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THE PLANCHEREL FORMULA FOR 
PARABOLIC SUBGROUPS 

BY 

FREDERICK W. KEENE, RONALD L. LIPSMAN* AND JOSEPH A. WOLF* 

ABSTRACT 

We prove an explicit Plancherel Formula for the parabolic subgroups of the 
simple Lie groups of real rank one. The key point of the formula is that the 
operator which compensates lack of unimodularity is given, not as a family of 
implicitly defined operators on the representation spaces, but rather as an 
explicit pseudo-differential operator on the group itself. That operator is a 
fractional power of the Laplacian of the center of the unipotent radical, and the 
proof of our formula is based on the study of its analytic properties and its 
interaction with the group operations. 

I. Introduct ion 

The  Plancherel  T h e o r e m  for non-un imodu la r  groups  has been deve loped  and 

studied ra ther  intensively during the past five years (see [7], [11], [8], [4]). 

Fu r the rmore  there has been significant progress in the computa t ion  of the 

ingredients of  the theorem (see [5], [ 2 ] ) - - a t  least in the case of solvable groups.  

In this paper  we shall give a complete ly  explicit description of these ingredients 

for  an interesting family of non-solvable groups.  The  groups  we consider  are the 

parabolic  subgroups  M A N  of the real rank 1 simple Lie groups. As  an 

in termedia te  step we also obtain the Plancherel  formula  for the exponent ia l  

solvable groups  A N  (see also [6]). In that case our  results are more  extensive 

than those of [5] since in addit ion to the "infinitesimal" u n b o u n d e d  opera tors  we 

also obtain explicitly the "g loba l"  unbounded  opera to r  on L2(AN). These global 

opera tors  turn out  to be fractional powers of the Laplacian on certain 

m a n i f o l d s - - i n  particular they are pseudo-differential  operators .  

l a. The Non-Unimodular Plancherel Theorem. Let G be a locally compac t  

g roup  with right Haa r  measure  dg. Define the modular  function 6 as usual by 
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8(g) y~ f(gx)dx = ~ f(x)dx. 

The left and right regular representations of G on L2(G) = L2(G, dg) are 
defined by 

Agf(x)=3-'E(g)f(g ~x), pgf(x)=f(xg), x, g E G ,  f E L 2 ( G ) .  

Write (~ for the unitary equivalence classes of irreducible unitary representa- 
tions of G with the Mackey Borel structure. We summarize the key points of the 
Non-Unimodular Plancherel Theorem in 

1.1 THEOREM. Let G be type I. Then there exist: a positive standard Borel 
measure tx = Ixc on G, a Ix-measurable field (fro Y(~ ) ~  of unitary representations 
of G such that 7r~ E ~ for Ix-almost all ~ E G, a Ix-measurable field ( D ~ ) ~  of 
non-zero positive self-adjoint operators such that D~ is a semi-invariant of weight 
8 in ~ for Ix-almost all ~ @ G, with the following properties. 

(i) If J: E L~(G) f) L2(G), then D~/27r~(f) is Hilbert-Schmidt for Ix-almost all 
~" E (~. If f E CT(G), then D~/ZTr~(f)D~/2 is trace class for Ix-almost all ~ E G. 

(ii) The map f-*D~/:Tr~(f) extends to an isometry of L2(G) onto 
f ~ r  so as to intertwine A with J'~Tr~)lCdix(~'), and p with 

f~  l~ Q "?rcdix (~). 
(iii) The operators Dc are unique up to scalars (depending on ~'), and the 

quantity D ~/2dix (~ ) is uniquely determined up to a scalar (depending only on the 
normalization of Haar measure). 

To say that D~ is a semi-invariant of weight 8 means 

(1.2) rr~(g)D,rr,(g)-' = 8(g)D,, g @ G, 

which in turn implies 

(1.3) rr,(f)D, = D, Tr,(Sf), f ~ CT(G). 

Implicit in the statement of Theorem 1.1 are the equations 

(1.4) f~ j f (g)J2dg=y IlO~'%,(f)ll~dix(~), fCL , (G) fqL2(G) ,  

(1.5) f(16) = (Tr(O~/27r,(f)D~/2)dix(~), f ~  C:(G). 
d 

We may use (1.3) to rewrite (1.5) as 

(1.6) f ( l~)  = f c. Tr(D, rr,(8'/2f))dix(~), f E CT(G). 
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Replacing f by 8- '2f  in (1.6) we obtain 

(1.7) f ( l~ )  = (Tr (O~r r~ ( f ) )d /x (~ ) ,  f E  CT(G). 
. /  

We remark at this point that the operators D~ have been computed explicitly in 

[5], [2] for simply connected solvable type I Lie groups. 

Now it is known from [7] that the operators D~ must be the infinitesimal 

components of a positive self-adjoint unbounded invertible operator D on 

L2(G) which is affiliated with the left ring of G. (In the notation of [7, w 

D = (M')-z). Therefore ~'~(D) is defined for/x-almost all ~ ~ G, and formula 

(1.7) may now be rewritten 

(1.8) f ( l c ) =  ( T r r r , ( D f ) d / x ( ~ ) ,  f ~  CT(G)NDom(D)N D-'(L,(G)). 
J 

It is not hard to show (using part (iii) of Theorem 1.1) that D must be a 

semi-invariant of weight 8 for G, that is Ad(g )D = 6(g)D, where [Ad(g)D]f = 
Ad(g)[D(Ad(g) ~f)] and Ad(g)f(x)= f(g-'xg). But beyond that one can say 

nothing in general about D. Naturally one would like to find an explicit 

description of D, and to show in particular that CT(G) n Do m( D)  n D-'(LL(G)) 
is a "nice big" space-- ideal ly  that 

(1.9) CZ(G) n Dom(D)  N D-'(L,(G)) = CT(G). 

