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Summary. In this paper the level structure of narrow-resonance models
with duality is considered. We ghall use to this purpose the multiparticle
dual amplitudes recently proposed by several authors and shall study
the structure of the residue of each pole in what concerns its factorizability.
We find that for each energy eigenvalue E,=4/5, the residue does
indeed factorize in a finite number of terms (number of degenerate levels)
and that this number increases with = like exp [¢E,]. The physical inter-
pretation of this wild increase is found in the essential many body nature
of models consistent with duality. The appearence of states with imaginary
coupling follows easily from the covariant, four-dimentional approach that
we have taken and that insures absence of kinematical singularities.
It is nevertheless found that a cancellation mechanism analogous to the
one existing in Q.E.D. (Ward identities) occurs here too. Although the
problem of a systematic cancellation of all ghosts in a realistic case has
not been solved, we see that the leading and most troublesome ghosts are
indeed eliminated in this way.

1. — Introduction and contents of the paper.

Interesting developments have recently taken place in the field of strong
interaction physics. The study of superconvergence relations, finite-energy
sum rules together with the assumption of straight-line trajectories are leading
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(**) On leave from Istituto di Fisica dell’Universitd, Torino.
(***) On leave of absence from the Weizmann Institute of Science, Rehovoth.
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812 8. FUBINI and G. VENEZIANO

to new ways of analyzing S-matrix theory (!). Of particular importance has
been the idea of duality which was originally expressed by DoLEN, HORN and
SceEMID (?) as saying that resonance and Regge-pole contributions should not
be added coherently but that the Regge-pole term is already an average descrip-
tion of the full amplitude.

A proposal (3) for the construction of a simple Reggeized crossing sym-
metric amplitude of the form

1
{1.1) A(s, t) = constfm“""’—‘(l —z)*®-1dy - (cyclic terms)

]

allows to put the previous arguments on a more direct and explicit basis.

A prescription that generalizes eq. (1.1) to any number of external spinless
particles has been recently suggested (*°).

It is to be noted that this generalized representation could provide at least
a first hint in order to construct rules valid for particles endowed with spin.
Indeed it is possible to combine two or many external lines ir order to create
poles corresponding to particles with arbitrary spin. However, as we shall see
later, due to the very complicated factorization properties of each pole, this
general problem is not as simple as it looks at first sight.

Let us now consider more in detail eq. (1.1). The first term of this equation
can be written in the two equivalent forms

C. c,
(1.2) As, t) = 28—_(? - zt_(:) .

Equation (1.2) allows the simplest possible interpretation of duality in terms of
resonances only. It leads to a complete expansion of the full amplitude either
in terms of resonances exchanged in the s-channel or equivalently in terms of
{-channel resonances.

This property is of course fully shared by the generalized many-particle

(1) For a general review see W. R, FRaZER: Proceedings of the XIV International
Conference on High Energy Physics, Vienna, 1968 (edited by J. PRENTKI and
J. STEINBERGER).

() R. DorLex, D. HorN and C. ScHMID: Phys. Rev., 166, 1768 (1968).

(®) G. VENEzZIANO: Nuovo Cimento, 5T A, 190 (1968).

(%) The 5-point function was given by K. Barpakci and H. RuEGa: Phys. Letl.,
28 B, 342 (1968); and by M. A. VIraSORO: Phys. Rev. Lett., 22, 37 (1969).

(%) The generalization to an arbitrary N-point function was given by H. M. CHAN:
Phys. Lett., 28 B, 425 (1969); H. M. Crax and Tsou S. TsuN: Phys. Lett., 28 B, 485
{1969); C. GoeseL and B. Sakira: Phys. Rev. Lett., 22, 257 (1969); K. BARDARCI
and H. Ruece: Berkeley preprint (Dec. 1968).
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amplitudes. In conclusion it is thus clear that the models we are discussing
can be formulated in terms of resonances only. The validity of Regge behaviour
in all channels ensures that all superconvergence relations are automatically
satisfied in terms of the discrete levels appearing in the models.

