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ON THE PROBLEM OF k STRUCTURE

BY
J. E. FARAHAT

ABSTRACT

For every k and every p, 1 <p <2, we construct a Banach space having a k
structure and being of type p. This is an answer to a question raised by W. Davis
and J. Lindenstrauss in [1].

We recall that a Banach space E is said to be of type p, 1 <p =2, if there
exists a constant ¢ such that

n

E e (t)x

i=1

1
Vxl"”’ anE’ f
0

dtéc(zlx.- ||P)”"

where (&(t)) denotes the usual Rademacher functions on [0, 1].

Let E be a Banach space of type p for some p >1 and let us denote by || |,
its norm.

We shall denote by E™ the space of vector valued finitely supported functions
on the positive integers N.

For any x = (x(n)) € E®™ we shall denote h(x) = sup.en| x(n)] the altitude
of the sequence and

) =A™ 3 Ix(m)=x(n + D,

the variation of x, if x# 0. If x = (0), we put p(x)=0.
Now consider the functional [ ] defined by

1=j+1

where the infimum is taken over all the representations of x as 22, x;.
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Let us denote by

(12) x ]| = inf E [x]

where the infimum is taken over all possible representations x = 2%, x;. It is easy
to check it is a norm. The completion of the space E®™ with the norm given by
(1.2) will be denoted by J,(E).

For the sake of completeness we shall go on reproducing word by word the
arguments of [1] which show that in order to prove that J,(E) is of type q it is
enough to prove that we have

» [

for all (x;)i-i..« such that [x;(]=1 Vi
As observed in [5] to prove that we have

k

2 6,-(t)Xi

i=1

dt = C(q)k"

s [ e xeolascee (Rixl)

for all ¢ >0 and all x,,---, xx €J,(E), it is enough to prove
. 1
(1.5 [[hnen o me@llds caws
0
in the case where || x,||= - =||x | =1.

Another simple reduction is obtained by remarking that it is possible to
replace in the assumption | || by [ ], ie., it is enough to show that if
(xi)i-1 € J,(E) with [x;] = 1 for all i, then (1.5) holds. This follows easily from the
remark that the unit ball B of J,(E) is the closed convex hull of the set
A ={x,[x] = 1} and that the function ¢ on

1
B"=B><---xB:¢(x1,---,xk)=j “Ze,-(t)x.— dt
D e et 0 i

k times

is convex.

In order not to complicate the notations in the proof by using an arbitrary
8 >0 we begin by supposing that the infimum in (1.1) is actually attained.

Hence for every i we have a representation x; = £/, £/ in which the infimum
in (1.1) is attained. We may assume x;#0 forall i and j=1,---,n.

In view of the telescopic nature of the right hand side of (1.1), the right side
does not change if we break up a term x}into A%}and (1 — A)%!where 0 < A < 1.
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We also see, by an easy argument of approximation, that we can also suppose
all the h (%) rational numbers. Hence by breaking up the £} we can suppose that
h(x]) is constant, say h(%!)=1/N for some N € N. Put m = max;=;=«;, and

=i (m—n)<j=m,

=0 if 1=js=m-n.

= e [ - (R ]

We see that

We thus have

m
X = E xi,
j=1

(1.6)

3

1= 2 p(x)d 1=i=k

where d; = (m —j+ 1/N)* —(m — j/N)*. (Note that for every j, there is at least
one i with x/#0.) Fix now an integer 1 =j=m and consider the k vectors
(x))i-,. Before passing to the proof we shall need two lemmas.

Let us note ®f=23,ex) for a given choice of signs and h(n,j, &)=
£ exi(n)l,. Let us consider the decomposition of ®f(n) defined (for a =
1,---, k) by

K

>, exi(n)

. _ =1 . . .
dL(n)= NK(n.7, ) if 0<a=[Nh(n,je¢)

> exi(n)

&L (n)=(Nh(n,j,e)—[Nh(n,j, )] Ii\;;z(n, Js £)

fora = [Nh(n,j,e)]+1

®i(n) =0, 1+[Nh(n,je)]<a =k

where [A] denotes the integer part of A.

Now consider ng such that n§>sup{n, n € support x!for some i, j} + 1. This is
possible because the x! are finitely supported. Let y, be a vector of norm 1/N
belonging to E and let y = (y(n)) be defined by

y(ny=0  if n# ny,

y(no) = yi.
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Let us define

P (@n) i R(@) = or h(®)=0,

= @) +y i 0< k(@) <

®j= —y

if there exists an « such that 0 < h(®;,) < N™'. (Note there is at most one such
a). We easily check that either h(®},) = N' or h(P}.) = 0 and that Z_,®L(n) =
b;(n).