At this time the only result on Dom(D)  is in the solvable case (see [10, lemma 

7.4]), and an explicit formula for D is known essentially only for the ax + b 
group (where D is differentiation with respect to the nilpotent variable). We 

shall compute D explicitly for the groups A N  and MAN. In all cases D will be 

seen to be a pseudo-differential operator defined by a fractional power of a 

certain Laplacian, and (1.9) will always be valid. 

lb. Statement of Results. Let G be a connected simple Lie group of finite 

center and R-rank 1. Fix an Iwasawa decomposition G = KAN and consider the 

corresponding minimal parabolic subgroup P = MAN. In [6] one of us wrote out 

the Plancherel formula for the non-unimodular group AN, modulo some 

technical results which can be found in w below. We recall that result in a 

moment, and indicate its extension to the parabolic subgroup P. In w we 

reformulate (and reprove by a method different from [6]) the Plancherel formula 

for AN; and in w we prove our Plancherel formula for P. 

These Plancherel formulae go as follows. Let Z be the center of the nilpotent 

group N and set 
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k = d i m Z ,  l = d i m N / Z ,  q=k+�89  

We will have a positive-definite inner product on the vector group Z and that 

will give us a Laplacian 

0 2 

on Z. We will also have particular diffeomorphic splittings of A N  and P = M A N  

in which Z is a factor, and they define pseudo-differential operators 

D = c~A q/2 on AN, E = c2A q/2 on M A N  

(see (2.5) below for the constants). The generic irreducible unitary representation 

classes [rh] of A N  are parameterized by the unit sphere S in the dual 3" of the 

Lie algebra 3 of Z. The Plancherel formula for A N  says: if f E CT(AN), then (i) 

Df C L, (AN) ,  so that rl~(Df) is defined; (ii) ~),(Df) is trace class; (iii) Tr r/, (D/) 

is a C a function of )t ~ S; and (iv) we have 

(1.10) f(lnN) = fs T r rh (Df )  d~r(lt) 

where or is the standard volume element on S. 

The Mackey little group method produces unitary representation classes 

[Try.T] E ( M A N )  ̂ , where )t ranges over a set of representatives of the M-orbits 

on S and [r] ranges over the unitary dual of M, = {m E M: Ad*(m)1 = ,~}. If 

k > 1 then M is transitive on S; so we fix )t~ E S, write 7r, for 7r,,.r and M~ for 

M,,, and prove 

(1.11) f ( l e )  = ~ (dimz)TrrcT(Ef), f E  CT(P). 
T~-M I 

If k = 1, then S consists of two M-fixed points and the formula is 

1 
(1.12) f ( l e )  = ~ ~'~ (dim r)Tr(rr.+(Ef) + 7rT(Ef)), f E CT(P). 

rEha'  

We shall now delineate very explicitly the structure of our groups, their Haar 

measures and their representations. This will facilitate our proofs of the 

formulae (1.10), (1.11), (1.12) in w167 4. 

Let F he one of the division algebras: R (real numbers), C (complex numbers), 

Q (quaternions), or Cay (Cayley numbers). F "s denotes the right vector space of 

(r + s)-tuples from F with "hermitian" scalar product (x, y) = 

- YT=~ xiyi + E~+--;+~ xjyj, and F" means F ~ n _-> 1. Up to local isomorphism, G is 

one of the groups: 
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SO(l, n + 1) = identity component of orthogonal group of R~'"+'; 

SU(1, n + 1) = special (determinant 1) unitary group of C1'"+'; 

Sp(1, n + 1) = symplectic (quaternion-unitary) group of Q""+'; 

F4< 2.)= real exceptional group of type F4 with maximal compact subgroup 

Spin (9). 

K is a maximal compact subgroup of G, A is isomorphic to the multiplicative 

group R* of positive reals, and M is the centralizer of A in K. With G as above, 

M C K C G in the various cases is: 

SO(n) _c SO(n + 1) 

z,,+l • U(n)  c U(n + 1) 

_c so(1, n + 1) 

_C SU(1, n + 1) 

Sp(l) x Sp(n) C Sp(1) x Sp(n + 1) _C Sp(1, n + 1) 

Spin(7) C Spin(9) _C F4~ 2o). 

The group N is a maximal unipotent subgroup of G. In case F = R, then 

N ~R" .  In the other cases N ~ I m F O F "  with the product 

( z , x ) ( z ' , x ' )  = (z + z ' + ~ I m ( x , x ' ) , x  + x'). 

Thus we have the table: 

G N Z k l q 

SO(1, n + l )  R" R" n 0 n 

SU(1, n + 1) ImC + C" ImC 1 2n l + n  

Sp(1, n + 1) I m Q +  Q" ImQ 3 4n 3 + 2 n  

F4(-20) Im Cay + Cay Im Cay 7 8 11 

Because we use right Haar measure, it is more convenient to write N A  instead 

of AN, and P = N A M  instead of MAN.  We adhere to that conyention 

throughout the rest of the paper. 

A -- {a,: r E R*} acts on N by automorphisms a,: (z,x)--~(r2z, rx). M acts on 

N by automorphisms m: ( z , x ) ~ ( v ( m ) z ,  t l ( m ) x )  as follows. First, g is: 

the usual representation of SO (n) on R"; 

the representation /~(s,t): x--~sx[ of Z,+I x U(n)  on C"; 

the representation g (s, t): x ~ sxT of Sp(1) • Sp(n) on Q" ; 

the spin representation of Spin (7) on C a y l ~  R 8. 
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Here  Z,+~ C_C and S p ( 1 ) C Q  act as multiplicative subgroups. Second, v is: 

the trivial representation of SO(n)  on ImR = {0}; 

the trivial representation of Zo+, • U ( n )  on ImC;  

the representation v(s, t): z - o  szg of Sp(1)•  Sp(n)  on ImQ;  

the vector representation of Spin (7) on Im Cay = R 7. 

(The reader is referred to [12, lemma 8.8] for these facts in case G = F,~-zo~.) 

Now the parabolic group P = N A M  is expressed as Im F • F" • R* • M with 

multiplication given by 

( z ,x ,  ar, m ) ( z ' , x ' , a , , , m ' )  

(1.13) 
= (z + r 2 v ( m ) z ' +  l Im (x, r~ (m)x') ,  x + r/x (m)x ' ,  art', ram') .  

