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ON THE PROBLEM OF k STRUCTURE 

BY 

J. E. F A R A H A T  

A B S T R A C T  

For every k and every p, 1 < p < 2, we construct a Banach space having a k 

structure and being of type p. This is an answer to a question raised by W. Davis 
and J. Lindenstrauss in [1]. 

We recall that a Banach space E is said to be of type p, 1 < p  -<2, if there 

exists a constant c such that 

w , ,  . . . ,  x~ e E ,  = c  I ,ll' 
) i =1  i = l  

where (e,(t)) denotes the usual Rademacher functions on [0, 1]. 

Let E be a Banach space of type p for some p > 1 and let us denote by [I ]], 

its norm. 

We shall denote by E (N~ the space ofvector valued finitely supported functions 

on the positive integers N. 

For any x = (x(n))E E ~N~ we shall denote h (x )=  sup.~NJ[ x(n)lll the altitude 

of the sequence and 

p ( x ) =  [h(x)]  -1 ~'. Jlx(n)-x(n + 1)[ I, 
n E N  

the variation of x, if x / 0 .  If x = (0), we put p(x)=  O. 
Now consider the functional [[ ~ defined by 

(1.1) [Tx~ = i n f [ ~  p(xj)[(z=~ h(xl))'-(t~j+, h(x~))P]] ~/p 

where the infimum is taken over all the representations of x as ET_-I xj. 
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Let us denote by 

(1.2) ]I x I1 = inf ~ ~x,~ 
i=1 

where the infimum is taken over all possible representations x = Zj~l xj. It is easy 

to check it is a norm. The completion of the space E (r*) with the norm given by 

(1.2) will be denoted by J0(E). 

For the sake of completeness we shall go on reproducing word by word the 

arguments of [1] which show that in order to prove that Jo(E) is of type q it is 

enough to prove that we have 

(1.3) e,(t)x, dt ~ C(q)k TM 
i = l  

for all (x,),=,...k such that [[x~ll = 1 Vi. 

As observed in [5] to prove that we have 

,,4, I0' 
for all e > 0  and all x~," . ,xk  UJo(E), it is enough to prove 

(1.5) I l x , e , ( t ) +  " '"  + xkek(t)lJ dt <= C(q)k TM 
I 

in the case where  II x, II . . . . .  II x~ II = 1. 
Another  simple reduction is obtained by remarking that it is possible to 

replace in the assumption II II by I1 ]], i.e., it is enough to show that if 

(x,)~'=~ E Jo(E)  with Hx,] = 1 for all i, then (1.5) holds. This follows easily from the 

remark that the unit ball B of Jo(E) is the closed convex hull of the set 

A = {x,[Jx]] = 1} and that the function q~ on 

B ~ = B x - . .  x B : ~ , ( x , , - . . , x ~ ) =  ~ , ( t )x ,  ,/t 
, ~  ) " 

k times 

is convex. 

In order not to complicate the notations in the proof by using an arbitrary 

6 > 0 we begin by supposing that the infimum in (1.1) is actually attained. 

Hence for every i we have a representation x~ = Z~'=l 2{ in which the infimum 

in (1.i) is attained. We may assume i { / 0  for all i and j = 1,- �9 -, n~. 

In view of the telescopic nature of the right hand side of (1.1), the right side 

does not change if we break up a term i l  into Ail and (1 - A)2{ where 0 < A < 1. 
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We also see, by an easy argument  of approximation,  that we can also suppose 

all the h (s rational numbers.  Hence by breaking up the s we can suppose that 

h(s is constant, say h ( s  1/N for some N E N. Put m = max~,~kn,, and 

x~ =.g~ (" "'~ if ( m - n ~ ) < j < m ,  

We see that 

We thus have 

(1.6) 

= 0  if l<-_j<-_m -n~. 

j=~ N " 

x, = 2 x ~, 
]=1  

1 = ~ p(x~)d, 
/ = 1  

l ~ i ~ k  

where di = (m - j + 1/N)" - (m - j / N )  ~ (Note that for every ], there is at least 

one i with x i ~  0.) Fix now an integer l - j - <  m and consider the k vectors 
i k  (x~)~=t. Before passing to the proof we shall need two lemmas. 

