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ABSTRACT 

A topological and a geometrical-topological property, previously known 
only for normed linear spaces, are established here for much more general 
classes of topological linear spaces. 

Introduction. Throughout the present paper, E and E' will denote topological 

linear spaces (real scalars, separation axiom assumed). A convex body in E or E '  

is a convex set which has nonempty interior. Our two main results are as follows. 

THEOREM A. I f  E is infinite-dimensional and admits a countable family of 
open (or closed) convex bodies whose intersection consists of a single point, then 
for each point p of E the spaces E and E ~ {p} are homeomorphic. ~ 

THEOREM B. Every closed convex body in E is homeomorphic with a closed 
halfspace or with the product of an n-cell by a closed linear subspace of finite 
deficiency n in E. t t  

These results were first established in I2] for Hilbert space, and were extended 

in 13] and [1] to arbitrary normed linear spaces, t Note that infinite-dimensionality 

is required for A but not for B. The topological  proper ty  expressed in A has a 

number  of  interesting consequences; in particular, it implies that E admits a 
fixed-point-free homeomorphism of period two. Property B is useful in connec- 
tion with the topological classification of closed convex bodies. 

Our  methods are analogues or refinements of  those employed previously, 
and as before the notions of  gauge functional and characteristic cone will play 
an important  role. When y is an interior point of  a convex body U in E, the gauge 
functional of U with respect to y is the real-valued function/~uy defined as follows 
for all x e E: 

pv,(x) = inf { 2 >O: -~(x - y)~ U } . 

Re~ived December 6, 1964. 
* This research was conducted at the University of Washington in 1963 when the first 

author was visiting there. The work of both authors was supported in part by the National 
Science Foundation, U. S. A. (NSF-GP-378). 

t, t t  See the footnotes on the last page 
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When y is the origin 0, we speak simply of the gauge functional of U and write 
/zv rather than/~u0. In several instances below, we shall define a transformation 
geometrically and leave to the reader the routine but occasionally tedious verifi- 
cation that the transformation is actually a homeomorphism. This can often 
be accomplished by expressing the transformation in terms of the appropriate 
gauge functionals and then making use of the well-known continuity of the 
function/tvy(x ) [ (x, y) e E x int U. 

For y e int U, we define 

cc, U = {x ~ u : /~uy (x )  = 0}, 

ccU = ccyU - y, and csU = cc(U N (y - U)). 

Thus the sets y + ccU and y + csU are the unions with {y} of, respectively, all 
rays and all lines which issue from y and lie in U. The sets ccU and csU, being 
independent of the choice of y ~int U, are called respectively the characteristic 
cone and the characteristic subspace of U. Note that the convex cone ccU is a 
linear subspace if and only if ccU = csU. 

NOTATION 
The interior, boundary, closure and convex hull of a set X are denoted by 

intX, aX, clX and con X respectively. The fact that X and Y are homeomorphic 
is indicated by X ~ Y. Set-theoretic addition and subtraction are indicated by U 
and ~ respectively, while + and - are reserved for algebraic operations. The real 
number field and the set of all positive integers are denoted by 9l and ~R respec- 
tively. Equality by definition is indicated by .= or = . .  When x and y are distinct 
points of a linear space, the open segment connecting them is denoted by ] x, y [, 
the half-open segments by ] x, y] and ]'x, y [-, and the closed segment by J-x, y] 
The open and closed rays which issue from x and pass through y are denoted 
by ] x, y ( and [x, y ( respectively. 

1. Three Propositions. 
The three propositions of this section are used later in proving Theorems 

A and B. 

1 1  PROPOSITION. I:~L, II II) is an in:nite dimensional normed linear space, 

then the linear space L admits norms I [ and I11 I II such that 

I I=<ll ll---Ill Ill 
and the spaces (L, I I) and¢L, Ill l i t) are both incomplete. 

Proof. We assume that the space (L, I[ I]) is complete, for otherwise there is 
nothing to prove. Let B be a Hamel basis for L such that [I b [[ =< 1 for all b ~ B, 
and inf{ll b II: b ~ B} = 0. Let Ill Ill denote the gauge functional of the set 

con(B O B) with respect to the origin 0. Then Ill llllll is a norm for r. and 
II ll-~ll~ Ill, so the natural mapping ~ of (L,[ [I) onto (L,[I l l ) i s  
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continuous. If the space (L, [l[ I l l) is  complete, then with (L, [[ I[ )als° complete, 
it follows from the open mapping theorem that z is a homeomorphism. But that is 
impossible, for the point 0 is in the II II "cl°sure of B but not in the III Ill- 
closure of B. 