If G is replaced by a locally isomorphic group, then M changes but formula 

(1.13) remains valid. 

We now normalize once and for all Haar  measures. We choose dz = Lebesgue 

measure on Z, dx = Lebesgue measure on F n, da, = dr/r  where dr is Lebesgue 

measure on R *, and d m =  normalized Haar  measure on M. Then dn = dzdx  is 

right Haar  measure on N (in case F = R, dn = dz = dx) ,  dnda is right Haar  

measure on N A  and d n d a d m  is right Haar  measure on P = N A M .  The modular 

function of P is easily computed from (1 .13)- - indeed if a -- ar 

= ,3NA(na) = 8 ( a )  = ~ rk F = R 
(1.14) 8v(nam ) 

[ r2k*l F / R .  

We conclude this introductory section with a description of the generic 

irreducible unitary representations of the groups N, N A  and P = N A M .  Let A 

be any non-zero element of 3*. We shall commit an abuse of notation by writing 

A ( z ) =  e '~~176 so that ,~ also denotes the corresponding non-trivial unitary 

character of Z. Associated to each Z C 3*-{0}, there exists an irreducible 

unitary representation class ITs] of N, uniquely determined by the property 

7~(zn) = h(z)3 ,~(n) ,  z ~ Z, n E N. Moreover  ) t / A '  implies [y~] / [y~,]. These 

are the generic representations of N. The generic representations of N A  are 

obtained by induction. Since 

= I = R b'.] a , .  

t ], I /R, 
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we have that the representations 

rh = Ind~ A Y,, X E ~* - {0} 

are irreducible; and [r h ] = [~,.] iff h = rA', r > 0. The generic representations of 

NA are thus parameterized by the unit sphere S = S *-~ in ~*. Finally conjuga- 

tion by m E M commutes with induction from N to NA. Thus it sends: 

r = g  

r # R .  

The M-stabilizer of both [7~] and [rh] is 

= I { m E M : / z ( m ) * h = h } '  F = R  
M~ 

t {m EM: v(m)*h =h}, F ~ R  

From the definitions of /x and v, we see immediately that M, ~ S O ( n -  1), 

Z,,~ x U(n),  U(1) x Sp(n), or Spin (6), respectively, as F = R, C, Q or Cay. Also 

M is transitive on S, except in the case k = 1 where S consists of two M-fixed 

points. Now we need 

1.15 LEMMA. The representation rl, of NA extends to an ordinary representa- 

tion ~ of NAMe. 

PROOF. If F = R ,  7~ extends from N to NM~ by 7~(x,a~,m)=~A(x). If 

F ~ R ,  3'~ extends from N to a representation q, of NM~ by the trivial 

(0-cohomology) case of the argument of [12, prop. 4.16]; in short M, preserves 

everything in the Bargmann-Fock realization of [3',] on a Hilbert space of 

holomorphic functions on C '/2, and that gives the extension. Now r~, = I n d ~  ~ ~ 

satisfies 

~ A  I N A  = N A M  x " N A  - = (Ind~,M~ %) IN,~ ~ IndN (Y~ IN)------- IndiA% r/,. q.e.d. 

Lemma 1.15 and the M-orbit  structure of S combine with Mackey's little 

group method as follows. If k > 1 then we fix )tl E S, set MI = M~1, and define 

the generic representations 

If k = 1, M acts trivially on S = {hi, h-l} and we define 
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The representations 7r~, -~) are the ones that occur in the Plancherel formulae 

(1.11) and (1.12). 

Finally we wish to thank G. Eskin for a number of helpful conversations on L~ 

estimates. 

2. Properties of certain pseudo-differential operators 

The Plancherel Formulae for NA and NAM involve pseudo-differential 

operators D and E that are, in effect, fractional powers of the Laplacian A of the 

center Z ~ R k of N. Here  we give a rigorous definition (w of these operators, 

and then prove (w that they keep sufficiently differentiable compactly 

supported functions inside L1. This fundamental property means that the basic 

ingredients 

~),(Df), fE  Cc(NA) 7r~*-'(Ef), fE  Cc(NAM) 

of the Plancherel Formulae (1.10), (1.11), (1.12), are in fact defined for f 

sufficiently differentiable. Then we prove (w some commutation properties of 

D and E. We employ these and Duflo's factorization theorem [1, pp. 250f] to 

show in w167 that the operators 

rl~(Df), fE  CT(NA) lr~-)(Ef), fE  CT(NAM) 

are trace class. 

Some of the analytic material here will seem familiar to PDE experts. But it is 

not easily accessible to workers in Lie groups, and there is apparently no 

satisfactory reference. Thus we felt it worthwhile to write out a reasonably 

detailed treatment.  The PDE expert, of course, can skip much of w 

2a. Definitions of the Operators. Fix a differentiable manifold V = Z x W 

where Z has a fixed identification with an euclidean vector space R k. In our 

applications, we will have V = NA or NAM and Z will be the center of N. The 

euclidean structure on Z defines an operation of partial Fourier transform for 

functions on V 

(2.1) ~(f)(~, w)= f.~ f(z, w )e-,Z.~> dz; 

and also defines a partial Laplacian on V 

(2.2) [ a f l ( z , w ) = - ~ ,  a2f'Zaz2[,w) 
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where  (z , , -  �9 Zk) is the euclidean coord ina te  on Z. As usual these are related by 

.~(ASf) (~, w ) = [[ ~ l[2~.~(f) (~, w) 

for integral s => O. We define non-negat ive  real powers of A by 

(2.3) [A'f] (z, w ) = (o%-'{ll ~: ]po%(f)})(z, w ) 

tor  real s _-> O. A ~ does not increase the W-pro jec t ion  of the support  of f ;  but  for 

non-integral  s it may increase the Z-pro jec t ion .  

The  opera tors  D on NA and E on N A M  are special cases of the above  

construct ion.  Recall  that k = dim Z, l = dim N/Z ,  q = k + ~ l and that we have 

di f feomorphic  splittings 

Z = R " ,  N A - - Z x R * ,  N A M = Z x ( R * x M )  F = R  

(2.4) 
Z = I m F ,  N A = Z x ( F " x R - * - * ) ,  N A M = Z x ( F " x R * x M )  F ~ R .  

