
SETS OF CONSTANT WIDTH IN FINITE 
DIMENSIONAL BANACH SPACES 

BY 

H. G. EGGLESTON 

ABSTRACT 

In Euclidean space a set of constant width has the property that it is not a 
proper subset of any set of the same diameter. The converse implication is 
also true. Here we show that if Euclidean is replaced by n-dimensional 
Banach space the direct statement is true, but the converse statement is false. 
Attention is drawn to the problem of characterising those Banach spaces 
of finite dimension for which the converse is true. 

Introduction. In Euclidean n-dimensional real space, a set X is said to be of 

constant width, if and only if, it is convex, compact, and the distance apart of any 
two parallel support hyperplanes is constant (i.e. the same whichever pair of 
parallel support hyperplanes we consider). A number of equivalent properties 
are known of  which the most important (in Euclidean space) is that a set X is of 
constant width if and only if it is complete, that is to say, if Y is a set of which X 
is a proper subset then the diameter of Yexceeds that of X. Instead of"complete" ,  
which is used in many other ways, we shall use the phrase "diametrically maximal". 
[4] 

The object of this note is to develop analogous properties in n-dimensional 
Banach spaces [see 2.3]. In particular we show, in contradiction to accepted 
belief [see 1 ], that the concepts "constant width" and "diametrical maximality" 
are not equivalent in every Banach space. It is always the case that constant width 
implies diametrical maximality. The reverse implication is not necessarily true 
even when the unit sphere of the space is both smooth and rotund. It is not easy 
to see what conditions on the space will ensure equivalence of these two concepts 
but a simple example can be given of  a non Euclidean space in which this equi- 
valence holds. Many of these equivalent conditions have been known previously 
(See [2]). 

Notation. Denote an n-dimensional Banach space by B" and its unit ball by S. 

For two parallel hyperplanes nl, n2 in B n the width between nx and n2 is twice 

the largest number 2 such that a set obtained from 2S by translation is contained 
in the strip bounded by nl and nz-A convex compact subset X of  B n is of constant 

width if and only if the width between each pair of parallel support hyperplanes 
of  X is constant. We shall use the phrase " o f  constant width"  to imply that X 
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is convex and compact. The vector domain of a set X, denoted by Xv is the set 
of all vectors of the form xl - x2 where Xx and x2 vary indopendently in X. We 
use + between sets to denote vector sum. Thus Xv = X + ( -1 )X .  Also the 
width of A + B between two parallel support hyperplanes n~, It 2 is the sum of the 
widths of A and of B between corresponding pairs of hyperplanes all parallel to 
ltl and it 2. Finally (A + B)v = Av + By. 

Except where the contrary is expressly stated every set is assumed to be convex 
and compact and to contain interior points. 

The origin of B n, the centre of S, is denoted by 0. We use the same symbol 
for points and for vectors. The symbol xy will be used either for the line xy or the 
segment xy or the length of the segment xy. 

We shall use B(S) to indicate the Banach space with the central convex set 
S as its unit sphere. 

1. Some properties equivalent to "constant width". 
(A) X (assumed to be convex and compact) is of constant width if and only if 

for some 2 > 0 X v = 2S. 
If X is of constant width then so are ( -1 )X and Xv = X + ( - 1 ) X .  In any 

case X v is central thus it is sufficient to prove that a central set of constant width 
is a sphere. These two properties of Xv mean that for some fixed 2 > 0, 2S is 
supported by each pair of parallel support hyperplanes of Xv. Since a convex 
compact set is uniquely defined by its support hyperplanes, X v is 2S. 

On the other hand if X v is 2S then X v is of constant width. But the width of 
X between any pair of parallel support hyperplanes 7q, n2 is equal to the width 
of ( -1 )X between support hyperplanes parallel to 7t I and 7~2, and thus is half 
the width of Xv between two support hyperplanes parallel to ~ and n2. Hence 
X is of constant width. 

(B) A subset X of B" has the support intersection property if, and only if, 
given any pair of parallel support hyperplanes n~ and n2 of X, and one of the 
support hyperplanes of S, say ~r, parallel to nl and It 2, then to any point p ~ n n S 
we can find x ~ n l r ~ X  and x2en 2 n X s u c h  that line x~x2 or x2x~ is parallel 
to the line op. 