In this paper we wish to discuss in detail the particle aspect of the Reggeized
dual-resonance models.

By looking at eq. (1.2) one immediately learns that all resonances must have
masses of the form

1.3 M2= A -+ Bn n=20,1,2 ..
( n ? ’ )

and that for each value of n all angular momenta J =40,1,2 ... n are present.
The simplest interpretation would be to say that, for each value of n, there
are just » particles, one for each possible value of J. However, this simple
model looks already suspicious if we think that at ¢ =0 the asymptotic be-
havior of eq. (1.1) (which of course does satisfy all analyticity constraints)
is not the one of a single Lorentz pole, which
is prescribed by the simplest factorization (¢). s
We shall find that each level corresponding po\" %
to a well-defined choice of » and J is in gen-
eral degenerate. We shall also see that the !
level structure is much more complicated than
what one could have guessed on the basis of B
Lorentz-pole considerations. The origin of this A
high degeneracy lies in the fact that the very
stringent constraints of duality and supercon- s
vergence in all channgls .require .a.number of Fig. 1. ~ The generic multipar-
degrees of freedom which is of a different order il process considered in this
of magnitude than that appearing in simple paper. The line s defines the s
two-bodylike problems. channel: s= (3 p,)’= (3 )%
Our way of studying the level structure
will be straightforward. Starting from the general multiparticle amplitude
we shall consider (see Fig. 1) the poles in the variable

e

qs—l

P q,
’ Aoy

(1.4) S=—@o + P14 oo 0 +Pr1)* = — (o + @+ 4+ ¢11)?-

The contribution corresponding to the pole at s=3s, will in general be

_ '@ﬂ(& pr+1; qO . qﬂl)

S~8p §—s,

(1.5)

(®) Sce, for instance, J. B. BroxzanN and C. E. Jongs: Phys. Rev. Lett., 21, 564
(1968).

53 — Il Nuovo Cimenio A.



814 8. FUBINI and G. VENEZIANO

It is clear that the level will be a single one only if the residue R can be fac-
torized (independently on the number of initial and final external lines) in
the form

(1.6) E.(p, ¢) = F(p)-F(q) .

In the case in which eq. (1.6) will not be valid, the degeneracy of the level will
be obtained by decomposing E in the minimum number of linearly independent
factors

(L.7) Rup,q) =3 Fip)Fq).

i=1

Here again the number d, of terms in eq. (1.7) should be independent on the
number of initial and final lines.

The number of terms d, will represent the degree of degeneracy of the level.
Of course this multiplicity can be experimentally observed as soon as a small
perturbation breaks the full degeneracy of the model. It is clear that, in order
to give any meaning to the level structure, we must have that d, is finite for
any finite value of » and independent of the process. If a finite decomposi-
tion (1.7) is impossible the level structure will be an unphysical peculiarity
of eq. (1.1) and will disappear as soon as any perturbation will be applied.

A troublesome question of a great theoretical importance concerns the
possibility that the quadratic form (1.7) is a non positive definite one. This
would correspond to the presence of « ghosts » which would have imaginary
coupling constants (or, if one prefers, indefinite metric) whose presence would
give an unphysical flavor to the whole business.

Unfortunately the possibility of ghosts will indeed be found in our investiga-
tion. However, even if our understanding of the problem is far from being
complete, a mechanism for ghost compensation has been found. As a con-
sequence, the situation in this respect is not at all hopeless.

In Sect. 2 we summarize some of the relevant features of the many-particle
amplitudes in a notation appropriate to our program. Section 8 will be devoted
to the actual derivation of the factorization properties. We shall see that the
degree of degeneracy of each level is finite and increases fast with increasing
mass. Ghosts do indeed creep in. In Sect. 4 we shall see that the model provides
a natural mechanism of ghost cancellations which bears amusing analogy
with the cancellation of timelike photons in quantum electrodynamics. Ward-
like identities will be found. This will remove those dificulties at least for
the highest trajectories. Finally in Sect. 5 we shall discuss the detailed struc-
ture of the low-lying levels and in Sect. 6 the main conclusions are reported
together with our interpretation of the results.

