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ABSTRACT 

Let k be a field and n a positive integer. We construct a field extension K of k 
and a cyclic division algebra D of index n with center K. 

THEOREM 1. Let q = char (k ). Let M be a subfield of  D which is Galois over 
K of degree m with Galois group H. 

1) If  q I m then H has a normal q-Sylow subgroup. 
2) I[ q g m then H is an abelian group with one or two generators, an extension 

of a cyclic group by a cyclic group of order e where k contains a primitive e-th root 

of unity. 
LeT k ( X )  be the generic division ring over k of index n as defined by 

Amitsur. 

THEOREM 2. If  n is divisible by the square o[ a prime p ~ char (k)  and k does 
not contain a primitive p-th root of  unity, then k ( X )  is not a crossed product. 

I. Introduction 

A division algebra is a division ring finite dimensional over its center. If D is 

a division algebra with center C, then the dimension [D: C] is a square n 2. The 

integer n is called the index of D over C. A subfield M of D is maximal if and 

only if [M: C] = n. By a theorem ol Noelher  and Jacobson, any division algebra 

D contains a maximal subfield which is separable over the center, and 

consequently D is equivalent in the Brauer group of C to a crossed product 

algebra. A division algebra D with center C is a crossed product if and only if D 

contains a maximal subfield which is Galois over C. 

Our concern here is with maximal subfields of a division algebra, in particular 

with the problem of determining whether a division algebra is a crossed product. 

Any division algebra of index 2 is a crossed product. It was proven by 

Received April 7, 1976 and in revised form February 4, 1977 

113 



114 L.J. RISMAN Israel J. Math. 

Wedderburn,  Albert, and Brauer  that for n -- 2, 3, 4, 6 or 12 any division algebra 

of index n is a crossed product [2, chap. 11, sections 5 and 6]. See [8] for a 

theorem in this connection for n = 5. By valuation theory, if C is a local field 

then any division algebra with center C is a crossed product and contains a 

maximal subfield cyclic over C. By the theorem of Brauer, Hasse, Noether,  and 

Albert if C is a global field the same conclusion holds [2, chap. 9]. 

Much progress has been made recently. In On central division algebras 
Amitsur showed that there exist division algebras that are not crossed products 

[3]. For any field k and any integer n he defined k(X) ,  the generic division 

algebra of index n over k. The center of k (X) is a function field over k. He 

proved that if k is the field of rational numbers and n is divisible by 8 or by p2 for 

any odd prime p, then k(X) is not a crossed product. Subsequently further 

results have been obtained by Schacher and Small [16], Amitsur [4], and Fein 

and Schacher [10], and Jacobson [11]. They have shown that k(X) is not a 

crossed product in the following cases: 1) if n is divisible for p3 for any prime 

p / c h a r ( k )  for any field k, 2) if n is divisible by p2 for any prime p / c h a r ( k )  

such that k does not contain a primitive p-th root of unity provided that k is a 

global field or a finite field. 

Unlike the p3 theorems, the proofs of the p2 theorems cited above depend on 

properties of global and local fields. The extension of these results to the case n 

divisible by char (k) in [10] depends on the classification of division algebras over 

global fields given by the theorem of Brauer, Hasse, Noether,  and Albert. 

Theorem 2 below extends the above results, removing restrictions on the field k 

in case 2, and simplifying the proof in previously known cases. Its proof does not 

depend on global fields. It depends on results of Amitsur and on Theorem 1 

below. The proof of Theorem 1 depends on the theory of extension fields of a 

field complete in a discrete valuation. Theorem 1 yields Theorem 2 without the 

necessity of reducing to global fields in case q divides m and without appeal to 

global fields or the Dirichlet density theorem for the p2 case. 

2. Statement of theorems 

Let k be a field and n be a positive integer. We construct a field extension K 

of k and a cyclic algebra D over K as follows. Let Lo be the field of rational 

functions over k in n indeterminates x~, �9 �9 x,. Let tr0 be the automorphism of 

Lo which leaves k fixed and permutes the x, cyclically (x, --* x,.,, x, --~ x~). Let K0 

be the subfield of Lo fixed by o-o. Note that L0 is a Galois extension of Ko with 

cyclic Galois group of order n generated by o-o. 
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Let K = K0((t)) be the field of formal Laurent  series in one variable over K0. 

Let L = L,,((t)), and let o- be the automorphism of L which leaves t fixed and 

whose restriction to Lo is o-o. Then L is a Galois extension of K with cyclic 

Galois group G = Gal ( L / K )  of order n generated by or. Let D be the cyclic 

algebra over K, D -- (L, o', t). Let q be the characteristic of k. 

We show below that D is a division algebra of index and order  n in the Brauer 

group of k. 

THEOREM 1. Let M be a subfield of D which is Galois over K of degree 

m = [M: K] with Galois group H = GaI (M/K) .  

1) If  q divides m then H has a normal q-Sylow subgroup. 