X is of constant width if and only if it has the support intersection property. 
If X is of constant width then for some 2 > OX v = AS. Given nl,n2 and n all 

parallel hyperplanes of which the first two support X and the last S, let p ~ n n S. 
Then 2p e Xv and thus 2p = x~ - x2 where xx ~ X, x2 e X. Also x~ and x2 belong 
one each to n~ and ~2 (for 2p is a frontier point of Xv and there is a hyperplane 
of support to Xv at 2p parallel to n). Thus X has the support intersection 

property. 
Support next that X (assumed to be compact and convex) has the support 

intersection property. Let p be a point of the frontier of S, and let the half ray 
terminating at 0 and containing p meet the frontier of X v in q. If the hyperplane 
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supports S at p then 3 xt,  x2 on the frontier of X such that line xlx2 is parallel 
to op and there exist hyperplanes supporting X at xl,  x2 and parallel to n. By 
definition X v contains the point xl - x2 and it is a frontier point of X r (hence 
it is q or - q )  through which passes a hyperplane parallel to n supporting X v. 
Thus S and X v are two central convex sets such that any half ray meets their 
frontiers at p and q respectively and if p lies on support hyperplane n of S then q 
lies on a parallel support hyperplane, of X v. We show that this implies that for 
some 2 > 0 Xv = 2S. 

It is convenient to consider B" as represented in Euclidean space E" with an 
appropriate metric. 

It is sufficient to show that if 0 Plq t and 0 P2q2 are two half rays terminating at 
0 with PD P2 on the frontier of S and qtq2 on the frontier of Xv then 0 Pl [0 ql 
= 0 P2 /O  q2. The plane , = plane of o PlP2, o qlq2 meets S in a set say S' and 

¢ 

X v in a set X~. The sets S', X v as two dimensional convex sets have the same 
property as do S and Xv. For if p is any point on the frontier of S' in z and 
h is a support line to S' at p in z, then there exists a support hyperplane nx to S 
at p meeting z in h. If  o p meets frontier of Xv in q then there exists a support 
hyperplane of Xv at q parallel to nl and thus meeting z in a line parallel to h. 
This line supports X~, at q. In what follows for the remainder of this paragraph 
we consider only subsets of z. Select a fixed half line ox through o and measure 
angles in a fixed sense from ox. Let h(O) be the half line through o making an angle 
0 with ox. 0 is the angle in E" which with the appropriate metric represents B ". 
Let h(O) meet the frontier of S' in p(O) and that of X~, in q(O). Denote the length 
(in E") op(O) by f(O) and oq(O) by g(O). Then if 1 0 1 -  02[ < n and 
K = sup f(0), 

f(0a)sin 101 - 02 I 
(1) If(00 - f(02)I < p(OOp(02) = I sin/0 p(01) p(02) l 

K]Ot - 0 2 [  
< sin/op(Oa)p(02)l" 

The angles [op(O1)p(02) are such that there exists 6 > 0 with the property that 
[ 0 1 - 0 2 [  < 6  implies [sin/op(OOp(02)l > 6 .  It follows from (1) that f (O) is  
absolutely continuous. Similarly so is g(O) and finally f(O)/g(O) is absolutely 
continuous, f'(O) and g'(O) both exist for almost all 0. 

The condition of parallelism of the support lines at p(O) and q(O) implies that 
for almost all 0 

f'(O) g'(O) 
f(o) g(O) 
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i.e. f(O)/g(O) has a derivative equal to zero almost everywhere. Thus f(O)/g(O) 
is a constant. 

This implies that Xv = 2S i.e. X is of constant width. 

(C) The coincidence normal property 
We say that a line h is normal to a hyperplane ~ if there is a sphere whose center lies 

on h, whose frontier passes through p, the unique point of  intersection of h with 
n, and which is supported by rc at p . ( I t  is always assumed that h does not lie in 7r). 
If  p is a frontier point of the compact convex set X then h is a normal to X at p 
if and only if h is normal to at least one of the support hyperplanes of X at p. 