We claim that we have

k k
LEmMMA 1. Z p(<l>ﬁx)§8-2p(xif).
0 i=]

a=

Indeed the remark that for any two vectors u, v belonging to a Banach space
we have
u-—v

‘ o

followed by a simple computation shows us that we have

£2

Tull Tl

Vagn 2 [ @(n) = DLln + )] = 4| 0i(n) - @(n + D).
Indeed in 20, | ®j(n)— Pj(n+1)| we have, if we suppose for example
h(n+1,j,e)=h(nje), [Nh(n+1,j¢)] terms of the form N™'(u/||u |- v/]| v ])
which give us a contribution smaller than

2h(n+1,j ¢ . N . .
f(mﬁ”‘l%(")—q’,(n + )] = 2| @j(n) - dj(n + 1),

and one term of the form

av

%”WZ_H*HUH

where @ = Nh(n+1,j,e)—[Nh(n+1,j,¢)] if [Nh(nje)]>[Nh(n+1,j¢))
which gives us a contribution smaller than

LH_M___U_
N Tull ol

(-a)

+ N

but in this case
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(1= a)Sh(nj.e)—h(n+1je)= [ (n) - d)(n + D],
the contribution of the other terms is

(Nh(nj.e)~ [Nh(n + 1.j,f)]+1)% <h(nje)—h(n+l.je)

= [ Dj(n) — ®j(n + D],

and we get the result in this case. The computation in the other cases is the same.
Hence we get

2 p@)=N X 3 [ dp(n) = @i + D))

a=0 neEN

k

S2+4N 3 X [ ®j(n) = j(n + D], +2

neEN a=1

<4+4N D

nenN i=1

ﬁ e[xin)—xi(n+1)] H;

=444 }kj > Nilxi(n)—xi(n + 1),

i1 neEN

k
=4+4 p(x)).
=1
But p(x) =1 for at least one i €{l.---, k}. Hence we have

2 p(@)=83 p(x)

and Lemma 1 is proved.

It is a well known fact, by a result of Kahane [4. p. 17], that there exists a
constant ¢ such that, Vx,---,x,€E, E Banach space, satisfying
Toll =i e(t)x || de =1, we have [iexp(c || 25, & (t)x. | dt = e. Hence we have, if
E is of type p and x,, - - -, x, are elements of E such that || x. ||, = 1, applying the

Tchebyschev inequality,

k

IRAGE

i=1

I/p

k
= MT}ECXP(—M

(1.7) p{ L,
where D 'is equal to 1/c multiplied by twice the type p constant of the space.

We are now able to prove:

Lemma 2. If a = uk'"D '+ 1 we have Ep(®;) =14 exp (— n) (S, p(x)),
where E(f) denotes the mean value [, f(t)dt.
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Indeed, by assumption we have

nEN

NS (S - s+ 01) = 3 pxd

We define by induction:
h) = 07

n

n, is the least integer such that N Y, (

n=0

Zkl [ xi(n)~ xi(n + l)“l) >1,

n, is the least integer such that N D (

ni+l

> Ixitm) = xn + D) > 1.

We thus determine m integers n,,---, n, and it is a trivial fact we have
m = Zi., p(x). Let us denote I, I,,- -, I, the following interval of integers:

I,-={n,+1,"',nj+1—l} if n]-+,>n]-+l,

Lncv={nm, -, ny—1}.
By construction on I; the following holds:

N[ D ( k] | xi(n)~ xi(n + 1)”)]51

nel;

so that if for some n € I, we have

k

Z exi(n)

i=1

k'+1
N 3

=

then for all the integers belonging to I, we have

k

>, exi(n)

i=]

/
=

TN

By the proof of Lemma 1 we have

2, (2 | ®5on) = @n + 1)!!) =4 3 |d(n) - Di(n +1)]

nel

A

4
N

Let ni€ I. Now the reader will convince himself (not so easily), after having
remarked that for « =2 k'+ 1 we have the equality:
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(2, | DL(n) - ®L(n + 1)||) 1{“ 2 exi(n)| > k’/N}
= 2 I®i(m) = @tn + D),
that we have
penzs S ]S exiny | 2 4]
3|3 et | = ),

where 1(A) denotes the characteristic function of the set A. (We have multiplied
the constants by 2 to take into account the fact that for at most one o we have
®;, = (P;.(n)) + y. By a more precise computation we could have obtained better
constants, but it is of no importance since the estimate of Lemma 2 is already far
better than the one of Lemma 1.) Hence we get for a = uk""D7'+1,

m+1 k 1/p
Ep(@®.)=8 > p(‘ > exin)| = pk >
j=1 i=1 1 DN
m+1 k i/p
i(n. > k"
+4 ;ZI p( Z exi(n) 12 DN)’

and by (1.7) we have

Ep(?..) = exp(— u)12(m +1)