2) If q does not divide m then H is an abelian group with one or two generators. 

In particular, H is an abelian extension of a quotient group of G by a cyclic group 

of order e where k contains a primitive e-th root of unity. 

The proof of this theorem turns on the facts that L is the unique unramified 

maximal subfield of D and that every root of unity in L lies in k. 

COROLLARY l. If n is prime to q, p is a prime dividing n, and the field k does 

not contain a primitive p-th root of unity, then every subfield of D which is Galois 

over K has an abelian Galois group with cyclic p-Sylow subgroup. 

Let k (X) be the generic division ring over k of index n, as defined by Amitsur 

[4]. Note that n may be divisible by q = char (k). 

THEOREM 2. 1) l f n  isdivisible b y p 3 f o r a n y p r i m e p / c h a r ( k ) ,  then k(X)  is 

not a crossed product. 

2) If  n is divisible by p2 for any prime p / char (k ) such that k does not contain a 

primitive p-th root of unity, then k(X)  is not a crossed product. 

3. Complete fields 

We investigate fields complete in a discrete valuation with a view towards 

proving Theorem 1. For an exposition of the relevant definitions and theory we 

refer to [20, chap. 3] or [6, chap. 4]. Some of the results of this section are 

generalizations of results which are well known for complete fields with finite 

residue class field. See [1] and the references contained therein. These results are 

proven here for a complete field with arbitrary residue class field. This fact, 

together with Proposition 4 below, makes possible the proof of Theorem 1. 

Let F be a field complete in a discrete valuation v. Let 0 be the ring of integers 

of F, 0 = {x ~ F]  v(x)  >= 0}. Let t be a uniformizing parameter  of v, an element of 
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F such that v( t )  = 1. Let P be the prime divisor of F, P = {x Iv(x)  > 0}, the ideal 

of 0 generated by t. The residue class field .ff = O/P. Let q be the characteristic of 

F. An extension field E of f is unramified if the degree [E -- F] = [E : F] and/~ 

is separable over F. An extension field E of F is tamely ramified if q does not 

divide the ramification index of E over F and/~ is separable over F. We require 

the following characterization of extension fields of F. Note that a Galois 

extension field is normal and separable. 

LEMMA 1. Let E be a Galois extension of F. Let T, the inertia field, be the 

maximal  unramified subextension of F. Let V, the ramification field, be the 

maximal  tamely ramified subextension of E. 

1) T is Galois over F, if. is normal over F, and the Galois groups Ga l (T /F ) ,  

GaI (T /F) ,  and G a l ( E / F )  are isomorphic. 

2) V is Galois over F. 

3) V is a cyclic extension of T of degree e with q not dividing e, V = T(V/s) 

where s E T with v(s)  = 1, T contains a primitive e-th root of unity, and T contains 

a primitive e-th root of unity. 

4) The degree of E over V is a power of q. 

PROOF. Assertion 1 is [20, theor. 3-5-3]. Note that T is the maximal subfield 

of /~  separable over F, so that if/~ is separable over P then/~  = T. Assertion 2 

follows from [20, props. 3-6-1 and 3-6-8]. That V is cyclic over T of degree e 

not divisible by q is [20, prop. 3-6-4]. That V = T(~/s) with s E T and v(s)  = 1 

follows from [20, props. 3-4-3 and 3-4-7]. The ratio of any two roots of x e _ s is 

an e-th root of unity, and this polynomial has e distinct roots in V. Hence V 

contains a primitive e-th root of unity, z = V/]. Since q does not divide e, the 

polynomial x e _ 1 is separable over F. Hence /~  contains a primitive e-th root of 

unity and z lies in T by [20, theor. 3-2-6], proving assertion 3. Assertion 4 

follows from [20, prop. 3-4-7]. Q.E.D. 

REMARK. The above lemma is valid if E is merely assumed normal over F. In 

general a field extension obtained by adjoining an e-th root may be cyclic of 

degree e even if the ground field does not contain a primitive e-th root of unity. 

If 1 ~ C ~ G ~ H ~ 1 is an exact sequence of groups, we say that G is an 

extension of H by C. This terminology is motivated by Galois theory. It is not 

the only standard terminology. 

COROLLARY 1. Suppose E is a tamely ramified extension o f F  with ramification 

index e over F and residue class field ft.. 
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1) I r E  does not contain a primitive e-th root of unity, then E is not normal over 

F. 

2) I f  E is normal over F, then G a l ( E / F )  is an extension of G a l ( E / F )  by a 

cyclic group of order e. 

PROOF. Assertion 1 is immediate  f rom Part 3 of Lemma  1. Suppose E is 

normal over F. Let T be the inertia field of E. Let C = G a l ( E / T ) .  By Part 3 of 

L e m m a  1, C is a cyclic group of order e. By Part 1 of the lemma, T is Galois over  

F and Gal  ( T / F )  is isomorphic to Gal  (E/F) .  By Galois theory we have an exact 

sequence of groups 1 ~ C ~  Gal ( E / F ) ~  Gal(T/F)- - - )  1, and assertion 2 is 

proven. Q.E.D.  