X is of constant width if every two parallel normals of X coincide. 
The coincidence of every two parallel normals of X implies that X has the 

support intersection property and therefore is of constant width. 
The converse of this result is false. Indeed, if S is a non-rotund convex set then 

there exist non-coincident parallel normals to S in B(S) and S is certainly of cons- 
tant width in B(S). On the other hand if S is rotund and smooth the reverse 
implication is true. 

I f  S is rotund and smooth and X is of constant width then every two parallel 
normals of X coincide. 
Since S is rotund and 2S = X v it follows that X is rotund. Let NI, N2 be two 

parallel normals of X. Select p on the frontier of S such that op is parallel to 
NI and N2. Let n be the support hyperplane of S at p (n is uniquely defined because 
S is smooth). Since X has the support intersection property we can find two points 
of X, x~, x2 one each on the two support hyperplanes of X parallel to re, such 
that the line xlx2 is parallel to op and thus to N~ and N2. If  the lines N~, N2 do 
not coincide at least one of them does not coincide with xl x2. Suppose that 
N1 is distinct from xlx 2. By the definition of normality and the smoothness of 
S, N~ is normal to a hyperplane of support of  X parallel to zq and z~2, say rq. 
But then rq contains two distinct points of X and X is not rotund. A contradiction 
which establishes the required result. 

(D) The spherical intersection property 
Let S(p, r) be the sphere of B n obtained by applying the translation 0 to p to 

the sphere rS. 
For any set X (compact and convex) let the diameter of X be D(X) and define 

the set Xs  by 
X s = f~ S(p, O(X)). 

p c X  

In any case Xs ~ X. We shall say that X has the spherical intersection property 
if and only if Xs = X. 

I f  X is of constant width then X has the spherical intersection property 
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If  p ~ X there exists a hyperplane n separating p from X. On the two parallel 
support hyperplanes of X, 7zl, Ir2 there is a point q of X on that one of these 
hyperplanes most distant from X. The strip bounded by nln2 contains a sphere of 
radius ½D(X). Thus S(q, D(X)) is separated from p by re. Hence p ~ X s and we 
have Xs c X .  This establishes the required result. 

In Euclidean space the converse implication is known to be true see [4], but 
this is no longer the case in Banach spaces generally. For example let U be a 
regular tetrahedron in 3 dimensional space. Uv is a polyhedron with 8 triangular 
and 6 parallelogram faces. Now let K be a central polyhedron with centre 0, 
containing Uv but such that the 8 triangular faces of Uv lie in the frontier of K, 
and such that K is not Uv. 

In the Banach space B(K), U is not a set of constant width since U v ~ 2K for 
any 2 > 0. On the other hand if the vertices of U are a, b, c, d then the set obtained 
from Uv by the translation 0 to a, contains U and lies so that the face bcd forms 
the translate of one of the triangular faces of Uv. It follows that 

v = f l  Vv(p,  1) 
p=a,b,c,tl 

and the same is true with Uv replaced by K. Thus U ~ Ux, U has the spherical 
intersection property in B(K) but is not of constant width in B(K). A particular 
case is that in which K is a regular octohedron. 

It is natural to suppose that this situation arises because K is either not smooth 
or not rotund or both. A slightly more difficult example shows that this is not 
the case. Before explaining this example we introduce the last property. 

(E) The diametrically maximal property 

A set X is diametrically maximal if and only if p ~ X implies that D(p WX) > D(X). 

A set X is diametrically maximal if and only if it has the spherical inter- 
section property. 

If  Xs = X and p ~ X then p (E Xs and thus p ~ S(q, D(X)) for some q e X. 
Hence pq > D(X) and D(p L) X) > D(X). 

I f  X is diametrically maximal and p e X s  then D(p u X ) =  D(X) . ' .  p e X .  
Thus Xs c X and X has the spherical intersection property. 

I f  X is of constant width then X is diametrically maximal. The converse 
implication is not universally true. 

This follows from (D) and the immediately preceding result. 
A set X is diametrically maximal if and only if every frontier point of X is 

distant D(X) from at least one other point of X. 
If  Xs  = X then a frontier point x of  X is a frontier point of  S(p, D(X)) for some 

p e X for otherwise by compactness x would be an interior point of Xs. 