Actually, it is the existence of I [ rather than III Ill which is used in the 
sequel. To obtain I [, let M be a separable infinite-dimensional linear subspace 
of (L, II 11)' and use a construction in [3] to produce an unbounded closed convex 
body V in M such that V is linearly bounded and V = - V. Let U denote the unit 
ball of  the space (L, It li) and let C = con(U U V). Then of course C is a convex 
body in (L, II 1]) and C = - C. Now suppose that C contains a line J through 0, 
and consider an arbitrary point x of d. For each n ~ 9/ there exist u, ~ U, v, e V 
and 2, e [0, 1] such that 

nx = it.u. + (1 - 2.)v.. 

Since the sequence {(it./n) u .} .~  is convergent to 0 and since always 

1 - it. 
~ v .  e V, 

n 

it follows that x e V. This implies that J c  V, an impossibility since V is linearly 
bounded. We conclude that the set C is linearly bounded, whence the gauge 
functional] I ° f C i s a n ° r m f ° r L ' C l e a r l y l  I <[I I[ " If the spaces (L' [I ][) 
and (L, [ l) were both complete, the open mapping theorem would lead to a 
contradiction as in the preceding paragraph, for the point 0 is in the l l -cl°sure 
of the set {y e M: II Y ti = 1} but not in its I[ II "cl°sure" The proof is complete. 

A strip is the set of  all points lying on or between two parallel hyperplanes. 
Proof of the following is left to the reader. 

1.2 LEM~IA. Suppose that H and H' are closed hyperplanes, S and S' are 
closed strips, and Q and Q' are closed half  spaces such that 

OQ=HcOScScQcE and OQ'=H' c~S'cS' cQ'cE'. 

Then every homeomorphism of H onto H' can be extended to a homeomorphism 
of E onto E' which carries Q onto Q' and S onto S'. Further, H and H' are homeo- 
morphic if  E = E'" 

1.3. LE~tMA. Suppose that U, V and P are closed convex bodies in E, Q is a 

closed hal f  space, y is a point of E ,,~ {0}, and the following four conditions are 

all satisfied: 
(i) Pc intQ and U c i n t  V; 
(ii) o e o Q  NOV; 

(iii) [ 1, ~ [ y c i n t  (Pf)U); 
(iv) V does not contain any ray which issues from y ~ and passes through a point 

of OQ. 
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Then there is a homeomorphism of E onto E which carries U onto P and V 
onto Q. 

Proof. Let W . =  ( U -  y ) N ( y -  U)N~Q, a closed convex body relative 
to ~Q. Then W = - W and ccW = csW = csU, where the latter equality depends 
on (iv) and the fact that U ~ V. For each point qeSQ,  let c ( q ) . =  
(1 + I~ve(q))y e int (PU U) and let the (unique)points at which the ray ] c(q), q (inter- 
sects the sets ~U, dV and 8P be denoted by u(q), v(q) and p(q) respectively. The 
existence of these points follows from conditions (iv), (iii) and (i), and from (i) 
it follows that p( q) e ] c( q), q] and u( q) ~ ] c( q), v( q) [. Let t( q) . = x2 c ( q) + ½ u( q). 
Since the set E ,~ (csU + [1, oo [y) is simply covered by the family of open rays 

{] c(q), q(: q ~ ~Q}, 

we can define a biunique transformation ~ of E onto E by specifying that ~ is the 
identity on csU + [1, ~ [y and that for each q ~gQ, ~ is the identity on the 
segment [c(q), t(q)], carries the segments [t(q), u(q)] and [u(q),v(q)] affinely onto 
the segments [t(q), p(q)] and [p(q), q] respectively, and translates the ray c(q) + 
[1, 0o [(v(q) - c(q)) onto the ray c(q) + [1, oo [(q - c(q)). With the aid of the 
continuity properties of the relevant gauge functionals, it is tedious but not dif- 
ficult to verify that ~ is the desired homeomorphism of E onto E. This completes 
the proof of 1.3. 

When U and V are subsets of E, we shall write U c ~  V to indicate the existence 
of a neighborhood G of the origin such that U + G c V. A closed convex body 
will be said to be of type Q provided its characteristic cone is not a linear subspace. 