COROLLARY 2. Suppose E is a tamely ramified extension Galois over F. Let T 

be the inertia field of E. Let p be a prime dividing [E:  F]. Suppose a p-Sylow 

subgroup of H = Gal  ( T /F )  is cyclic, and T does not contain a primitive p-th root 

of unity. Then any p-Sylow subgroup of G = G a I ( E / F )  is cyclic. 

PROOF. G is an extension of H by a group of order e and T contains a 

primitive e-th root of unity. Hence  e is pr ime to p. An appropriately chosen 

pre-image of a generator  of a cyclic p-Sylow subgroup of H generates a cyclic 

p-Sylow subgroup of G. As all p-Sylow subgroups of G are conjugate, the proof 

is complete.  Q.E.D.  

PROPOSITION 1. Let E be a tamely ramified extension Galois over F with 

ramification index e. Let G = Ga l (E /F) .  Let T be the inertia field of E, 

C = G a l ( E / T ) ,  and H = Gal(T/F) ."  

1) G is a central extension of H by C if and only if F contains a primitive e-th 

root of unity. 

2) I f  H is cyclic, then G is an abetian group (with one or two generators) if and 

only if F contains a primitive e-th root of unity. 

PROOF. By Corollary 1 to L e m m a  1, G is an extension of H by C. It remains 

to show that C is a central subgroup of G if and only if F contains a primitive 

e-th root of unity. Let s be a prime element  of T with E = T(V's) and let r = V/s 

in E. T contains a primitive e-th root of unity by Part 3 of L e m m a  1. Let tr be an 

automorphism in H = Gal (T /F) .  Since E is normal over F, T ( V ' s  ~) = E. Hence  

by K u m m e r  theory s ~ = s~u, with u= an e-th power in T and 0 < i < e. Since the 

extension of v from F to T is unique, v(s ~') = v(s)  = 1. As v(u~) is divisible by e 

and v(s ~) = i, it follows that i = 1 and v(u,,) = O. Hence  s~'/s = u~ with u,, an 

e-th power in the units of T. Let 3' be a pre-image of or in G, an extension of or to 
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E. Then  (r~/r) e = s = / s = u , ,  so that r ~ = r a ~  with a ~ E T  and a~=u , , .  Let  

r C C = Gal ( E / T ) .  It suffices to show that yr  = ry  for all choices of 7 and r if 

and only if F contains a primitive e- th  root  of unity. Since y maps T into T and r 

fixes T elementwise,  the restrictions of y and r to T clearly commute .  As E is 

genera ted  over  T by r it suffices to check if r ~ = r '~. Note  that r T = rz with 

z e = l .  

We compu te  r ~T = (ra,)" = r ' a ~ =  rza~. Since a~ E T, a ~ =  a~. Hence  r ~ = 

rza,. Now we compu te  r ~ = ( r z )  * = r ~ z  ~ = r a ~ z  ~ = r a * z  ~. If F contains a 

primitive e-th root  of unity, z E F and z ~ = z. Hence  r "~ = ra~z = r ~', and thus 

yr  = ry. Conversely,  suppose F does not contain a primitive e- th  root  of unity. 

Let r be a genera to r  of C so that r ~ = rz with z a primitive e-th root  of unity in 

T. Let tr be an au tomorph i sm in Gal  ( T / F )  such that z ~  z. Let  y be a pre image 

of o- in G. Then the above  computa t ion  shows that r'~,, ~ r ~" and therefore  

y r ~  ry. Assert ion 1 is proven.  

Suppose that H is cyclic. Let o- be a genera tor  of H and 7 a pre image of tr in 

G. Let r be a genera tor  of C. Then  y and r genera te  G. By assertion 1 yr  = ry  if 

and only if F contains a primitive e- th  root  of unity. Asser t ion 2 follows. 

Q .E .D .  

REMARK. Any  central  extension of a cyclic g roup  is abelian. A central  

extension of an abelian g roup  by a cyclic g roup  need not be abelian. Cons ider  

the quatern ian  group.  

I am grateful  to Jack Sonn for his contr ibut ion to the proof  of the above  

proposi t ion and for many  enlightening conversat ions  on valuation theory  and 

Galois  theory.  

The proof  of the above  proposi t ion yields the following lemma, which is pure 

Galois  theory.  

LEMMA 2. Let  F be a field. Let  T be a finite normal extension o[ F and 

H = Gal  (T /F ) .  Suppose e is prime to char (F)  and T contains a primitive e- th root 

o[ unity z = ~/1. Let  b E T and E = T(~/b) .  Suppose [E :  T] = e. 

1) E is a Galois extension of  T with cyclic Galois group C of  order e. 

2) E is normal  over F if and  only if for each automorphism o r E H  

b ~ = b~u,, with u,~ an e- th power in T. 