If  Xs ~ X then 3p e Xs,  p ~ X. Let q e interior of X. Then pq meets frontier 
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of X in a point x that necessarily belongs to the interior of X and hence of Xs. 
Thus x is distant < D(X) from every point of X. 

2. An example of a space B(S) where S is smooth and rotund but there exist 
diametrically maximal sets that are not of constant width. We give next an example 
of B(S) where S is smooth and rotund and yet B(S) contains a subset X which 
is diametrically maximal without being of constant width. 

In three dimensional Euclidean space let a, b, c, d be four points all at the 
same (Euclidean) distance R from one another. Let X be the intersection of the 
four balls whose centres are a, b, c, d and whose radii are R. The set X is bounded 
by four portions of the surfaces of these balls and these four portions meet, in 
pairs, in six arcs each containing two of the four points a, b, c ,d and each of 
radius R,~/3/2. Of these arcs let that which joins a to b be v(a, b) and that which 
joins c to d be ),(c, d). Let p be the mid point of ~(a, b) and let q be the mid point 
of y(c, d). The points p, q, c, d lie in the plane which bisects perpendicularly the 
segment ab. Let line pq be perpendicular to  the line cd. Thus the plane ~r t 
perpendicular to the line pq and passing through q meets plane pqcd in a line 
tangent to y(cd) at q. It follows because of the symmetry of  X about the plane 
pdqc and the convexity of X that E~ supports X at q. Similarly a parallel plane 
~2 supports X at p. Thus p and q are diametrically opposite points 
of  X. 

Since the length of segment pq is R(~/3 - 1/a/2), and that of pd is R, the fact 
tha t /dpq  = lr/6 implies tha t /pdq < 7r/2. Thus the plane through d perpendicular 
to pd does not separate p from q and the parallel plane which supports X is at 
a positive distance from q. Since a similar argument applies with d replaced by 
c we conclude that there are positive numbers p, 6 such that if the frontier point 
x of X is within a distance p of p then x is diametrically opposite to some point 
whose distance from q is greater than 6. 

Given x E FrX let P(x) be the set of points diametrically opposite to x and 
f(x)  be the largest value of the acute angle made by pq with xy, y ~ P(x). (such 
largest value existing because P(x) is compact). Write 2( = i n f f ( x )  x efrX.  Our 
aim is to show that Z > 0. Suppose on the contrary that X = 0 and that {x,} {y,} 
are sequences of points such that y.e  P(x.) and the angle between pq and 
x,y, ~ 0 as n ~ oo. We can by considering appropriate subsequences assume 
that x, ~ x and y. ~ y as n ~ oo. Then xy is parallel to pq. There are parallel 
support planes to X through x and y. This is possible only if x, y lie on the support 
planes to X at p and q which in turn implies that x is p and y is q or vice versa. 
But then if the distance of x. from p is less than p that of y,  from q is greater 

than 6: this contradicts the fact that x. ~ p and y,  ~ q. Thus our assumption 
is false and in fact X > 0. 

Next consider Xv. Xv is rotund since X is rotund. Moreover Xv fails to be 
smooth if and only if there are two diametrically opposite points s~, s2 of  X and 
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two pairs of parallel support planes of X lh, n2 and z~, z 2 such that sl lies on both 
n 1 and z~ whilst s2 lies on both 7~ 2 and %. Two such points would necessarily 
lie either at the points a, b, c, d or on the arcs such as ~(a, b) which connect these 
points. If  s~ were a point of  arc 7(a, b) not a or b, then planes nlzt would intersect 
plane abq in a line 21 tangent to ~(a, b) at sl. Now plane abq meets the plane con- 
taining ?(cd) in line pq. If s2 lies in this last plane then since n 2, z 2 intersect in a line 
which both lies in this plane and is parallel to 2t it follows that 21 is parallel to pq. 
This is impossible because the centre of ~(ab) lies on segment pq and its arc length 

is less than n. Similarly if s2 lies on the plane containing arc ?(bc), then 21 and 22 
are parallel to the line joining b to the median point of  triangle acd. This is not 
possible. Similarly s2 cannot lie on arc 7(ad). It is obvious that s2 cannot lie on 
arc 7(ab). Thus this case cannot arise and we are left with the case when each 