A few technical points are discussed in the Appendix.
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2. — The multiparticle amplitude.

As we have discussed in the previous Section, we shall use, in order to study
factorization properties, the dual-resonance models for interaction of any
number of spinless particles proposed in ref. (+%). Let us first summarize in
an appropriate notation those beautiful results.

The M-particle process we consider is described in Fig. 1. The amplitude
for such a process as given in ref. (*°), is

1 1
(2.1) An(ai(s,)) :f...fdu 1T ug«sw—1 |- (different cyclic terms).
k
0 [}

The different cyclic terms correspond to each different ordering of the external
lines. For our purposes the analysis of a single term will be enough and all
the factorization properties will hold for the whole sum of terms as well (7).

In eq. (2.1) «,{(s,) is the trajectory function of the i¢-th channel which cor-
responds to a set of consecutive lines and carries a total squared energy s,.
The trajectory functions are assumed linear with universal slope. The variables u;
are connected by the constraints of duality or, if we wish, of absence of not
allowed coincident poles. These conditions read

(2.2) w=1-Tlu,
7

where the i-th channel cannot develope a pole when the j-th does. A very
interesting property of eq. (2.2) is that they can be used to express all the «,
in terms of M-——3 independent ones corresponding to a well-defined choice
of compatible poles.

According to our program we wish to separate the external lines into two
groups (1,2.. N) and (N-+1 .. M) and to consider explicitly the poles in the
corresponding variable

(2.3) s=—@1+2+3.. +NP=—((N+1)+..+ M.

For this purpose it is wise to eliminate the dependent variables in eq. (2) in
terms of the most convenient set of M—3 independent ones. We want one of
the independent variables to be u, = # the variable conjugate to s. The choice
of the other M—4 independent u is a priori arbitrary. However for reasons
still unclear, at least to the present authors, it turns out that only two choices

(*) The only difference is that, with identical isospinless boson, the symmetrization
of eq. (2.1) will wash out some states. This will be removed by isospin factors such
as those of J. B. ParoxN and H. M. Cuan: CERN preprint TH. 994 (1969).
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give particularly simple expressions.
peripheral configurations » of Fig. 2.
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They correspond to the two « multi-
In Fig. 2 we have also indicated a
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Fig, 2. — The two multiperipheral configurations conneeted by the R-reficetion.

redefinition of the inecoming and outgoing momenta, which will prove useful
in the following discussions. Conservation of momentum reads

41 r+1 s+1 s+1
(2.4) sz EP, II=3%q¢=27.
i=0 £=0

We have also introduced an operation of reflection of p; and ¢; as

(2.5) Pi—>Pi=DPri1-iy QG >§= Qets -

If we perform this «reflection » operation R we essentially pass from configura-
tion a to b) in Fig. 2, since the roles of p; and P, are interchanged under R.

At this point we are ready for writing the scattering amplitude in the most
appropriate form for our work. Following Barpakct and RUEGG (ref. (%))
we can rewrite eq. (2.1), by using the configuration a) of Fig. 2, in the form

1 1 1 1 1
Ar+s+4(fxi) :f. . J‘djzf fdyzfdz 577(7'-}-1,2) S—c,_f{'“l'“_l’ e
0 0 0 0 [

P LT 2) m—pirFLr 2D —als)=—1  —pla+1,...2,2  —y(s+1,...2) .
X, x, 2 Y, Y, .