Let us note qb~=E,k=~e~x{ for a given choice of signs and h ( n , j , e ) =  

Let us consider the decomposit ion of qbT(n) defined (for a = 

1 , ' " , k )  by 

~,x~(n) 
i = l  

�9 ; ~ ( n ) = N h ( n , j , e  ) if O<a<=[Nh(n , j , e ) ]  

k 

Y~ ~,x~(n) 
i = 1  

d p ; ~ ( n ) = ( N h ( n , j , e ) - [ N h ( n , ] , e ) ] )  N h ( n , j , e )  f o r a = [ N h ( n , ] , e ) ] +  l 

qbj~(n) = O, l + [ N h ( n , ] , e ) ] < a < - _ k  

where [h] denotes the integer part of h. 

Now consider n~ such that n; > sup {n, n E support  x~ for some i, j} + 1. This is 

possible because the x{ are finitely supported. Let yl be a vector of norm 1/N 

belonging to E and let y = (y(n))  be defined by 

y (n )  = 0 if n r  n~, 

y(n~) = y,. 
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Let us define 

, ; ,  = ( , ; (~))  

�9 ; = ( * ; ( n ) )  + y 

~;,, = _ y 

1 
if h (~bj~) = ~-, or h (~b;,,) = O, 

if O <  h (qb;~) < 1 ,  

if there  exists an a such that 0 < h (qb;.) < N - ' .  (Note  there  is at most  one such 

a ) .  We easily check that e i ther  h (~;.) = N- '  or h (qb;~) = 0 and that  Z]_,,qb;~(n) = 

*; (n) .  
We claim that we have 

k k 

LEMMA 1. Z p(qb;~)=< 8.  Z p(x{). 
(x O i = I 

Indeed  the r emark  that for  any two vectors  u, v belonging to a Banach  space 

we have  

Ilu v <211u-vTr  
uJ] Ilvl[ = [[vll 

fol lowed by a simple compu ta t ion  shows us that  we have  

v n /  n; 2 liq';i,(n)-'1);~(n + 1)ll<=4ll~;(n)-q~7(n + 1)]l. 

Indeed  in 2~ ~lld~;i,(n)-~;~(n+ 1)H we have,  if we suppose  for example  

h (n + 1, j, e ) <= h (n, j, e), [Nh (n + 1, j, e)] t e rms  of the fo rm N-'gu/[[  u II- v/ll v I[) 

which give us a contr ibut ion smaller  than 

2h(n + l , j , e )  
h(n + 1,j, e) q b ; ( n ) -  dp;(n + 1)11 __< 211*;(n)- o~;(n + a)[[, 

and one te rm of the form 

l U ~V 

N Ilur[ II~rl 

where  a = N h ( n + l , j , e ) - [ N h ( n + l , j , e ) ]  if [ N h ( n , j , e ) l > [ N h ( n + l , j , s ) l  
which gives us a contr ibut ion smal ler  than 

1 u v ( l - a )  

N Ilull [[vll + N 

but  in this case 
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(1 - a)<= h(n,j, s ) -  h(n + 1,j, s) <_ Hqb; (n ) -* f (n  + 1)1 [, 

the contribution of the other  terms is 

1 
(Nh(n,j, s ) -  [Nh(n + 1,j, s)] + 1 ) ~  _-< h(n,j, e ) -  h(n + l,j, s)  

+ 1)tP, 

and we get the result in this case. The computat ion in the other  cases is the same. 

Hence we get 

2 
~ = 0  ~ = 0  n ~ N  

=<2+4N ~'~ ~ IlcI);(n)-~[(n+l)ll,+2 
nGN ,~  I 

- < 4 + 4 N  ~] ~'~ s,[x{(n)-x',(n+l)] 
h E N  i = I l 

_ - < 4 + 4 ~  ~', N l l x i ( n ) - x { ( n + l ) i  l, 
J ' 1 n ~ N  

=<4+4 ~ p(xl). 
f = l  

J But p(x 3= 1 for at least one i E { I , . . . ,  k}. Hence we have 

2 p (*~i,) --< 8 ~'~ p (x [) 
, ,  ~ 0 i = I 

and Lemma 1 is proved. 