1.4. LEMMA. Suppose that U and V are closed convex bodies of type Q in E, 
with U c c V .  Then there is a homeomorphism of E onto E which carries U and V 
onto a pair of parallel halfspaces. 

Proof. Clearly ccU c ccV and esU c esV. Suppose first that the set ceU ,,, csV 
is nonempty, and choose y e i n t U .  "[hen there is a point x e S V  such 
that int U contains the ray x + [1, ~ [ ( y  - x). We assume without loss of 
generality that x = 0. Let Q be a closed halfspace such that 0 e 8Q and V c Q, 
and let P be the translate of Q such that ½ y ~gP. Then the conditions of 1.3 are 
satisfied and the desired conclusion follows. (Here the full strength of the con- 
dition U c c  V was not required; it was sufficient to have U c i n t  V.) 

In the remaining case, ccU c csV and 1.3 does not apply directly. However, 
we can apply 1.3 in two stages with the aid of a closed convex body J (to be 
constructed) such that U c i n t  J, J c i n t  U, and 

ccU ,,, csJ CZJ ~ ccJ ,,, csV. 

By the preceding paragraph, there are homeomorphisms ¢ and ~/of E onto E such 
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that (~U, ~ J) and (~lJ, qV) are pairs of parallel halfspaces. Let K be a closed half- 
space which is contained in the interior of qJ and hence is parallel to qJ. By 1.2, 
the homeomorphism ~/~ - 1 of a~J onto ~qJ can be extended to a homeomorphism 

of E onto E which carries the strip cl(~J ~ ~U) onto the strip cl(qJ ,,~ K). For 
each point w e E, let 

f q ( w )  if w e E ~ i n t J  
"c(w) • 

((~(w)) if w~J .  

Then z is a homeomorphism of E onto E which carries U onto K and V onto qV. 
Thus it remains only to construct the intermediate body J. 

In constructing J,  we assume without loss of  generality that 0 e int U. Since U 
and V are both of  type Q, there are points u, v ~ E -~ {0} such that 

(1) [0, u ( c U ~b [0, - u (and  [0, v( c V ~b [0, - v(. 

On the other hand, the fact that ccU c csV implies that 

(2) [ 0 , - u ( c V  and [0, v ( ¢ U .  

For  each 2 > 0, let L~ denote the line - 2u + ~v. Since U is closed and convex 

it is easy to derive from (1) and (2) the existence of  2 > 0 such that Lx N U = ~ .  
But then L2g n 2U = ~ ,  and by a standard separation theorem there is a closed 
halfspace Q in E such that L2; " c t~Q and 2U c Q ; the latter condition implies 

that U c c Q. Let 

S . = ½U + ~(V NQ). 

Then U c c J  because U c c  V N Q, while J c ~ V  because U c c V  and V N Q c V. 
From the relevant definitions in conjunction with (1) and (2), it follows that 

u e c c U  ,~ csJ and v e c c J  ,~ csV. 

Thus the proof  of  1.4 is complete. 

1.5. PROPOSmON. I f  V and V'  are closed convex bodies in E which have the 

same characteristic cone or are both of  type Q, then there is a homeomorphism 

of  E onto E which carries V onto V'  and ~V onto OV'. 

Proof. Suppose first that ccV = ccV', and let z and z' be translations of E such 

that  
0 e W .  = i n t z V  N in t z 'V ' .  

Of  course, cczV = ccz 'V ' .  For  each point v e ~(zV), let the points % and v' be 

defined by the conditions that 

w~eOW t~ [0,v( and v' eO(zV) 0 [0,v(. 

Let q be the identity transformation on 14I, and for each v ~ ~(zV) let q map the 
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segment [wo, v] affinely onto the segment [w~, v'] and translate the ray [1, oo [v 
onto the ray [1, oo [v'. Then t/is a homeomorphism of E onto E which carries zV 
onto z 'V ' ,  and the transformation T'-blz has the properties desired in 1.5. 

In view of 1.2, it suffices for the other case in 1.5 to show that an arbitrary dosed 
convex body V of type Q in E can be carried onto a closed halfspace by means 
of a homeomorphism of E onto E. But this is a special case of 1.4, for if 0 e int V 
then the set U -= ½ V is a convex body of type Q with U c c  V. 