3) I f  E is normal  over F, then Gal ( E / F )  is a central extension of  H by C if and  

only if  for each o" E H z ~ = z 'o. 

4) I f  for each tr E H b~/b is an e- th power in T, G a I ( E / F )  is a central 

extension of  H by C if and  only if  z E F. 
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The above lemma and above proposition can also be formulated in terms of 

Galois cohomology. The above lemma can be extended to the case E an abelian 

Galois extension of T. 

PROPOSITION 2. Let E be a tamely ramified extension Galois over F with 

ramification index e. Suppose F contains a primitive e-th root of unity. Let T be the 

inertia field orE and let s = bt be a prime element of T with E = T(g/s). Then 

1) T(g/b) is an unramified extension Galois over F with Galois group Go a 

central extension of Gal (T /F)  by a cyclic group of order dividing e. Moreover G,, is 

isomorphic to the Galois group of the residue class field extension T(g/  b) over F. 

2) F(g/ t )  is a totally and tamely ramified extension Galois over F with cyclic 

Galois group C of order e. 

3) r ( g /b )  and F(g/t)  are linearly disjoint over F and E is a subfield of their 

composite r(g/b,  g/t). 

4) The Galois 'group of T(g/-[~, g/t) over F is isomorphic to the direct product 

G,, x C and Gal (E /F)  is a quotient group of Go x C. 

PROOF. The minimal polynomial for g / b o v e r  T is xe'-c with c "2 = b, e,e2 = e. 

This follows by Kummer theory. See [13, prop. 1]. By hypothesis, t is a prime 

element of F so that b and c are units of T. Since el is prime to char (F), x e,_ g 

is a separable polynomial over F. Hence T(g/b) is unramified over T by 

[20, theor. 3-2-6]. As T is unramified over F, T(g/b) is unramified over F by [20, 

prop. 3-2-4]. We conclude, as in the proof of Proposition 1, that for each 

automorphism o- E GaI(T/F)  s~/s is an e-th power in T. Since t E F, s ~" = b~t 

and s~/s = b~/b. Hence c~/c is an e-th power in T. The balance of assertion 1 

follows from the above Lemma 2 and the first assertion of Lemma 1. 

Assertion 2 is immediate from [20, theor. 3-3-1]. Since T(g/b) is unramified 

over F and F(g/ t)  is totally ramified over F, they are linearly disjoint. This 

follows from the equality ef = n, or even from the inequality ef =< n. Clearly E is 

a subfield of their composite. Assertion 3 is proven, and assertion 4 follows from 

assertion 3 by Galois theory. Q.E.D. 

COROLLARY 1. If G,, is abelian, then G a I ( E / F )  is abelian. 

PROOF. Immediate from assertion 4 of the proposition. 

COROLLARY 2. Suppose n is prime to char (F), F contains a primitive n-th root 

of unity, and every Galois extension of P of degree dividing n is abelian. Then 

every Galois extension of F of degree dividing n is abelian. 

PROOF. Note that since ex divides e the degree of Tg /b  over F divides the 
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degree of E over F. The stated result follows from Corollary 1 together with 

assertion 1 of the proposition. Q.E.D. 

COROLLARY 3. (Schilling, Amitsur, et al.) Let k be an algebraically closed field 

of characteristic q. Let F = k {tt, . �9 ", tin} be an iterated power series field over F in m 

variables. Then every Galois extension of F of degree prime to q has an abelian 

Galois group with <= m generators. 

PROOF. Induction based on part 4 of Proposition 2. 

Note that the proof in [9] can be easily corrected by appropriately modifying 

Proposition 2.2 which is false as stated. In fact, every extension of F of degree 

prime to q is Galois with such a Galois group. Cf. [17, theor. 3], [3, prop. 2], [16, 

lemma 1], or [11, chap. 2.5]. 

PROPOSITION 3. Let E be a normal extension ofF. Let G = Gal (E /F). Suppose 

Gal ( E / F) is cyclic. Let e be the index of tame ramification of E over F. Suppose F 

contains a primitive e-th root of unity. 

1) G is an extension of an abelian group with one or two generators by a 

q-group. 

2) The q-Sylow subgroup of G is normal. 

PROOF. Let V be the ramification field of E. By Lemma 1 V is Galois over F. 

Let G~= GaI(V/F) .  By Lemma 1 the degree [E: V] is a power of q. Let 

O = Gal (E /V) .  Note that tOt  = q' divides [E: V]. By Galois theory we have an 

exact sequence of groups 1 ~ Q ~ G ~ Gj ~ 1. By Proposition 1 G1 is abelian, 

with at most two generators, and assertion 1 is proven. 

Let N be the q-Sylow subgroup of GI. Since Gj is abelian, N is a normal 

subgroup of G1. Let M be the preimage of N in G. Then M is a normal 

subgroup of G by the Noether isomorphism theorems. The order [ M ] = I N I" q' 

and the order IG[ = [G, l 'q ' .  Hence M is the q-Sylow subgroup of G, and 

assertion 2 is proven. Q.E.D. 