Now let O~k-, = 2rr~a/F(k/2), the volume of the unit sphere S t - '  C_ R k. Let  2 sg~ 

deno te  1 if l = 0 or 2 if I > 0. Then  our  opera tors  are defined, relative to (2.4), by 

(2.5a) D=2~g"(')(27r)-qA q/2 on NA, 

(2.5b) E = tOk 12sg"(~ q/2 on NAM. 

Fix a positive Radon  measure  dw on W. That  defines a positive R a d o n  

, measure  on V = Z x W by dv = dzdw, where dz is Lebesgue  measure  on Z. If 

V is N A  or NAM,  then right H a a r  measure  is of this form. 

2.6 PROPOSmON. View A s, s >= O, as an operator on L2(V, dr) with domain 

Dora  (A ~) = C7(V). Then A ~ is symmetric, and its closure is a positive self-adjoint 

operator. 

This result is s tandard on W,  i.e. in the case Z = V. In our  general  case, 

L2(V, dv )=  L2(Z, d z )@L2(W,  dw) and A s splits as an opera to r  of the form 

A~(~ lw. The  proposi t ion follows. 

2b. L, Properties of the Operators. Retain  the notat ion V = Z • W and 

dv = dzdw as above. C~m~(V) denotes  the space of compact ly  suppor ted  

complex functions on V that are m times cont inuously differentiable. We are 

going to prove 

2.7 THEOREM. If S >= 0 and f ~ C~ ' (  V) with m > 2s + k, then 

A~f E L,(V, dr). 
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Then in particular we will have 

2.8 COROLLARY. Let G be a connected simple Lie group of R-rank ~, N A M  a 

minimal parabolic subgroup of G, Z the center o[ N, and A the Laplacian on Z. If 

s >= 0 and m is an integer greater than 2s + dim Z, then for f ~ C~")(NA ) and 

F E C~')(NAM), we have ASf E L , (NA)  and ASF ~ L d N A M  ). 

In view of this, whenever f E G ( N A )  and F E G ( N A M )  are suffi,,:iently 

differentiable, the operators rl~(Df), 7r~*-)(EF) are well-defined. 

The heart of the proof of Theorem 2.7 is 

2.9 PROPOSITION. Let h EC=(R k) and s>=O be such that [[zl["h(z) is 

bounded for some integer m > k + 2s. Then 

(2.9a) I1 ~: ]J2s+G%{][ z ]12Sh (z)} (s c) 

is bounded. 

PROOF. It is clearly a matter of examining the behavior of (2.9a) when s e is 
near o0. We fix a C ~ partition of unity on R k, 1 =/31 +/32 where the /3j are 

non-negative and /3~(z)=0 for [[zll_->2 and /32(z)=0 for [[zll_-<l. Then 
,~{1t z ]t2"h (z)}(s c) = L(sr Iff~) where 

~(~c) = f [[zll2sflj(z)h(z)e-,~.e, dz j = 1,2. 

As II z Ir~/3ffz)h (z) is C =, its Fourier transform decays to 0 at infinity faster than 
the reciprocal of any polynomial - - in  particular [1~1('%(~:) is bounded. Set 

y = [[sCllz. Then L(~) = 11~'11-'~-~'/3(~) where 

I3(~) = f II Y 112'/3 l(y/tl ~ H) h (Y/ll ~ I1) e-'<''/"'ll> dy. 

Then we need only prove that I3(~) is bounded. 

Using the partition of unity again I3(~:)= /4(~:)+ /'5(~) where 

I3+,(s c) = f I[Y [r'/3/(y)/31(y/ll~H)h(y/ll~ll)e-'("'/"'tl>dy j = 1,2. 

Here L(~) is b o u n d e d - - i n d e e d  

I ]~4(~)[ ~ f~ [[YI[2"Ih(Y/II~II)dY < (const.)llh II= < ~. 
yll~2 

Also since ~:/ll~ll is a unit vector, Ay = - Z  02/Oy 2 sends e -"y'e'lle~ to its negative, 

Now for every integer r => 0, integration by parts gives 
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/- 

I~(~) = ( - 1) ' J  zX;{l[ y []2'/32(y)/3,(y/[] ~: ][)h (y/[[ ~ [[)}e-'<"ez"'e"> dy. 

In view of the /32(y)/31(y/][~[]) term, the integration here is over the ring 

1 -< II y II -<- 2JI ~ II. 
Since u ( y ) =  ][y[[2"/3~(y)and v (z )= /31 (z )h (z )  are C | functions, the expres- 

sion a ; { u ( y ) v ( y / l i g ] l ) i s  a finite sum of terms of the form a(y)b(y/[[~ll)]r,~l]-': 
where a and b are C | and c g 0. Thus in/5(~:), the integration over 1 -< [[ y rr --< 2 

gives a bounded function of ~:. Since /32(y)= 1 for [] y ][ > 2, we now need only 

prove that 

f2 A;{Hy []2~v(y/ll,~ll)}e-"Y'*/It'el'>dy, v ~lh 16(~) = =,,,~<2,,ll 

is bounded. 

A direct calculation for r = 1 and then recursion shows that a;{ll y II%(y/rl ~ II)} 

is of the form 

]~ Ily 11~"-'>ll~ll-2"-'f,.(y/ll~ll), .f, ~ C~ 
j=0 

From that we conclude 

ix6(~.)l__< es I1~11 ="-').[= Ily I("-'lf,(y/lltll)l dy 
j =o -~lly tl~211,~ll 

-< E II~:ll-~,'-,,c,(ll~ll =,'-,>+' + c;) 
i=o 

<_cll~Ip+'-~" +c ', 

which is bounded (as ~ ----> oo) when we take r => �89 + k). q.e.d. 

REMARK. It is obvious that Proposition 2.9 is equally valid if the Fourier 

transform o% is replaced by its inverse ~- t .  