A finite or infinite sequence V~, V2,... of closed convex bodies in E will be 
called nested provided 1/1 ~ E and one of the following two conditions is 
satisfied: 

(*) the convex bodies V~ all have the same characteristic cone; V~+I ~ i n t  V~ 
(i = 1, 2 , . . . ) ;  

(**) the convex bodies Vi are all of type Q; V~+ ~ c c  Vt (i = 1, 2, ...). 

1.6. PROPOSITION. Suppose that E and E' are topological linear spaces, that 
V 1, V2,... is a nested sequence of convex bodies in E, that VI', V~,... is a nested 
sequence of convex bodies in E', and that the two sequences are of the same 
length. Then every homeomorphism of dV 1 onto OV~ can be extended to a homeo- 
morphism of E.-~ 0iint V/onto E' ,,~ fqi int V/ which (for each i) carries OVi onto 011[. 

(Presumably, the proposition remains valid when "V~+ 1 c c V{' is replaced by 
"V,.+ ~ c i n t  ~ "  in condition (**). However, the replacement seems to entail some 
technical complications and the present form of the proposition is adequate for 
our needs.) 

Proof. It suffices to consider the case in which the sequences involve only 
I/1, 1/2 and V/, V~ respectively. For if this is known, then by its use the given 
homeomorphism of OV1 onto ~V; can be extended to a homeomorphism ~h of  
V1 ~ int 172 onto V; ~int  V~ such that ql(0V2) = 01/2'. The restriction of t/1 to aV2 
can then be extended to a homeomorphism ~/2 of V2 ~ int 113 onto V~ ~ int V~ 
such that q2(~V3) = OVa'. Then the restriction of ~/2 to OVa can be extended.. . .  
Proceeding in this way to obtain a sequence ~h, q2,"" of homeomorphisms, we 
find t h a t U :  h is the homeomorphism required in the statement of 1.6. 

Now if ccV1 = ccV2, ecVI'= eeV~, and ~ is a homeomorphism of 0V1 onto 
~V~, a straightforward application of gauge functionals extends ~t to a homeo- 
morphism of E ~ int V2 onto E'  ~ int V~. (See 1.1 of  [1].) The other cases can be 
reduced to this one, for if 1/1 and V2 are both of type Q then 1.4 guarantees the 
existence of a homeomorphism of E onto E which carries VI and V2 onto a nested 
pair of closed halfspaces, and of course these halfspaces have the same charac- 
teristic cone. 

2. Proof of Theorem A. The following result provides some alternative 
ch aracterizations of the spaces for which Theorem A will be established. 
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2.1. PROPOSITION I f  E is a topological linear space and N is an infinite cardinal 
number, then the following four assertions are equivalent: 

(i) E contains R closed convex bodies whose intersection is {0}; 
(ii) E contains N closed convex bodies whose characteristic cones have inter- 

section {0}; 
(iii) E contains N open convex bodies whose intersection is {0}; 
(iv) E contains N open convex bodies whose characteristic cones have inter- 

section {0}. 
In each case, the convex bodies may be chosen so that the origin 0 is interior 

to all of them and so that all are of type Q or are linearly bounded and centrally 
symmetric (about 0). In the latter circumstance, we may take N = No. 

When N = No, we may require that the No convex bodies are arranged in a 

sequence C1,C2,... such that C,+ x + C~+ 1 c Cnfor all n~ ~R. 

Proof. (i)-~ (iii). Suppose that :~ is a family of N closed convex bodies such 
that f i g = { 0 ) .  For  each B ~ ' ,  choose a point pB¢intB and then for each 
nEaR letB~. =intB--(1/n)pB. Then each B~ is an open convex body and 
0 ~ An ~ ~tcl B, c B. The family {B,: B e :~, n ~ ~R} has intersection {0}, and with 
N ~ No it has the same cardinality as :~. 

(iii) => (iv). Note that if 0 ~ B and B is open, then ccB c B. 
(iv) =~ (ii). Suppose that ~ is a family of  N open convex bodies such that 

N { c c B : B ~ }  = {0}. For each B ~ ,  choose a point pB~B and let B ' - =  
½el(B-pn) .  Then B' is a closed convex body and ccB'=ccB, so 

n {ecB': = f0).  
(ii) :*-(i). Suppose that & is a family of N closed convex bodies such that 

n{ccB:Be&} = {0}. For each B e g ,  choose a point pne in tB  and then for each 
neg~ let B, .  =(1/n)(B--pB). Then each Bn is a closed convex body and 
A, t ~B, = ccB, so the desired conclusion follows. 