It is a well known fact, by a result of Kahane  [4, p. 17}, that there exists a 

constant  c such that, V x , , . . . , x ,  E E, E Banach space, satisfying 

f,',[IgT-, e,(t)x, [[dt ~ 1, we have fl, exp (c NET=, e,(t)x, Itdt =< e. Hence we have, if 

E is of type p and x , , . . . , xk  are elements  of E such that [Ix, [[, = 1, applying the 

Tchebyschev inequality, 

= = < e x p ( - # )  
i = 1  

where D ' is equal to l/c multiplied by twice the type p constant  of the space. 

We are now able to prove: 

LEMMA 2. I ra  >~ tzk l/PD I+ 1 we have Ep(~;;,)=< 14 exp ( - # ) ( E ~ = , p ( x l ) ) ,  

where E(f)  denotes the mean value f,l~f(t)dt. 
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Indeed, by assumption we have 

r t E N  
~ l l x ~ ( n ) - x ~ ( n + l ) [ [ ,  = ~p(x~) .  
i = 1  i = l  

We define by induction: 

/10 = 0 ,  ~ 
n, is the least integer such that N ~  

n = O  

k ) IIx~(.)- xi(n + 1)11, >1,  
i = l  

n2 is the least integer such that N ~ II x ~ ( n ) - x i ( n  + 1)[[i > 1. 
n l + l  i = l  

We thus determine m integers n , , . . . , n , ,  and it is a trivial fact we have 
k m _-< E~=, p(x~). Let us denote Io, L , ' "  ", I,, the following interval of integers: 

I j = { n j + l , . . . , n i ~ _ , - 1 }  if n j + , > n j + l ,  

L + , = - { n ~ , ,  �9 ' 1}. �9 "~ n o -  

By construction on /~ the following holds: 

N I l x ~ ( n ) - x i ( n + l ) [ [  <=1 
i 

so that if for some n EI j  we have 

k 

e~x{(n) > k '  + l 
= = N 

then for all the integers belonging to /j we have 

e,x~(n) > - -  
t = l  I ~ N "  

By the proof of Lemma 1 we have 

4 
m 

N "  

Let n'l E L. Now the reader will convince himself (not so easily), after having 

remarked that for a -> k ' +  1 we have the equality: 
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i 

that we have 

= ~ I [%%(n) -~ ; (n  + 1)l[, 
n E l i  

E < E i r p(Oj.) = 8 1 e,x,(n~) >- 
1=1 i = l  

+ 4  2 1 e,x~(n,) > , 
/=1 i = l  

where I(A) denotes the characteristic function of the set A. (We have multiplied 

the constants by 2 to take into account the fact that for at most one a we have 

d0~ -- (qb~(n))+ y. By a more precise computation we could have obtained better 

constants, but it is of no importance since the estimate of Lemma 2 is already far 

better than the one of Lemma 1.) Hence we get for a _-> txk 1/pD-' + 1, 

J < e,x~(n~) >-_ Ep(,~o) = 8 Z p o N  / 
j = l  i =1  

+ 4 p e,x~(nj) >- txk I/p~ 
/=1 ,=1 1 D N / '  

and by (1.7) we have 

Ep(~{o)  <-_ exp(  - p~)12(m + 1) 

_-<24 p(x e x p ( - / z ) ,  

and Lemma 2 is proved. 

Let us denote 

qb~ = 2 qb~ Cr jt~" 
j = l  

We have by the definition of [I ]], ~ 11, and the remark that the function 

f ( t )  = (t + N 1)o _ (t)o is increasing which shows that we increase the value of 

J[x~ if in a representation of x Y x~ we allow dummy summands; counting their 

altitudes for 1 / N  and their variation for 0 

I1.:11 ~ - ~ ;  p ( * ; ) 4  
j = l  

and hence we get by Lemma 1 
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2~ EII*:;II"~ ~ ~ Ep(*;,la, 
<~ =l)  <~ = I I  j I 

(1.s) 

<= Ep(q);;,) dj 
j = I <~ I I  

<=~ 2 • .I.~>., 
] I i I 

<_-Sk. 