(2.6)

B y:lf{s+1 +8,8—1) y;-'y(a+1 s)(l T )—7(1',1-—1)(1 . E'_l)y(r—l.r—a) s
_ (1 . 9—02)"7(2‘1)(1 _ ﬁ;)_7‘1‘°)(1 _ z)—d(o.o)(l _ yl)-—y(l.o)(l . ya)—}'(z,l) e

s (L= g R0

e (1 — T ®,) 7B —

. ys)—y(a,u—u)(l — 7 Er_l)—}'(r.r—z) L
51 z)—d(l.o)(l —zy
A=Yy T

(
. (1 . 5—62 EIZ)_dm'm (1 . Elzyl)—a(l’l)(l
(

1)"6“"”(1 . ylyz)—y(a.m e

- {1 _?/a?hf'/l)_?(am et

_ zylyz)—d(o.z) L.

(1 _ ‘%3 52 il)—?(&o) .

o (L —FFig v Tyt )7 (L —7; ..

—y{1,4—1)

= —3(4,5)
T12Yy - Y5)

v (A —YiYis1 e Ysmr¥s) (A =Ty e Ty2yy e y,) 00
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The choice of the independent integration variables Z,, y; and 2 are indicated
in Fig. 2a). The funections y, 7, and ¢ are defined in terms of the o,(s;) trajec-
tory functions as follows:

P, =1, 0 —2, ey § 4 L i) = ol (¢ + Qe+ e + G+ €)1+ 1,
pE41, 0=yt 42,44+ 1,49)—p(E+2,i+1)—p@E +1,4) + 1,

(2.7) yE+ kD =y@E4k i+ k-1, ,i+1,14)+
+yE+k—1,1+k—2,...,0+1)—

—yli Iy b—1, i+ 1) —pE - k—1, ..., 11 1,4), (k=3).

The functions §(¢, j) have the same definition with ¢,— 7, and 4(¢, j) have

a similar definition but couple P-vectors with ¢-vectors and take into account

the fact that the latter are outgoing and the former ingoing momenta.
Equation (2.6) can be rewritten as

1 1 1

(2.8) Ay y(@) :J dZe(z, @fd?ﬂ)’(.% q)fdzz_"‘“)“lF(z, Z, D, Y, 4)

] 0 ]

where ¢ and F are reconstructed from (2.6) to be

(29) (p(f’ ﬁ) - Ef—}?(r-ﬂ.,r} §1—§(7+l,r..,1)(1 o fr)—;;(r,f—l) (1 _ 771)_;(1'0) .
(L —Z, T )T (A — T T) T L

e (L — %, %y ij)—'i({.:l—l) e (L—7F, ... :21)—7(1-.0) .

(210) P2, %, B, ¥, @) = (1 —2) 001 — 7,2) V(1 — 25,000 ..

(T T2y Y)Y LA —F o By . g

It is very easy to verify that the (»+3)-point function for the process P,+p,
+P, 4P 11T is just given by

1
(2.11) Aisfe) = [azgta, 7).

¢

We could have worked instead with the configuration b) of Fig. 2, ending with

the formula
1 1 1

(2.12) A, aa(2) :'fdx(])(wy p)J dy p(7, q)fdzz—“(')_lln(z, o, P, 4, q) -

0 o 0
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The complete equivalence between eqs. (2.12) and (2.8) follows directly
from the fact that both can be obtained from the fundamental symmetric
form (2.1). However, checking by direct inspection the equivalence of the two
forms is by no means a trivial exercise.

In this paper the existence of the two forms will be exploited to find iden-
tities whose direct proof would be at least very involved.

Let us now look more in detail to the two « conjugate » forms (2.8) and (2.12).
It is useful to perform a change of variables such that, together with the trans-
formation p;—P;, it leaves invariant the quantity dxp(z, p). This is just
the transformation from z—Z which is given explicitely by

@y —> Ty = (1 — 2,2,y ... ),
Ty —> Ty = (1 — 0y Wpy oo ) (L — 220y oo 1) 0,

(2.13) By Ty = (1—pyp ... )1 — 2,y ... 2y) 2,

Bp—>Zp = {1 — Y1 —2y2,) L.