of  sl, s2 is one of  a, b, c, d. Suppose for example that sl is a and s2 is b. The planes 
nt and n 2 through a and b respectively and both perpendicular to ab are support 
planes of X. Consider parallel lines 21, 22 through a and b respectively lying in 
n~ and in n 2. On at least one site of  the plane spanned by lines 21 and 22 there 
lies an arc ~(ax) terminating at a and lying both on the frontier of  X and on the 
frontier of  the ball centre b and radius R. The reflection of this arc in the plane 
that perpendicularly bisects ab also lies in X and terminates at b. But of  two 
parallel planes z~, z 2 one through each of 21 and 22 one at least must cut one of 
the arcs ~(ax) or its reflection. Thus of these two planes one at least does not 

support X. Hence a, b do not have the properties required of st and s2. Thus 

finally Xv is smoo th .  

Next construct for every ~/> 0 a compact, smooth, rotund, convex, central 
set K,  such that K, --~ Xv and the frontier of K~ contains the whole of the frontier 
of  X V except possibly some of the points whose distance from p - q  or q - p  is 
less than ~/. Also suppose that K,  is distinct from X. This is possible because of 
the smoothness and rotundity of X v. 

Now if ~/is sufficiently small every frontier point of X is distant D(X) from at 
least one other point of X where distance is measured in B(K~). (Because 
for some Z > 0 every frontier point x of X is diametrically opposite a point y of 
X such that the acute angle made by xy with greater than X). But then X is dia- 
metrically maximal in B(K~) without being of constant width. 

3. Miscellaneous remarks. We say that a Banach finite dimensional space 

B(S) has (i) property (A) if and only if every set in B(S) that is diametrically 
maximal is necessarily of constant width, (ii) property (B) if and only if every 
set in B(S) that is diametrically maximal is necessarily a sphere, (iii) property 

(C) if and only if every set in B(S) that is of constant width is necessarily 
a sphere. 

It is not easy to see what simple property distinguishes the spaces B(S) that 
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have property (,4) from those which do not have property (A), and in this para- 
graph a number of results are given which partially elucidate this problem. 

Let B(SI) and B(S2) be n-dimensional and m-dimensional Banach spaces 
respectively and let B(S) be the m + n dimensional Banach space whose unit 
sphere B(S) is the cartesian product of $I and of S 2. We prove the following lemma. 

LEMMA. I f  X is a diametrically maximal subset of B(S) then X is the cartesian 
product of two sets X 1 , X  2 such that X1 is a diametrically maximal subset of 
B(S1) and X2 is a diametrically maximal subset of B(S2). 

Suppose ( as we may without loss of generality) that D(X) = 1. We have by the 
spherical intersection property 

X = X s = ~ S ( x ,  1) 
x~x 

= ~ SI(XI, 1) x S 2 ( x 2 ,  1) 
XIXx2mxEX 

= (~ ' )S I (X l ,  1 ) ) X ( ~ S 2 ( X 2 ,  1)), X 1 X X  2 = x • X ,  

= fl Sl(xl,  1 ) x fl $2(X2,1) 
x t  ~ X I  x 2 e X 2  

where XI is the projection of X on B(S1) and X2 is the projection of X on B(S2). 
Now for any x e X ,  S(x, 1 ) ~  X and thus for x t e X  l Sl(xt, 1)D X I. Thus 

f~ Sl(xl, 1) ~ X i and similarly fl $ 2 ( X 2 , 1 ) )  ~ X 2. 
xl e x t  x2 e X2 

To complete the proof of the lemma we have only to show that X c Xt x X 2. 
Bur this is trivial since X 1 and X 2 are two projections of X. 

The lemma is proved. 

COROLLARY 1. I f  both of B(S1) and B(S2) have any one of the properties (A) 
(B) or (C) then B(S) has the same property. 

This is because the cartesian product of two sets X 1 in B(S~) and X 2 in (B(S2) 
which are both of constant width (or both spheres) is a set X in B(S) that is of 
constant width (or a sphere). 