Now, if ee ~ g k  l i e D  ' 4- l, we get by Lemma 2 

{s E II <i,:; II -< II <-b: I1" dt 
I 

< {a If ,.+....,.1,.] 
=<241/P e x p ( - ~ ) [ ~  (,~1P(XJ'))dJ] ll'' 

and so we have 

/ \ 
(1.9) E E II'b:;ll ~ 24'"'k' ..... exp ( - ' ~ ) .  

,~ " t x k  I /P /L I  + [ \ 

We now deduce from (1.8) and (1.9) by applying H61der's inequality 

EH,l,:ll= Z EII,:H+ Z EII,:;H 
,~ t) r~ % l a k  l " P l l )  ~ ",~*k U P l l )  ' ] 

o'o  E II*:ll ~ + 2 E IIq':;ll, 
t~ k I f I I  ) i~ "~k  I / P / l  ) ~ I 

where p' ' =  1 - p  '. Hence we get 

for some constant K and K'. 

The choice of # = p(l + 1/p)log k gives us 

(1.1o) ~ E ll*:;ll-<- K " k  '/PP'+I/o(I()g k)  ,/0' 
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for s o m e  c o n s t a n t  K"  d e p e n d i n g  on lv  on p. But  as we have  

we thus  have  p r o v e d  

~ e,x, = ~ 4)11 
J = I ,~ 0 

-< ~ IP'~':II, 

f~ ~ t,(t)x, dtZK"k~'P~"'z"(logk) "~ 

and  so we have  p ro v ed :  

THEOREM I. Whenever E is a Banach space of type p, J,,(E) is of type q for all 
q such thatq ' > ( p p ' )  ' + p  ' 

It is easy to check  that  for the  n o r m  on  J,,(E) we have ,  if x = (x(n)) E J,(E), 

IIx II-- -> sup IIx(~)/ l , .  
n C N  

, , , d e e d  it is suff icient  to check that  [[xl]>_suplix(n)[[ , .  But  if we have  a 

r e p r e s e n t a t i o n  of x = El" ~ x, we do no t  c h a n g e  l[x]] if we e l i m i n a t e  the  x , ' s  such 

that  x, = 0. H e n c e  we get that  in (1 .1 )we  can s u p p o s e  p(x,) > 1. W e  thus  have  

z I t I ~1 C N 

T a k i n g  the  tr iviai  r e p r e s e n t a t i o n  we see that  if x = (x(n)), where  x ( 1 ) =  x ( 2 ) =  

. . . .  x(n,) = x,,, x(n) = 0 if n > n,, we have  

IP x II = IP x ,  II,. 

W e  shall  n o w  prove :  

THEOREM2. AssumeEhasakstructure,  thenJ,,(E)hasa (k + l)structure. 

I n d e e d  let x,,..,~ C E ,  f,,..,~ C E *  be  a b i o r t h o g o n a l  sys tem such that  

I/ f,,. ...,~ [[, < M 

� 9  - x , , ,  �9 �9 ", x , ~  = <  M ,  
i l = l  i 2 = 1  i / ~ = 1  

for all r~, - �9 rk. 
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Let us deno te  by x,, ... ,~,,~., the e lement  of J~(E) defined by 

x,, = (x(n)) 

where  

Then  we have, Va~,....~.~,+, E R, 

[ ~ a,,..,,~.,,+,x,...,,~.,~., _-> sup ~ a,,.....,,.,,.,x,,,....,, [ 
I k + I E N  

> 1 1 
= sup ]a,,...,~.,l sup ~ sup I O/il,...,ik,lk+, [ M i,,'",ik,ik+, 

ik+IEN 

(by the assumption of k structure). 

Hence  by Hel ly 's  t heorem there  exists f~,... ~.~,+, E Jp(E)* of norm less than M 

such that (f,, .. ,,+,; x,,... ~,+,) is a b ior thogonal  system. Moreove r  it is easy to check,  

using IIx I]<-<-Ellx(n)- x ( n  + 1)11,, 

r i  r 2 rk+ 1 

E E . - .  E --<M, 
il=l i2=1 ik+l=l 

which proves T h e o r e m  2. 

In view of the results of [1] which assert that  for every p < 2 there exists a 

Banach space of type p and having a 1 structure (in fact it is Jp (R)), we thus get: 

THEOREM 3. For every p < 2, there exists a Banach  space of  type p and having 

a k structure. 
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