The transformation (2.13) is more easily expressed in terms of the quantities
Q== 0%y ... %,%,. In terms of these quantities the transformation (2.13) is
a linear one given by

(2.14) 0> 0= (L—Qg11-4)

The same is true for ¢, defined as o, = ¥,¥;y ... ¥;- It is immediately verified
that eq. (2.14) can be inverted to give the p in terms of the g by the same
formulas.

With this transformation we can write eq. (2.8) as

1 1 1
(2.15) Ao Zfdw(x, p) | yoely. @) f des*9-1F(z, T, D, ¥, ¢)
1] 1} [V]
and (2.12) as
1 1 1
@16) Aot = [argla, 2 f dy oy, q) f dez=01 Pz, 0, p, F, ) -
0 0 ¢

Considering (2.15) and (2.16) we get the fundamental identity:

1 1 1

(2.17) J‘dzzﬁa(s)—_lfdw‘P(x’ p)fdytp(?h O F@ 2, p,7, 9 —Flz, 2, D, y, g]=0.

0 o 0
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We shall finally introduce a useful notation by defining for a funection f(z, p)
the quantity

{p)> :fdw(w, P)f(x, D),
(2.18) ’

SE) = f dog(z, 1)/(F, ) -

At this point we have all the machinery we need in order to discuss the form
of the poles in the s-variable. This will be obtained in the next Section.

3. — Factorization properties.

Let us consider now a more specific model, in which a few simplifying
assumptions about our Regge trajectories will be introduced. Most of the quali-
tative results of our analysis will not depend upon these assumptions. We shall
assume that:

1) The trajectory function is the same in all channels o(x)=a 4 bx.

2) The external particles are also identical and lie on the above trajectory.
Congequently, if x4 is the common mass of the external scalar particles, we
have a(u®) = a + bu?==0.

In Sect. 5 we shall comment on the modifications encountered when we re-
lease either of these two assumptions.
In this simplified situation we have (we use the metric +14-1-4+1—1)

yE+ ki +k—1, i+ 1,8 =a[— (P + ..+ Pin)?] +1,

y(@+ 1,1 = a[—(p; + pin)? ] +1=a | 2bp? —2bp; P+ 1=
(3.1) =—2bp;"Piya+ 1 —a),

70+ 2,0)=—2bp; Pryy—a—bu* = —2bp, Py,

k(i ky §) == — 2bp,Pise (y>3).

Similarly for 7 and 6 except for some minus sign corresponding to the fact
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that ¢ momenta are outgoing. We now rewrite eq. (2.10) as

(3.2) F = exp [G],
(3.3)  G=—[log(1—2)d(0, 0) -+ log (1 — Z;2)8(1, 0) + log (1 — 25,)8(0, 1) -
+ log (1 — %, %,2) (2, 0) + log (1 — Zy2y,)6(1, 1) +
+ log (1 — 2y,9,) 6(0, 2) + ... log (1 — Z; ... Zy2yt ... 4,)8(4, §) +
+ . log (1 — %, Zpmy oo T2t Y ... Ys) (1, 8)] .

Expanding now all the log(1—=z) in power series of z and collecting the
powers in 2z we obtain

(3.4) logF=G=Zi—”G’n,

n=1

where, using eq. (2.7) for the §’s, we obtain
(3.5) G,=PPQ™ + (1—a).

From now on we shall redefine all our momenta by multiplying them by /25.
The expression for P and Q™ is then

(3.6) Pw=p+3 8P, Q7=+ 20,
=1

i=1

where o, and ¢; are defined in Sect. 2.

The advantage of eq. (3.5) is that it contains the quantities that depend
on the left variables (p and ) separated and factorized with respect to the
right variables (¢ and ¥). At this point the explicit computation of the poles
in s is just a matter of expanding F in power series of 2, d.e.

o

(3'7) F(za 5’57 ?7 Y, Q) = zann(ﬁa 53 49, ) ’

n=0

which by a term by term integration over z gives

(3.8) ) = 3 2

)
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with:

(3.9) B, == [dij‘df’/(];("—t; P oy, O F.Z, D, Y, q) .