PROOF OF THEOREM 2.7. The partial Fourier transform ,~(f)(~, w) is C = in ~r 

and C (") in (s r w), and I[ ~r I["~(f)(~, w) is bounded because f E C~"'(V). Thus the 

functions hw(~) = ~ ( f ) ( s  r w) on R ~ satisfy the hypothesis of Proposition 2.9. 

Applying the Proposition together with the remark after its proof, we conclude 

II z i1~'+~;-'{11 r II~'h. (~)}(z)  

is bounded. Moreover  examining the proof of Proposition 2.9 we see that the 

bound may be taken in C~m)(W). Thus 
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IIz 112'+kl A'f(z, w)l <= ~,(w) 

for some ~ E C~")(W). In particular Ila'f(., w)llL,,z.~z, exists and is in L,(W, dw). 
Finally by Fubini's Theorem A'f E L~(V, dr). 

2c. Algebraic Properties of the Operators. If H is a Lie group, its Lie algebra I) 

acts on functions from the left by 

d 
(~ *f)(y)  = ~ - / ( e x p ( -  t~)y)I,=0, s c E t), y E H ;  

and also from the right by 

d 
( f*~) (y )=-~ f (yexp( - t~ ) l ,=o ,  GEl), y E H .  

The left action extends to the natural isomorphism of the universal enveloping 

algebra ~ of l)c with the algebra of right-invariant differential operators on H. 

The right action extends to an anti-isomorphism (reversing order  of products) of 

�9 with the algebra of left invariant differential operators on H. Since we are 

dealing with right Haar measure in this paper, group convolution is defined by 

(f, * fz)(h') = f ,  f,(h'h-1)fz(h ) dh 

with dh = right Haar measure. Several straightforward computations show that 

(2.10a) 12*(f ,*f2)=(a*fO*f2 ( f ,* f2)* f~=f ,*( f2*a)  

(2.10b) l-l, * (f * 122) = (12, * f )  * 122 

for 12,12,, 122 E �9 

2.11 LEMMA. Let H be NA or NAM, {~, .  �9 -, ~k} an orthonormal basis of the 
Lie algebra 3 of Z, and ~ = - Z ~ E ~. Define 

a: H--->R* a ( z , x ,a , ,m)= r. 

Then if f E C~2)(H) we have 

(i) ~ * f  = A(f), 

�9 -== I 2 x a f t )  V : R  
(ii) f [ ~ 'x  a(/) r ~ R .  

PROOF. We check the case F ~ R; the case F = R is even easier. Z = Im F has 

orthonormal basis {e~,. . . ,  ek} with exp(E c ,~ )=  Y~ c,e,. Therefore  
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d2 
(~. * f ) (z ,  x, a,, m)  = - ~. - ~ f ( ( -  te, O, 1, 1)(z, x, at, m))I ,=o 

d 2 
: - ~ -d-~f(z - te,,x, a,, m)[,=o 

= A(f)(z,  x, at, m) .  

On the o ther  hand  

d 2 
( f  * "~) (z ,  x, ar, m ) = -- ~ - ~  f ( ( z ,  x, a., m ) ( -- te .  O, 1, l)) I,=o 

d 2 
= - ~ - ~ f ( z  - tr2u(m)e,, x, a,, m)I.,=o 

= r4A(f)(z, x, a,, m) .  q.e.d. 

In order  to simplify notat ion,  let us agree  to write for  s => 0 

(2.12) A " * f = A ~ ( f )  and f * h  ~= { a ~ ' x A s ( f )  
F = R  

( a4~ • F ~ a .  

Observe :  if f E C~(H) ,  so is a '  • f for  any p =>0. Thus  both  A ~ * f  and f *  A s are 

well-defined in L2(H). 

2.13 PROPOSmON. Let H denote N A  or NAM,  s >0. Then the pseudo- 

differential operators 

have L:(H)-closures, from 

operators satisfying 

f - - ~ M , f  f - - ~ f , A  �9 

the domain CT(H) ,  that are positive self-adjoint 

(2.13a) AS * ( f , * f 2 ) : ( M  *fO*f2 ( f , * f 2 ) * A ' : f , * ( f z * M )  

(2.13b) A s * ( f *  A')  = (A s * f ) *  A'. 

PROOF. The  essential  se l f -adjointness  and posit ivity follow f rom Proposi t ion  

2.6, the definition (2.12), and the fact that  "d i f fe ren t ia t ion"  by A ~ c o m m u t e s  with 

mult ipl icat ion by a p. L e m m a  2.11 says that  f - -*  A ~ * f  is r ight- invariant  for s = 1; 

so now the ent i re  1 -pa rame te r  s emig roup  is right invarinat ,  thus proving  

A s * (fl * f2) = (A s * f 0  * f2. Similarly (ft * f2) * A ~ -- fl * (f2 * As). Equa t ion  (2.13b) 
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holds by the previous  established invariance propert ies;  or by the observat ion 

that both sides are equal to oe "' • A '* ' ( f ) ,  p = 2 or 4 depending  on F. q.e.d. 

Next recall the usual involution f - - * f *  of L , ( H )  given by 

f* (h  ) = f ( h - ' ) 6 H ( h  ) ". 

If we put p = 2 d i m ~ l m F +  dimaF",  then by (1.14) we have 6 N a M ( z , x , a , m )  = 

6 N A ( z , x , a ) =  ~ " ( a ) .  Now we come to a key identity. 

2 . I4  PROPOSITION. (A' , f ) *  = f* . A ' .  

PROOF. Once  again we consider  the case F / R, the case F = R being similar. 

In fact it suffice to prove 

(2.15) k" * f*  = c~ 4, x [A'(f)]*.  

For  (2.12) and (2.15) combine  to give 

f * * a "  = x ( a '  , f * )  = , 4 ,  x , - 4 ,  • W ( f ) ] *  

: ( a '  �9 f ) * .  