COROLLARY 2. If S is a parallelopiped then B(S) has property (B). This 
follows from Corollary 1 because a linear Banach space has property (B). 

If  the subset X is of constant width in B(S) and if P~ denotes projection ortho- 
gonally (in the Euclidean sense) onto a two dimensional space zr then P~(X) is of 
constant width in B(P~(S)). The converse of this is true if P~(X) is of constant 
width in B(P~(S)) for every plane lr then X is of constant width in B(S). 

However a set X can be diametrically maximal in B(S) without it being true 
that P~(X) is diametrically maximal in B(P~(S)) for every plane zc. For, as we 
shall see, in any plane property (A) holds and thus if the above statement were 
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false, property (A) would hold for any finite dimensional Banach space. 
Thus a space B(S) fails to have property (A) if and only if there exists a subset 

X of B(S) such that (i) for every x e X the frontier of S(x, D(X)) meets X and 
(ii) for some x ~ X and some plane rc P~(S(x, D ( X ) ) n  X)  is contained in the 
relative interior of P,(X), whilst x belongs to the frontier of P~(X). 

Any two dimensional Banach space has property (A) 

We show first that if X is a diametrically maximal subset of the two dimensional 
Banach space B(S) then the set of  points of X that are diametrically opposite to 
x (denoted by P(x)) either consist of a single point or form an arc of the frontier 

of X. This is because 
(i) for each x ~ FrX, P(x) ~ ~ ,  and 
(ii) if y ~ P(x) then there exist parallel support lines of  X, one through each of  
x and y (for otherwise X would contain a segment parallel to and longer than 
segment xy, which is impossible as the length of segment xy is D(X)). 

Suppose then that y, z ~ P(x) and w lies on the arc yz of FrX that does not 
contain x. Since x lies on lines of support of X parallel to lines of support through 
y and z it follows that, every support line, parallel to a support line of X through 
w, must pass through x. Thus P(w) c x and by (i) P(w) = x. Thus w ~ P(x). 

Since P(x) is closed the stated result is proved. To complete the proof  of the 
lemma let 21, 22 be any pair of parallel support lines of X. Take x~21 n X. 
If  P(x) did not meet 22 n X we could find a point w of  the frontier of  X lying in 
that arc between 22 n X and P(x) which does not contain x. Then by an argument 
similar to that above w ~ P(x). It follows that P(x) does in fact meet 22 n X. 
Thus on 21, 22 there are points of X whose distance apart is D(X). This implies 
that the support lines of Xv coincide with those of D(X).S. Thus finally Xv is 
D(X).S.i.e. X is of  constant width. 

The lemma is proved. 

In the first example of a space that was a finite dimensional Banach space 
and which did not have property (A), we considered B(K) where K was a central 
convex set obtained by modifying the vector domain Tv of  a regular tetrahedron 
T. In fact the space B(Tv) itself does not have the property (A) because it has 
at least one vertex lying on four distinct edges of Tv. This follows from the lemma 

below. 

LEMMA. The space B(S) does not have property (A) when S is a 3 dimensional 
polyhedron of whose vertices at least one lies on at least 4 edges of S. 

Let a vertex as described be x. Then there are two 2 dimensional faces of  S 

say rq and r~2 both containing x and meeting in a line 2 which meets S in the 
point x only. There is a support plane n of  S such that ~t ~ 2 and ~t n S is the 
single point x. A plane n(~) parallel to n, distant r/from n and lying on the same side 
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of n as S meets S in a polygon of  which two sides are parallel to 2 (provided ~/ 
is sufficiently small). Select points x~ and x2 on the relative interiors o f  these 

two sides. Let S~ be the set obtained from S by the translation x~ - x2. The set 

S~ n S has g(r/) as a support plane and in this plane a segment s parallel to 2. 

The segment s together with the points 0, x~ - x2 form a set of  diameter 1 and 
therefore a subset of  a diametrically maximal set Y. Now Y contains 0 and 

xl - x2. Thus Y is contained in S and in S~. Thus ~(~) is a support  plane of  Y. 

Hence Yv meets the support  plane parallel to n in a set of  dimension at least 1. 

Thus Yv ~ 2S and B(S) does not have property (A). 
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