{i=1}^{k} C_{i}.
$$

CASE 2. Every independent subset of P containing k elements coincides with P_{max} or with P_{min} . Take some $a \in P_{\text{min}}$, and choose a $b \in P_{\text{max}}$, such that $b \ge a$ *(b may equal a). Define* $C_k = \{a,b\}$ *, and* $P' = P - \{a,b\}$ *.* C_k *is a chain,* $|P'| < |P|$ *,* and P' contains $k - 1$, but no k mutually incomparable elements. Therefore we have, by induction hypothesis, $o' = \bigcup_{i=1}^{k-1} C_i$, where the C_i are chains, and

$$
P = P' \cup \{a, b\} = \bigcup_{i=1}^{k} C_i
$$
. Q.E.D.

REMARK. 1. Other proofs of Dilworth's theorem for finite sets may be found in [2], [3], [4] and [5]. The original proof in [3] is direct, but somewhat complicated. The proof in $\lceil 2 \rceil$ uses the duality theorem of linear programming. In $\lceil 4 \rceil$, Dilworth's theorem is shown to be equivalent to a theorem of König concerning bi-chromatic graphs ($[8, p. 232]$). In $[5]$, it is obtained as a consequence of a theorem on the covering of a directed graph by a system of disjoint paths.

REMARK 2. Dilworth's theorem for general sets P can be easily deduced from the finite case, applying the following result, which is a special case of a theorem of Rado ([9], [6], [1]).

THEOREM. Let P be a set, K a finite set, and let $\mathscr F$ be the class of all finite *subsets of P. For each F* $\in \mathcal{F}$ *, let* ϕ_F *be a mapping of F into K. Then there exists a mapping* ϕ *of P into K, having the following property. For every* $F \in \mathscr{F}$ *there exists a G* $\in \mathcal{F}$ *, such that G* $\supseteq F$ *and* $\phi(x) = \phi_G(x)$ *for all* $x \in F$ *.*

A very short proof of Rado's theorem, using Tychonoff's theorem, may be found in [9]. In [3], the infinite case of Dilworth's theorem is deduced from the finite case by another transfinite argument, using induction on k and Zorn's lemma.

BIBLIOGRAPHY

1. de Bruijn N. G. and Erdös P. 1951, A colour problem for infinite graphs and, a problem in the theory of relations, *Nederl. Akad. Wetensch. Proc. set.* A, 54, 371-373.

2. Dantzig G. B. and Hoffman, A. J., 1956, Dilworth's theorem on partially orders sets, Linear inequalities and related systems, *Annals of Mathematics Studies* No. 38, Princeton University Press, pp. 207-214.

3. Dilworth, R. P., 1950, A decomposition theorem for partially ordered sets, *Ann. of Math.* 51, 161-166.

4. Fulkerson, D. R., 1956, Note on Dilworth's decomposition theorem for partially **ordered** sets, Proc. Amer. Math. Soc., 7, 701-702.

5. Gallai, T. and Milgram, A. N., 1960, Verallgemeinerung eines graphentheoretisch-Satzes von R&tei, *Acta Sci. Math. (Szeged),* 21, 181-186.

6. Gottschalk, W. H., 1951, Choice functions and Tychonoff's theorem, *Proc. Amer. Math. Soc.,* 2, 172.

7. Halmos, P. R., and Vaughan, H. E., 1950, The marriage problem, *Amer. J. Math.,* 72, 214-215.

8. König, D., 1950, *Theorie der endlichen und unendlichen Graphen*, Chelsea Publishing Co., New York.

9. Rado, R., 1949, Axiomatic treatment of rank in infinite sets, *Canad. J. Math.,* 1,337-343.

THE HEBREW UNIVERSITY OF JERUSALEM