We proceed  to the p roof  of (2.15). First note  that (z ,x ,  ar, m ) - ' =  

( - r - 2 v ( m ) - l z ,  - r  ~>(m)- 'x ,  aT', m '). Calculating as in L e m m a  2.11, 

d 2 . 
( A * f * ) ( z , x ,  ar, m )  = - ~ - ~ s f  (z  - t e , , x , a , m ) t , = ,  

d 2 _ 
= - ~_, - d ~ f ( - r  2 v ( m )  '(z - t e i ) ,  - r - ' t x ( m )  'x, a; ' ,  m ')r -p 1,=~, 

d ~ = - r - 4 ~ .  - ~ f ( - r - 2 v ( m ) - ' z  +tv(m)-~e~, - r  l].~(~.~)-lx, a: ' ,  m-~)r -" !, o 

= a ( a , ) - ' ( A  * f ) ( ( z ,  x, a,, m ) - ' ) a  (a , ) -P  

= { a - ' x  h( f )* } ( z , x ,  a,, m ) .  

That  proves (2.15) for s = 1 and it follows for s _-> 0 as in Proposi t ion 2.13. q.e.d. 

We now specialize to the opera tors  D on N A  and E on N A M  defined in (2.5). 

They  are positive multiples of h q/2 where q = k +�89 The  modular  function 

satisfies 

a ( a )  q F = R 

6 N A M ( Z ' X ' O ' m ) = ~ N A ( Z ' X ' a ) =  a ( a )  ~q F / R .  
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Therefore equation (2.12) specializes to 

(2.16) f * D = 6NA X (D * f )  on N A  f * E = aNAM • (E * f )  on NAM.  

It follows by an approximate identity argument that the operators D and E are 

semi-invariants of weight t5 in the sense described in w 

Finally let us note that D and E behave as expected under restriction of a 

function from N A M  to NA. First right-invariance and a glance at (2.5) give 

(E ~ *f)INA = (tOk 1)'D' *(f  IRA). Now by (2.16) and (2.13b) 

{ E  s * f * E ' }  IN A = ( E  s , { (~ t  X ( E '  *f)})IN A 

= (wk 1)'D s * {3'  x (E'  * f ) }  INA 

= (Ok l)S+'D s * {r X ( D '  * (f IN A )} 

= (w~-,)'+'D ~ * f  Ira *D' .  

In particular for s = t = l, we have 

(2.17) {Em * f * E ''2} INA = g-Ok 1D'/2 * f IrA * D m, 

which we need for w 

3. P l a n c h e r e l  f o r m u l a  for N A  

In this section we use the pseudo-differential operator D to derive the 

Plancherel formula for the group NA. We begin with the following fact. 

3.1 LEMMA. Let 0 ~ A  ~3"  and [y,] the corresponding class in 1V. Then 

(3.1a) Z r y , ( f ) =  (27r)mllA[I-'/2fz f ( z ) A ( z ) d z ,  f E  CT(N). 

This formula is certainly known to specialists (see e.g. [9, p. 9]). But we wish to 

use a slightly more general result, and for that reason we recall the proof. One 

realizes y, as a monomial representation (induced from a real polarization), 

obtains y, (f) as a kernel operator, then computes Tr y~ (f) by integrating down 

the diagonal. The formula (3.1a) follows then by a simple calculation. But this 

calculation is fo rma l - -  one must prove separately that for f E CT(N), y~ (f) is in 

fact trace class. This can be done in various ways. One method is to use the fact 

that there exists an element 12E 9~ such that y,(12)-1 is trace class for all 

A E ~* - {0}. Then T,(f) = y, (f~)-~y, (12f) is also trace class. But we see then that 

the assumption f ~  CT(N) is excessive. On one hand (3.1a) is valid for any 

function on N which is sufficiently differentiable and sufficiently rapidly decreas- 
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ing at infinity. On the other hand if f is a continuous positive-definite integrable 

function whose restriction to Z is also integrable, then it follows already from 

the formal calculation that the positive operator T~(f) must be trace class and 

(3.1a) is again valid. It is in this latter extended sense that we shall apply 

Lemma 3.1. 

In the remainder of this section expressions such as D l/2*f* D 1/2 and 

D ~ / 2 * f * f * * D  m will occur. They are well defined by Proposition 2.13. 

Here is the key lemma of w 

3.2 LEMMA. Let 0 r h E ~* and r h = Ind~ A TA. I f  49 ~ CT(NA),  then the 
operator rl, ( D m ,  49, D ,2) is trace class and 

(3.2a) Tr rh (D1/2 * 49 * O'/2) = (2~') -k 490 r~T~l dr, 

where 490 = 49 Iz and $o(X)= fz49(z)a(z)az .  

PROOF. By Duflo's factorization theorem [1, pp. 250f] we may write any 

49 E C : ( N A )  as a linear combination of functions of the form tO * @*, where 

tO E C~P)(NA) and p is as large as we please. Thus it suffices to prove the lemma 

under the assumption that 49 = tO* ~*, 6 E C~P)(NA), p large. Indeed by 

Proposition 2.14 and Theorem 2.7, we can choose p large enough so that 

D I / 2 *  49 * D ' /2  = D ' / 2 ,  to * to* * D '/2 

= (D"2* to)* (D 'n* tO)* 

is a continuous positive-definite integrable function. 

Put f = D 1/2,49, D 1/2, 49 = tO * tO*. We realize the positive operator r/A (f) as a 

kernel operator. To prove that it is trace class, it is e n o u g h - - b y  the posit ivity--  

to show that the integral down the diagonal is finite. This we do by an explicit 

evaluation. It is possible to achieve this by realizing r h as a monomial 

representation (see e.g. [6]). It is easier and more direct, however, to use the 

realization ~/~ = Ind~ a T~, Lemma 3.1 and the formula for the trace of an induced 

representation found in [7]. Indeed, a direct application of [7, theor. 3.2] yields 

(The hypothesis of compact support in [7] is unnecessary; continuity and 

integrability will suffice.) Now the function n ~ f ( a - l n a )  is one to which the 

comments on Lemma 3.1 apply. Therefore we obtain 
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T r r h ( f ) =  fa 6(a)'(2rr)'/2IIAtl-'zzfz f(a-'za)A(z)dzda. 