REMARK. Any extension of a group with normal q-Sylow subgroup by a 

q-group has normal q-Sylow subgroup. 

4. Cyclic division algebras 

The hypotheses of the previous,section remain in force. F is a field complete in 

a discrete valuation v with residue class field F, q = char(if'), and t is a 

uniformizing parameter of v. We construct a cyclic algebra A over F and study 

the subfields of A. For the relevant definitions and theory we refer to [5, chap. 8] 



Vol. 28, 1977 CYCLIC ALGEBRAS 121 

or [2, chaps. 4 and 5]. Let  S be a cyclic Galois extension of F of degree n. Let o- 

be an automorphism generating Gal (S/F). For non-zero a E F (S, t~, a)  denotes 

the cyclic crossed product algebra. (S,o-,a) is a central simple algebra of 

dimension n 2 over F containing S as a maximal commutative subring and 

generated over S by x,  satisfying x~ = a and x,~bxSl= b ~ for all b E S. 

Suppose, moreover,  that S is unramified over F in the weak sense that the 

ramification index e = e(S /F)= 1. We do not require that S be separable over 

F. Let  A be the cyclic algebra (S, o-, t). 

PROPOSITION 4. Let T be an algebraic extension field of F with ramification 
index e (T/F) = 1. 

1) A is a division algebra of index and order n in the Brauer group of F. 

2) Let ST be a field compositum of S and T over F, and let m be the degree 

[ST : T]. Then AT = A @F T is an algebra of index and order m in the Brauer 

group of T. 

3) T is isomorphic over F to a subfield of A if and only if T is isomorphic over F 

to a subfield of S. 

PROOF. The order of A divides the index of A which divides n = [S: F]. 

Hence for assertion 1 it suffices to prove the order of A = n. The order of A is 

the least positive i such that t' is a norm from S to F, t' = N(b). For b E S, 

v(N(b)) = n.  v(b). Moreover,  v ( t ' ) =  i. Since e(S/F) = 1, v(b) is an integer. 

Hence if t ~ = N(b) then n divides i, and assertion 1 follows. 

For assertion 2 note that the degree m = [ST: T] = [S: S n T], and S is cyclic 

over S n T with Gal (S/S n T) generated by o ""/". Moreover,  ST is cyclic over T 

with Gal(ST/T)  generated by 3', the extension of tr "~m to ST leaving T fixed. 

The algebra AT is equivalent in the Brauer  group of T to the cyclic algebra 

(ST, y, t) by [5, theor. 8.5D, p. 89] or [2, theor. 8, p. 73]. This fact is an instance of 

the compatibility of the restriction map on the Brauer  group with the restriction 

map in Galois cohomology. That is, the factor set for AT in H2(Gal(ST/T), 

(ST)*) is the restriction to this cohomology group of the factor set for A in 

H2(Gal (S/F), S*). Note that the ramification index e (ST/T)  = 1 and t is a prime 

element of T. By assertion 1 (ST, T, t) is a division algebra of index and order m 

in the Brauer  group of T. Assertion 2 follows. 

Clearly any subfield of S is a subfield of A. Suppose T is a subfield of A. Let 

f = IT: F]. Then f divides n and the index of AT in the Brauer  group of T is n/ f  

by [2, theor. 24, p. 61]. By assertion 2, n / f =  [ST: T]. Hence the degree 

[ST:F]=[ST:T][T:F]=n. That is, [ST: F] -- [S: F], so that S T = S ,  and 

assertion 3 is proven. Q.E.D. 



122 L, J. R IS M AN Israel J. Math. 

REMARK. If P is perfect and the Brauer group of P is trivial, then every 

division algebra with center F is isomorphic to (S, tr, t) for some S, tr, and t. See 

[19, chap. 12, theor. 2 and Ex. 1, p. 194]. If (i, n) = 1 and j = i -1 (mod n), then 

(s ,  ,~, t ' )  = (s ,  ~ ' ,  t).  

PROPOSITION 5. Let M be an extension field of F contained in A. Let T be the 

inertia field of M. Then T is isomorphic over F to a subfield of S, T is a cyclic Galois 

extension of F, and Gal (T /F )  is isomorphic to a quotient group of Gal (S/F). 

PROOF. T is the maximal unramified subfield of M. By assertion 3 of 

Proposition 4, T is isomorphic over F to a subfield of S. By Galois theory T is 

cyclic over F and GaI(T/F)  is a quotient group of GaI(S/F).  Q.E.D. 

COROLLARY 1. Suppose P is perfect and the Brauer group of P is trivial. Let M 

be an extension field of F and let T be the inertia field of M. If  T is not a cyclic 

Galois extension of F, then M can not be embedded in any division algebra with 

center F. 

PROOF. Immediate from the proposition and the above cited theorem of [19]. 