Using eq. (3.5) we get I as a combination of factorized terms. The first ones
are easily computed to be

F,=1, F,=PPQP+ (1—a),

(3.10) T _ _
{ Fz — '%’PLI)P,EDQ:‘DQ,(,D 7%7 (1 . a)P[(‘l)Q;‘l) + %_ P;‘Z)Q:‘m ;(1 _ a)(z . a) .

In general we can write

(3.] ]) V= (] __z)<— —a) exp [z P(n)Q(n)] .

It is now easy to obtain the expressions for E,. Using the bracket notation
of eq. (2.18) and defining c=1-—a==14 bu®>0, we find

Ry= 8= 1>,  Ri=8 +eS, 8i=<P@d,
Bo=8,+osi+ U8, s @@ 11 @@,
(3.12) Ry= 8, + 68, + c(g::_}) 8, + olo + 1),)'(?__;_ 2) S,
S = 7 Pl Qe + 5 PR PP QRO + 5 (P 0
where
(3.13) P PPPY PP,

In general

ce+1)...(e+1—1)

(3.14)  Ru= 8, + o8, + ... B et
Lot ) (et k1) 17,(0 9
T ewa k b()— E‘Sk—t ]1( )]1(0) ’

where 8, = (1><¢1> and

D (2) 1
Sl _— z <P/M 7!‘1 P"i i, > <Q( llx, Q:f) iyt

(3.15)
{00,000} HJ( l’?')
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The sum in (3.15) is extended to the integer non negative solutions of the equa-
tion (partitions equation)

(3.16) L+ 2l 8l bl b =1,

At this point we are in a position to discuss the level structure of our ampli-
tudes. We see that the residue of each pole does indeed factorize in a finite
number of terms. The number of terms is independent of the number of initial
and final external lines and therefore can be used as a basis for level counting.

The left and right tensors appearing in eqs. (3.12)-(3.13) are four-dimensional
tensors. This reflects the relativistic invariance of the whole approach together
with the lack of kinematic singularities. It is well known that those require-
ments have led people to classify Regge trajectories in Lorentz families. Since
the present model can be simply discussed in terms of resonances, we can simply
talk about « Lorentz particles ». The presence of those « Lorentz particles s,
although esthetically beautiful is a cause of worry. Because of the unpleasant
fact that the Lorentz metric has a minus sign, the time components of our
tensors in the c.m. system can give rise to ghosts with imaginary coupling
constants (or equivalently with negative metric!) The problem thus arises of
whether some mechanism for compensation of these ghosts ean be found. We
shall see in the next Section that this will indeed be the case.

Let us go back to eq. (3.15) and stress the new important feature that,
although for each a(s)=n a finite number of factorized terms exists, this
number is (for large =) much larger than what might be intuitively suggested
by the two-body problem or by elementary counting of Regge or Toller trajec-
tories. It is readily seen that for two initial lines all vectors P, P*» P coin-
cide and are simply given by p,. Therefore the essential difference among
tensors created with different P’ gets lost.

Before being able to discuss more in detail the main features of our level
structure, we have to answer the fundamental question of whether our general
tensors are really linear independent. Our general tensor can be expanded in
the following way:

[3.17) PO L PP L= Y (aheat OPSE L

11,1y

where P+ are tensor products of p,, p,, p. etec. More symbolically
(3.18) (Py’> =2 <ep Py.
I

Since the functions (p%> are scalar functions of the invarients made with
the P, vectors and are linearly independent of each other (at least if we choose
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a sufficiently large number of external lines), the only possibility for linear
relations comes from compensation of different terms of the expansion (3.18)
through the kinematic factors Pj.