If F = R we compute 

Trr/A(f)= fa fz f(z)A(a 'za)dzda 

f+ = f,,(rA ) d_r 

= f,, r - -  

r 

using the fact that 

f,,(Y) = (D '/2. 4) * D'/=),~(Y)= (D~b)~(y) 

= (2~-) k (A"%) , ; (y )=  (2~-)-k[[y II%,,(y) 

(see (2.5a) and (2.16)). 
In the other case F / R ,  we have 

T r  r/A (f) = fa a(a)-eq(2.rr)'/2ttA tt-"z f~: 

o~(a) "(27r)"~HA ll-"= f= 

f(a -'za )A (z) dzda 

f(z )A (aza -') dzda 

f+ ,(rS~) d_r = r- '(27r) ' /211A I/-'/2~ r 
i 

I f + [[ .~ dr -- ~ , r-"=(2,-,-)"=ll.~ f,,(rA ) r 

= ~f+ _,,+(2~.),,=/,,( A'~dr 

= (2~')-" f, qbo~r~-~-~jr dr, 

this time using the fact that 

(see (2.5b)). 

)~,(y) = (D~b)(~(y)= 2(27r)-(k+Y)(Aq/2O),~(y) 

= 2(2rr)-(k++"l[ y [[+~,,(Y) 
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To finish the proof it suffices to observe that, if p is chosen large enough, the 

right side of (3.2a) is an absolutely convergent integral. 

It is now a simple matter to derive the main result of the section, the 

Plancherel formula for NA. 

3.3 THEOREM, Let D be the pseudo-differential operator on N A  defined in 

(2.5a). Then for any 05 E CT(NA ) we have 

(3.3a) 05(1NA) = f~, , Trr/A(D'n*05 �9 D'2)  do-(A), 

where cr is the standard volume element on S ~-J. 

PROOF. We know by Lemma 3.2 that the integrand in (3.3a) exis ts - - in  fact it 

is a C ~ function of A in S k-'. Thus the integral is absolutely convergent, and we 

may compute 

fs~ , * O'/2) d~(A) Tr rh (D 1/2,05 

=fs~, (2rO-k f f  '~~ )rk-l drd~ ) 

= (2~-) ~f.k 8,,(y)dy 

= 05,(0)= 05(1NA). q.e.d. 

Before concluding this section we recast formula (3.3a) into the shape of 
formula (1.8). Indeed by (2.16) we can rewrite it 

05(1~a) = f ~ ,  Trrl~(D(6'/205))do'(A), 0 5 E C T ( N A ) .  

Replacing 05 by 6 ~"05 we get finally 

(3.4) 05(lNa) = fs k , Trr/~(D05) do-(A), 05 ~ CT(NA) ,  

which is the Plancherel formula given in [6]. In [6], the facts that D05 E L , (NA)  

and r/~ (D05) is trace class were refered ahead to this paper. The first, of course, 

comes out of Corollary 2.8. For the second, rh (D05) = r h (D 1/2,6-1/205, D 'n)  

and 6-1/205 E CT(NA) ,  so Lemma 3.2 shows that it is in fact true. Either of (3.3a) 

or (3.4) may be considered to be " the"  Plancherel formula for N A :  (3.3a) is 

perhaps preferable because of its similarity to the abstract Plancherel formula 

(1.5); on the other hand, one is probably more "comfortable" working with (3.4). 
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4. Piancherel formula |or  N A M  

We now use the technique of group extension representations (as in [7, w to 

derive the Plancherel formula for N A M  from that of NA. We shall see that the 

pseudo-differential operators D and E are well-suited to this technique. We go 

immediately to the statement of the main result. 

4.1 THEOREM. 

(2.5b). Then for any & E C~(NAM) we have 

~ Tr (rr ~ + O rr : ) (E  ~/2, & ,  E ~/2) dim r 
r E ~ l '  

(4.1a) &(1NA~) = 

Tr 7r. (E ~,2,6 * E ,2) dim r 
rE-/~ 1 

Let E be the pseudo-differential operator on N A M  defined in 

k = l  

k > l .  

PROOF. We assume that k > 1 in the following. First let 0 E CT(NAM) and 

suppose ~b = ~b * 6".  Let 0 = q5 INA. We perform the following series of calcula- 

tions, the justifications for which we provide later. 

fN IO] 2= qS(I~AM) = 0(1NA) 
A M  

(4.2) = fs ~ , Tr r/A (D , 2 , 0  * O 1/2) do-(A ) 

(4.3) = fM Tr rim A, (D 1/2,0 * D 'n)w~ ,dm 

(4.4) ,','AM .2 ,n) =TrlndN~ rh,(E *~b*E  

o 
(4.5) = t r  ~ di rer  7 r , (Em*~b*E L/:) 

, rE /~  I 

(4.6) = ~,, d i m r t r T r , ( E ' / 2 , & , E  '/2) 

(4.7) = E II~'-( E' '2* th)l[~ dimr. 

Assume for the moment we have justified all the steps (4.2)-(4.7). It follows 

then that for any 4, E CT(NAM) we have 

f~ I~l ~= Ilrr.(E"2*~)ll~dimr. Z 
A M  rElY41 
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Now the test functions are L2-dense in the domain of E "2, and therefore the 

same equation holds for any compactly supported, sufficiently differentiable 

function 6 on NAM.  But any ~b E CT(NAM) can (as usual) be factored into a 

linear combination of convolutions of such func t ions- -and  thus we conclude 

that (4.1a) is valid for all test functions ~b E CT(NAM).  
It remains to substantiate (4.2)-(4.7). Equation (4.2) is merely a quotation of 

Theorem 3.3. Equation (4.3) is valid because (in case k > 1) M acts transitively 

on S k-1 and leaves the volume element invariant. The constant oJk_, occurs 

because dm is normalized, whereas do'(h) is not. Equation (4.6) is a simple 

consequence of the positivity of all the operators zr~(El/2* cb * E'n). This comes 

about because E 1/2,4' * E 1/2 = (E , /2 ,6)  * (E 1/2,6)* is positive-definite (Propo- 

sition 2.14 again). Equation (4.7) is obvious. That leaves (4.4) and (4.5). 