In the above discussion, the point 0 is always interior to the sets B, and B ' ;  
further, the sets B, and B' are linearly bounded or of  type Q if and only if the same 
is true of  the set B. Thus in restricting the type of the convex bodies in question, 
it suffices to consider condition (iii). Suppose, then, that ~ is a family of  open 
convex bodies in E whose intersection is {0}. If  some member B of ~ is linearly 
bounded, then the same is true of the centrally symmetric sets (1/n)(BN-B), 
and of  course n , ,  gt (I/n) (B N -  B) = {0}. Suppose, on the other hand, that no 
member of  & is linearly bounded. Then for each B a & there exists qn e E ,~ {0} 
such that [0, ~ [qB c B. Since N ~ = {0}, there exists Ca ~ ~ such that - qs ~ C~, 
and then by the separation theorem there is an open half space Qs D CB such that 

- qn ¢ Qn. But then [0, oo [qB c Qn, and with B".  = B N Q~ we have ccB" # csB". 

The family {B":B e &} has intersection {0} and its members are all open convex 
bodies of  type Q. 

For the last assertion of 2.1, it suftices to observe that if G~, G2,"" is a sequence 
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of convex sets whose intersection is {0}, then the same is true of  the sequence 
C1,C2,. . .  where C s • = 2 -]f '~j I li=Ovi" Further, C,+x + C,+x = C ,  for all neg l .  

2.2. THEOREM A. SupFose that E is an infinite-dimensional topological 
linear space which admits a countable family of open (or closed) convex bodies 
whose intersection consists of a single point. Then for each point p of E, the 
spaces E and E ,.~ {p} are homeomorphic. 

Proof. By 2.1, there exists a sequence C~, C 2 , ' "  of closed convex bodies in E 
such that the following four conditions are all satisfied: 

(1) n.o c. = ( o } ;  

(2) 0 e int C, for all n e 92 ; 
(3) C,+ 1 + C , + l c  C.~ for all no92; 
(4) each set C, is of type Q, or each set C. is linearly bounded and centrally 

symmetric about 0. 

Suppose first that each set C~. is of  type Q, and let u be a point of int C~ such that 
[0, co [u c C1 but - u ¢ C1. Let C~ = Cl ,  and for n > 1 let C" = (I/n) Cl + nu. 
2hen each set C, is of  type Q, t3, ~ C" = ~ ,  and the sequence C;, C~,... is nested. 
The sequence Ca, C2,. . .  is nested by conditions (2) and (3). Let ~ be the identity 
mapping on E ~ intC1 = E ~ intC[ .  Since f l . ~ C .  = {0} while f l . ~ C . ' =  ~ ,  
it follows from 1.6 that ~ can be extended to a homeomorphism of E ~ {0} onto g, 

In the remaining case, the set C~ is centrally symmetric and linearly bounded. 
Let [I [I denote the gauge functional of C, ,  and use 1.1. to obtain a norm [ [ 
for E such that I I < II I and the space (E,] l ) i s  incomplete. Let E denote 
the completion of E with respect to the norm [ and let p e ~',,- E with I pl < ~. 
For n > 1, let C ; =  {x6E: IIx-pll z and let C'x=C1. Then C1,C2,.. .  
is a nested sequence of  closed convex bodies whose intersection is {0} and 
C~, C2,'-" is a nested sequence of closed convex bodies whose intersection isJ2I, 
so the use of 1.6 leads to a homeomorphism of E ~ (0} onto E. 

2.3.COROLLARY.An infinite-dimensional topological linear space E has pro- 
perty (A) if it satisfies any of the following conditions: 

(i) E contains a linearly bounded convex body; 
(ii) E admits a countable separating family of continuous linear forms; 
(iii) E is separable, metrizable and locally convex. 

Note that property (A) is not possessed by every infinite-dimensional locally 
convex topological linear space. Indeed, let U be an uncountable set and let E 
be the space of all bounded real functions on U, in the topology of  pointwise 
convergence. (That is, E is a subspace of  9t~) Then E is a-compact, but (with 
p e E) {p} is not a G~ set in E and consequently E ,,~ {p} is not a-compact. 

3. Proof of  Theorem B. 
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3.1. THEOREM B. Suppose that U is a closed convex body in a topological 

linear space E. I f  the characteristic cone ccU is not a linear subspace or is a 

linear subspace of  infinite deficiency, then U is homeomorphic with a halfspace 

in E. I f  ccU is a linear subspace of  f inite deficiency n, then U is homeomorphic 

with the product ccU x [0,1]". 