Q.E.D. 

In the terminology of [15], the conclusion of the above corollary is that M is 

not F-adequate.  Consider the following example. By Tsen's theorem a function 

field in one variable over an algebraically closed field has trivial Brauer group. In 

particular, let P be the field of rational functions in a variable x over the 

complex numbers. Let T = F(X/x, X/x + 1). Let F = F((t)) be the field of formal 

Laurent series in one variable over F, and let T = T((t)). Then by the above 

corollary, T is not F-adequate. 

PROPOSmON 6. Let r be the largest factor of n prime to q. Suppose that any r-th 

roots of unity in S lie in F. Let M be a subfield of A which is normal over F. Let T be 

the inertia field of M and let V be the ramification field of M. Then 

1) V is Galois over F, G a I ( V / K )  is abelian, and Gal (V /F)  is an extension of 

Gal (T /F)  by a cyclic group of order e where F contains a primitive e-th root of 

unity. 

2) G a l ( M / V )  is a q-group, and the q-Sylow subgroup Q of GaI(M/F)  is 

normal. 

3) Suppose M is Galois over K. Let W be the fixed field of Q. Then W is a 

subfield of V and Ga l (W/F)  is a quotient group of Gal(V/F) ,  an abelian group 

with one or two generators. 

PROOF. By Proposition 5, T is isomorphic over F to a subfield of S. Hence T 

is cyclic over F and if T contains a primitive e-th root of unity z, then z lies in F. 
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Assertion 1 then follows from part 2 of Proposition 1 and parts 2 and 3 of 

Lemma 1. 

Gal ( M / V )  is a q-group by part 4 of Lemma 1. Gal (M/F)  is an extension of 

Gal ( V /F )  by Gal (M/V) .  It follows from assertion 1 above, together with part 2 

of Proposition 3 that the q-Sylow subgroup Q of Gal (M/F)  is normal, proving 

assertion 2. 

Suppose M is Galois over K. GaI (M/V)  is a subgroup of Q. By Galois theory 

W is a subfield of V, and assertion 3 follows. Q.E.D. 

COROLLARY 1. Let S be as in the proposition. Suppose n is prime to q, p is a 

prime dividing n, and the field F does not contain a primitive p-th root of unity. 

Then every subfield of A which is Galois over F has an abelian Galois group with 

cyclic p-Sylow subgroup. 

PROOF. Let M be a subfield of A which is Galois over F. Since [M: F] 

divides n, q does not divide [M : F]. Hence M = V. The stated result follows 

from assertion 1 of the proposition and corollary 2 to Lemma 1. Q.E.D. 

COROLLARY 2. Suppose q does not divide n, and S does not contain any 

nontrivial n-th roots of unity. Then every subfield of A which is Galois over F is 

cyclic and is isomorphic over F to a subfield of S. 

PROOF. Let M be a subfield of A which is Galois over F. Since q does not 

divide [M: F], M - -  V. Since S contains no nontrivial n-th root of unity it 

follows from part 1 of the proposition that e = 1. Hence M = T. The stated result 

follows by Proposition 5. Q.E.D. 

5. The division algebra D 

We now apply the above results to prove Theorem 1. Let the field extension K 

of k and the algebra D = (L, o-, t) be as defined above. Recall that q = char(k) .  

Note that every root of unity in L lies in k. In fact, k is algebraically closed in L. 

From Gauss's Lemma it follows that L0 is algebraically closed in L = Lo((t)) and 

k is algebraically closed in Lo = k ( x l , ' ' . ,  x,). 

We define the valuation v on K by the formula v(EL, ,a , t ' )= m. Then v is a 

normalized discrete valuation on K with uniformizing parameter  t and residue 

class field Ko. K is complete with respect to v. L is an unramified Galois 

extension of K with cyclic Galois group generated by ~r. 

It follows from Proposition 4 that D is a division algebra of index and order n 

in the Brauer group of K. This fact is also proven in [11, theor. 4, p. 84]. 
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PROOF OF THEOREM 1. Let T be the inertia field of M, and let V be the 

ramification field of M. As observed above, every root of unity in L lies in k and 

hence, a fortiori, lies in K. Hence the hypotheses of Proposition 6 are satisfied. 

The q-Sylow subgroup of Gal(M/F)  is normal by part 2 of Proposition 6, 

proving assertion 1. Note that if q does not divide m = [M: K], then M = V. 

Assertion 2 follows from part 1 of Proposition 6. Q.E.D. 

PROOF OF COROLLARY 1 TO THEOREM 1. If k does not contain a primitive p-th 

root of unity, then K does not contain a primitive p-th root of unity. The stated 

result follows from Corollary 1 to Proposition 6. Q.E.D. 

Note that if n is odd and k is the field of rational numbers, Corollary 2 to 

Proposition 6 applies to D. 