Equation (4.5) is a consequence of the representation-theoretic fact: 

I n d ~  ~ ~7~, ~ ~ (dim r)~-,. 
,r ~ A;/1 

(A proof of this can be found in [7, p. 470], where the unimodularity assumption 

is unnecessary.) Finally (4.4) follows from the trace formula of [7]. In fact if we 

use &,,~ [NA = ~5NA, ~N,~M IM ------ 1 and the equation (2.17), then an application of 

[7, theor. 3.2] yields 

NAM * 4~ * E Tr IndNA "l"lxl(E 1/2 i/2) 

( E ,/2. cb * E 1/2) ( m l narn )rh, ( na ) dnda ]dm 

oJk ,(D ,/2.0 * D ,/2) (na)rl~ ~ (mnam -1) dnda ] dm 

= fM Trr/m'~'(D~/2* 0 * D'2)oJk-, dm. 

That concludes the proof in case k > 1. The case k = 1 is proved in an entirely 

analogous fashion, using that M acts trivially on the two point space S~ we leave 

the details to the reader, q.e.d. 

It is of interest to examine the operators ~7~(D) and zr,(E) as these are the 

unbounded operators D~ in the abstract formulation of the Plancherel Theorem 

1.1. First of all they must be de f ined- -a t  least generically. This is because the 

operators f ~ D f  on NA and f---> E f  on N A M  commute with right translations. 

As such they are affiliated with the left ring and have "infinitesimal values" 

almost everywhere with respect to Plancherel measure. Second they can actually 
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be computed as follows. Since D 2 E  9~?I, rl~(D 2) may be computed in the usual 

manner (i.e. by differentiating the representation and extending to the envelop- 

ing algebra). The result is a positive essentially self-adjoint operator on the space 

of r/, for which we can easily compute the square root. Similarly with Try(E). 

All the computations are straightforward; here are the results. Let 0 ~ h E 8" 

and denote Yf(A) a Hilbert space on which 7~ acts. Then rt, = Ind~A~,, may be 

realized on 

;]((rt, ) = If: N A  --+ 9g(h), f (ng)  = 7~(n)f(g), n E N, g C NA,  

fA ]lf(a)[[2 da < ~}" 

A simple computation yields 

r l , (D) f (na)= A , (D)8(a) f (na) ,  f E  ~ ( ~ )  

where Z ,  is defined as follows: It's given on 8 by A(exp~r = e *-~), s c E 8, and then 

extended by the functional calculus to continuous functions on 8. More precisely 

if so,, -..,s~k is an orthonormal basis of ~, e,=exps~,, and - A =  

a-'/ae~ + �9 �9 �9 + O.:/Oe~, then 

a . ( D )  = 2"~na'(2rr)-q ( - a ,(so,) 2 . . . . .  a.(~k)2) q/2. 

Notice that A , (D)  is a positive number and that r l , (D)  is a positive operator.  

From the general theory [4, theor. 6] one knows that if we realize r/, as induced 

from an irreducible representation of the kernel of the modular function (as we 

have done here), then in that realization rI~(D) m u s t - - u p  to a constant 

depending on A - - b e  multiplication by the modular function. Thus in our 

realization the constant turned out to be A , (D) .  Note also that if a E S k-', then 

A . ( D )  is the absolute constant c~.~ = T~~ k. 

Similarly if we realize the space of rr. as 

2t'(rr.) = {f: N A M  --, N(r/,,) @ N(r ) ,  f (nam,g)  = [~,,(nam,)@ r(m,)]l:(g), 

nam, E NAM, ,  g ~ NAM.  f . I ] f (m  )ll2 dm < ~}, 

then one readily computes (of course using the M-invariance of D)  that 

rc,(E)f(nam) = w~ ,ck,8(a)f(nam), f ~  Yg(rr,). 

It is worthwhile to compare these da~a with the D; found in [5], [2]. 

Finally let us conclude the paper by discussing the question of uniqueness for 

D and E. First consider NA. D is uniquely determined by our normalization of 
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Haar  measure on the group and by the specific choice (within its equivalence 

class) of the volume element on S k ~. If we allow these measures to vary, then 

one knows from the general theory [7, theor. 6.4] that D can be modified by any 

positive self-adjoint invertible operator  C which is affiliated with both the left 

and right rings of the group. Indeed if C is any such operator,  then r/A(C) = cAL 

cA > 0 and the Plancherel formula becomes 

&(1NA) = fs~_ ' TrT/,(CD4~) dor'(A) 

where do"(A)= c~'do'(A). 

Now unfortunately there may be many such C's. For instance let D~ be a 

differential operator  on N A  given along Z by any homogeneous differential 

operator  of degree k + �89 such as (a/c~e~) k*�89 By virtually the same computation 

as that of ~ , (D) ,  we find that 

B , ( D , ) f ( n a )  = A , ( D , ) 6 ( a ) f ( n a ) ,  f E  W ( n * ) .  

Thus D, = C D  where r/, (C) = A ,(D~)/A , (D) .  In particular then one can replace 

D in the Plancherel formula of N A  by an element of the enveloping algebra. 

On the other hand, when we pass to the group N A M ,  operators such as D~ 

above are not M-invariant and so cannot be semi-invariants of the group. Thus 

we are left with a question: Can one change E to a differential operator  

E1 = C E  in the Plancherel formula? It is easy to see that, in the cases F = R, n 

even, and F = C, n arbitrary, one can. We think it unlikely that such a change 

could be effected in the remaining c a s e s - - b u t  we have not succeeded in proving 

that. 

REMARK. There already is an example of a non-unimodular Lie group G for 

which no element D can be found in 63 to satisfy (1.8). That such a phenomenon 

occurs can be deduced from [3, w where a simply connected solvable Lie 

group G is constructed having the property that no polynomial function on g* is 

semi-invariant of weight 6 6 - - i n d e e d  not even of weight 6~, for any positive 

integer p. 
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