Proof. The case in which ccU is not a linear subspace is handled immediately 
by 1.5. If  ccU is a linear subspace of  finite deficiency n, then E is topologically 
and algebraically the direct sum of ccU and an n-dimensional linear subspace L 
of  E. It is clear that U is homeomorphic with the product ccU x (U n L) and that 
U N L is homeomorphic with [0,1-1". There remains only the case in which ccU 

is a linear subspace of infinite deficiency. With 0 ~ ccU = csU, we have 

cc(U N - U) = cs(U N - U) = csU. 

In view of 1.5, we may assume (in treating the remaining case) that the closed 
convex body U is centrally symmetric. Choose Uo e dU and let f be a linear form on 
E such that f (uo) = 1 and f U  c ] -  ~ ,  1]. Let Q denote the halfspace { x : f ( x )  > 0}, 
whence 

Y" = csU c ~Q = {x: f ( x )  = 0}. 
Let 

U' = {x: (Itv(x - f ( x )Uo) )  2 + f ( x )  2 <__ 1}. 

Then U' is a closed convex body with ccU' = ccU, whence U ~ U' by 1.5 and 
also OU ~ OU'. For each x e OU ~ (Uo + Y), let 

1 
z(x) = Uo + 1 - f ( x )  (u° - x), 

so that z is a "stereographic projection" translated by the vector Uo. It can be 
verified that • is a homeomorphism of 0U ~ (Uo + Y) onto 0Q ,~ Y. Thus to 
complete the proof it suffices to prove the following: 

(1) OQ ~ OQ ,-~ Y; 
(2) OU ,~ OU ~ (Uo + Y); 
(3) U ~ U x ] 0 , 1 ] .  
(4) Q × ]0,1]. 

Assertion (4) is obvious. In connection with the others, let us prove: 
( , )  There is a homeomorphism of  E onto E .~ Y which carries U onto U ..~ Y 

and is the identity on E ~ int U. 
The gauge functional it o is a seminorm on E. Let ([E], H 11) be the normed 

linear space corresponding to (E,/~v) in the usual way, and for each x ~ E let Ix] 
denote the corresponding element of [E]. Since Y is of  infinite deficiency, the 
space [E] is infinite-dimensional and hence by 1.1 [E] admits a norm ] ] <  [I ]1 
such that the space ([E], t [) is incomplete. Let (~,1 1) be the completion of the 
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space ([E],[ I), and choose q e g ~  [E] with Iq I < ½E. Define E"= E, V." =nU 
for n ~ 9~, V/" = U, and 

V'={x E:l[x]-ql<l/n } (n := 2,3, . . . )  

Then the conditions of 1.6 are all satisfied and the desired conclusion follows 
from 1.6. 

Now (1) follows by applying (,) with the sets E and U replaced by OQ and 
u noQ respectively. (3) also follows easily from (,), for U ,-, Y is simply 
covered by the segments ] 0, u] with u ~ OU. It remains only to estabfish (2). 

Let W denote the set {x : f ( x )  <= 0}. Then with the aid of (,) it is easy to see 
that OW ,,~ OW ~ Y. And of course OW ,,~ OU by 1.5. But OW ~ Y is the image 
of OU ",(Uo + Y) under the homeomorphism ~ given by 

1 1 
W (x) = T U °  + 1 (x - T Uo). 

This completes the proof. 
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conditions is satisfied: (i) X is compact and E is an infinite-dimensional normed linear space; 
(ii) Xis compact and Eis a topologicallinear space which admits a Sehauder basis whose closure 
does not include the origin; (iii) X is weakly compact and E is a nonrefleaive Banach space; 
(iv) Xis  weakly compact and Eis  a Banach space which admits a Sehander basis; (v) Xis  a- 
compact and g = g~o. The results (i) and ('fii) appear in [3] and [2] respectively; (ii) and (iv) 
are in a recently completed paper of R.D. Anderson ("On a theorem of Klee"), and (v) is in 
another paper of Anderson ("Topological properties of the Hilbert cub¢ and the infinite 
product of open intervals"). 

t t  Theorem B is used in the authors' recently completed paper entitled "Every non- 
normable Frechet space is homeomorphic with all of its closed convex bodies." 