6. Generic division algebras 

For the theory of polynomial identities and generic division algebras we refer 

to [3], [4], and [11]. Any division ring satisfying a polynomial identity is a division 

algebra finite dimensional over its center. A division algebra has index n if and 

only if it satisfies the polynomial identities of n by n matrices over its center. 

This is a consequence of a theorem of Kaplansky, Amitsur, and Levitski [11, p. 

301. 
Fix h with 2-<h=<~.  Consider the n by n matrices X,, l ~ r - < h ,  whose 

entries are distinct indeterminates over k, Xr = (x~). Let R be the ring of 

polynomials over k in the commuting variables x 7j. The subring k IX] of the ring 

of n by n matrices over R generated over k by the X, is the generic matrix 

algebra of degree n over k. The ring k [X] satisfies the polynomial identities of n 

by n matrices, and is universal with respect to this property. By a theorem of 

Amitsur k [X] is a domain, [3, theor, 3] or [I 1, theor. 2, p. 90]. Its ring of (central) 

quotients k (X) is the generic division algebra of index n over k. 

DEFINITION. If the following condition holds, a division algebra A is a crossed 

product with the group G : A contains a maximal subfield L which is Galois over 

the center C and GaI(L /C)  is isomorphic to G. 

We require the following theorems of Amitsur. 

LEMMA 3. If  k (X)  is a crossed product with a group G, then any division 

algebra of index n whose center is a field extension of k is a crossed product with G. 

See [3, p. 418-419] or [11, theor. 4, p. 93]. 
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LEMMA 4. If  char (k ) does not divide n, then there exists a division algebra A 

of index n with center C, a field extension of k, such that every subfield of A 

containing C is Galois over C with abelian Galois group a direct product of cyclic 

groups of prime order. See [3, theor. 3, p. 412] or [11, theor. 1, p. 102]. For an 

alternate treatment, see [14]. 

PROPOSITION 7. Suppose q does not divide n. 

1) If  n is divisible by p3 for any prime p, then k (X)  is not a crossed product. 

2) I f  n is divisible by pZ for any prime p such that k does not contain a primitive 

p-th root of unity, then k (X)  is not a crossed product. 

PROOF. Suppose k (X) is a crossed product with a group G. Then by Lemma 

3 and Lemma 4, G is a direct product of cyclic groups of prime order. By 

theorem 1 for each prime p dividing n the p-Sylow subgroup of G is either cyclic 

or a direct product of two cyclic groups. Hence n is not divisible by p3 for any 

prime p, proving assertion 1. By Corollary 1 to Theorem I, if k does not contain 

a primitive p-th root of unity, then the p-Sylow subgroup of G is cyclic. Hence n 

is not divisible by pZ, proving assertion 2. Q.E.D. 

REMARK. The proof of assertion 2 does not depend on the Dirichlet density 

theorem. It depends on Corollary 2 to Lemma 1, on Proposition 5, and on 

Lemmas 3 and 4. 

It remains to treat the case n divisible by q. As noted in [10] Lemma 3 can be 

strengthened as follows, 

LEMMA 5. If k (X)  has a subfield Galois over the center with Galois group G, 

then any division algebra of index n whose center is a field extension of k has a 

subfield Galois over the center with Galois group isomorphic to G. 

SKETCH oF PROOF. The above cited proofs of Lemma 3 apply with the 

appropriate modifications. In the notation of [11, theor. 4, p. 93], the elements p~., 

are in the centralizer of F(O). That is Ops., = p~.,O. Hence O'p'~., = p's,,O', and 

therefore (s t ) '=  s't'. It follows that G '  is a group of automorphisms of L(O') 

over L isomorphic to G. As 0' satisfies a polynomial of degree = [G [, L (0') is 

Galois over L with Galois group G'. Q.E.D. 

We require an elementary lemma on subfields of division algebras. 

LEMMA 6. Suppose n = rs and (r, s) = 1. L e t A  be a division algebra of index n 

with center C. Let Ax be a subalgebra of A central over C of index r. Suppose E is 

an extension field of degree m over C and m divides r. I f  E is isomorphic over F to a 

subfield of A,  then E is isomorphic over F to a subfield of A1. 
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PROOF. By [2, theor. 24, p. 61] E is isomorphic to a subfield of A if and only 

if the index of AE is n/r. Let A2 be the centralizer of A~ in A. Then 

A = A~ @cA2. Since (r, s) = 1 the index of A2~ is s, by [2, theor. 20, p. 60], and 

the index of AE is the product of the indices of Al~ and A2E- Hence the index of 

A,~ is r/m, and E is isomorphic over F to a subfield of A~. Q.E.D. 

COROLLARY 1. S u p p o s e n = r s a n d  ( r , s ) = l .  L e t G b e a g r o u p o f o r d e r n ,  N a  

normal subgroup of order s, and H = GIN. Suppose there exists a division algebra 

A of index s with center C. I f  every division algebra of index n with center C is a 

crossed product with G, then every division algebra of index r with center C is a 

crossed product with H. 