=24 (i p(xif)>e><p(—u),

and Lemma 2 is proved.
Let us denote

(OMES i o, .
i=1

We have by the definition of | |, [ ], and the remark that the function
f(t)= (¢t + N7'Y —(t) is increasing which shows that we increase the value of
[x] if in a representation of x 2 x; we allow dummy summands; counting their
altitudes for 1/N and their variation for 0

(R

"= 3 p(@)d

and hence we get by Lemma 1
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k

> Eflo]

a =)

[3
"= 2 2 Ep(®)d,

m k
= 3 (X Ep@)d
(1.8) -
=8 IZp(x{)d]
j i- 1
= 8k.

Now, if @ 2 uk"D '+ 1, we get by Lemma 2

[ weral
(S [f o]

=24"" exp<—ﬂ> [li] (2 p(x’,)> d]l’/,,

P “

1
Efeg=] [ e

=24k exp ( -~ ﬁ) .
P
and so we have

(1.9) > Ejo

a tuk PD

=24k exp ( - g) )

We now deduce from (1.8) and (1.9) by applying Holder’s inequality

k

> Eleu= Y Elel+ Y Efe
a0 ek P w kP
l/p'k Upp' 1/p
gL@W‘( > E| ”) + > Ejd.
wzpk I a tpk P
where p’ '=1-p~'. Hence we get

k

> E|dL]= Ku k"™ k" + K’k exp ( N };L)

a 0

for some constant K and K'.

The choice of w =p(1 + I/p)logk gives us

(1.10) S EdL) = K k"™ (log k)
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for some constant K" depending only on p. But as we have

|3 en] =] 2 %]

}(r

k

= > |

w 0

we thus have proved

1
[»

and so we have proved:

k

E £{t)x

i-1

dt = K"k " (log k)"

THEOREM 1. Whenever E is a Banach space of type p, J,(E) is of type q for all
L

q such that q '>(pp) '+p

[t is easy to check that for the norm on J,(E) we have, if x = (x(n)) € J,(E).

x|z sup Il x(n)lh

Indeed it is sufficient to check that [x]=sup|x(n)[,. But if we have a
representation of x = X" x, we do not change [x] if we eliminate the x,’s such
that x, = 0. Hence we get that in (1.1) we can suppose p(x.) 2 1. We thus have

[x] = i. h(x)zh ( i"] x,>= iggllx(n)”,.

i

Taking the trivial representation we see that if x = (x(n)), where x(1)=x(2) =
- = x(ny) = xo, x(n)=0if n > n,, we have

Fx f = xafh-
We shall now prove:
THEOREM 2. Assume E has a k structure, then J,(E) has a (k + 1) structure.
Indeed let x,,.., CE, f,.... CE™ be a biorthogonal system such that

[fowl =M

ry

“ S i. -

=1 ia=1 =

=M,
1

for all r,, -, .
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Let us denote by x,,....., the element of J,(E) defined by

Xip,oo s = (x(n))

where
x(n)= 8k x

iy v

Then we have, Vai,....u.. €ER,

“ 2 (2 A +1xi|~'“vik.ik+1

= sup
ix+1EN

Z aih"'vik-ik+1xilv"‘vik l‘

= sup 37 S0P e an] = 37 0P e

ix+1EN i1, b+

(by the assumption of k structure).

Hence by Helly’s theorem there exists f; ..., € J,(E)* of norm less than M
such that (f,...i,..; Xi,.4.,) is a biorthogonal system. Moreover it is easy to check,
using [x || 2| x(n)—x(n + D]},

Tk+1

"1 "2
122 5 s

ike1=1

=M,

which proves Theorem 2.
In view of the results of [1] which assert that for every p <2 there exists a
Banach space of type p and having a 1 structure (in fact it is J, (R)), we thus get:

THEOREM 3.  For every p <2, there exists a Banach space of type p and having
a k structure.
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