PROOF. Suppose B is a division algebra of index r with center C. Then 

B @ c A  is a division algebra of index n with center C. By hypothesis there exists 

a maximal subfield M of B @ c A  Galois over C with Galois group G. Let E be 

the subfield of M fixed by N. The result follows from Lemma 6. Q.E.D. 

In the terminology of [10] the above corollary states that if the pair (C, G)  has 

the crossed product property A then the pair (C, H )  has the crossed product 

property A. In case C is a global field or a local field more can be proven. See 

[10, prop. 8]. 

Suppose F is a field of characteristic q / 0  with a discrete valuation and 

uniformizing parameter  t. The polynomial x q - x  - 1 / t  has no root in F. By 

Artin-Schreier  theory it is irreducible and yields a cyclic Galois extension of 

degree q over F. By a theorem of Witt [18, corol. 1, p. II-5] the Galois group of 

the maximal q extension of any field of characteristic q is a free pro-q group. 

Hence for any s = q~ there exists a cyclic Galois extension of F of degree s. As 

noted in [10] it follows from [6, p. 205] that every finite q group is realized as a 

Galois group over F, a fact which we do not require here. 

Let n = rs with r prime to q and s = q~. Let A be Amitsur's division algebra 

of index r in Lemma 4 and C the center of A. C is a field of iterated power series 

in at least two variables over the algebraic closure of k. Let t, and t2 be the last 

two variables. Then C = F((t2)) and F is a field of characteristic q complete in a 

discrete valuation with uniformizing parameter  t,. As noted above there exists a 

cyclic extension E of degree s over F. Let S be the corresponding unramified 

extension of C, and let cr be a generator of GaI(S /C) .  By Proposition 4, 

B = (S, o', t2) is a division algebra of index and order s in the Brauer group of C. 

Since ( r , s ) =  1, A @ c B  is a division algebra central over C of index n 

containing A as a subalgebra. 

For any integer s prime to q the cyclic extension F (~ /h )  of F yields, as above, 
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a division algebra central over C of index and order s. Similarly, if C is a field of 

rational functions in two variables over a field containing enough roots of unity, 

for any s there exist division algebras central over C of index and order s. For 

further results see [7, section 4]. 

PROOF OF THEOREM 2. If q does not divide n, we are done by Proposition 7. 

Suppose n = rs with s = q~ and r not divisible by q. Suppose k (X) is a crossed 

product with Group G. Let Z be the center of k (X) and let M be a subfield of 

k (X)  Galois over Z with G a l ( M / Z ) =  G. By Lemma 5 and Theorem 1 the 

q-Sylow subgroup Q of G is normal. Let W be the fixed field of Q in M. Then 

W is Galois over Z of degree r with H = G a l ( W / Z ) =  G/Q. By Lemma 5 any 

division algebra of index n whose center is a field extension of k has a subfield 

Galois over the center with Galois group isomorphic to H. By Theorem 1, H is 

an abelian group with one or two generators. If p is a prime dividing r, the 

p-Sylow subgroup of H is cyclic or a product of two cyclic groups. If k does not 

contain a primitive p-th root of unity, the p-Sylow subgroup of H is cyclic. 

Let A be the division algebra of index r of Lemma 4, and let A @ c B  be the 

division algebra of index n containing A described above. By Lemma 5, A @ c B  

contains a subfield E Galois of degree r over C with Galois group H. By Lemma 

6, E is isomorphic over C to a subfield of A. By Lemma 4, H is a direct product 

of cyclic groups of prime order. Theorem 2 follows. Q.E.D. 

The above proof of Theorem 2 yields the following stronger statement. 

PROPOSmON 8. Suppose k (X)  contains a subfield Galois of degree m over the 

center. Then m is not divisible by p3 for any prime p ~  q, and m is not divisible by 

p2 for any prime p ~ q such that k does not contain a primitive p-th root of unity. 

To discuss generic division algebra of various indices we expand our notation 

and let k(X,  n) denote the generic division algebra of index n over k. Suppose 

n = rs with (r, s) = 1 and k (X, n) has a subfield Galois over the center of degree r 

with Galois group G. It follows from Lemmas 5 and 6 that if there exists a central 

division algebra of index s over the center of k (X, r), then k (X, r) is a crossed 

product with group G. See [10, theor. 11]. Fein and Schacher have recently 

announced an improvement of this result. See in this connection [12, theor. 6.3, 

p. 95] and [7, section 4]. 

By [10, lemma 3] if A is a cyclic division algebra of index nm with center C, n 

is prime to char(C) ,  and C contains a primitive n-th root of unity, then A is a 

crossed product for a direct product of a cyclic group of order m and a cyclic 

group of order n. The strength of non-crossed product results to be obtained by 

constructing cyclic division algebras is limited by this fact. 
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Added in proof. See Twisted rational ]:unctions and series by this author, 
preprint, April 1977, for an alternative proof of Proposition 5 and for further 

related results and generalizations. 
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