We have not yet succeded in giving a general treatment of the problem.
However, on the basis of several examples, we are convinced that the only
possible linear relation between tensors should involve saturation by the total
momentum //,. In other words of we consider the c.m. system in which
IT,= (0, 0,0, +/s) all space components of the tensors will be independent and
only the time components (which could generate ghosts) are related to lower
tensors. Examples of such relations are given in Sect. 4.

Once we get convinced that the space components of our tensors are linearly
independent, the question arises of how many tensors we have for a fixed
energy s,. We notice that each term in which the residue R, at s=s, fac-
torizes can be defined by the nonnegative integer numbers 1,, I, ... I, character-
izing a term of the sum (3.15) plus an extra I, which is just the index 4 of the
summation of eq. (3.14) and corresponds to the order of the polynominal in ¢
in that equation. Thus, a part from a reduction in O, (little group) a state in
our scheme is given by a sequence of quantum numbers:

(3.19) Ty i L o> =4
The squared mass of the state is given by

(3.20) a(MH=n=1,+ > i,.

i=1
When decomposed in its spin components the state |[A) will contain all spins
up to

(3.2) T = Sh<n.

It is easily seen at this point that the main new feature in these dual models
is the great richness of levels, We could indeed consider the integers I; as the
values of the different quantum numbers identifying each level. Since we have
infinitely many I, our level structure is characteristic of a system possessing
an infinite number of degrees of freedom.

In order to have a rough idea of the multiplicity, let us estimate the number »,
of different tensors appearing for a given large values s,. The solution of this
mathematical problem is (8)

— 2n
log v, = a+v/n (a_vg).

nlarge

(®) G. H. HarpY and S. RAMANUJAN: Proc. Math. Soc., 17, 75 (1917). See
eqs. (1.34), (1.35).
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Of course, in order to estimate the number of levels one should take into ac-
count that more than one level corresponds to each tensor. It is not hard to
get convineced that the number of levels will also follow the exponential law (3.22),
possibly with a different value for a. The physical meaning of this enormous
multiplicity will be discussed in more detail in Sect. 6.

4. — Divergence conditions.

Let us now investigate in detail the explicit form of the linear relations
among the tensors defined in the previous Section. As already discussed, the
only relations we expect to find should relate the divergence of a tensor (i.e. a
tensor where one index is saturated with /1,) to tensors of lower rank.

We shall indeed obtain Ward-like identities which will be extremely useful
in order to obtain at least a partial compensation of the effects of ghosts.

The starting point for our derivation is the important fact that our factoriza-
tion can be performed equally well in both multiperipheral configurations
discussed in Sect. 2. The equivalence between the final formulae obtained in
the two ways will lead to the identities which will be discussed in this Section.

We shall find it useful to work in the spe-
cial case in which we have only two final mo-
menta ¢, and ¢, with

qc:%(ﬂ‘l‘d)’

(4.1)
n=3(I—4),

defining the four-vector 4,. The two final par-
ticles have arbitrary « masses» ¢2 and g;. The

L. . . . Fig. 3. — The particular mul-
process is illustrated in Fig. 3. We then write tinaiticle process used to derive

down for this process the two equivalent Ward-like identities. The final
forms (2.15) and (2.16). We do not imply that momenta g, and g, are off the

mass shell.

this is the correct way of going physically off
the mass shell, but just observe that these two
mathematical expressions do indeed satisfy all the required properties and in
particular the reflection symmetry.

This reflection symmetry transforms the set P™ into the set P defined
in eq. (3.6).

The transformation law as given in the Appendix is simply

(4.2) r® -+ P z d;”)P“) )

t=0
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where

"
(4.3) AP = (—1)* () .

1.

It is very useful to introduce new vectors V0 defined by (see again the Ap-
pendix)

”
rin)y __ (n) i)
Ve =Y 0P P,

=0

n—i [T
02"):(—1?(};) ()

which have the simple transformation law

(4.4)

(4.5) V”)—;; Vo — (—1) Ve,

Let us now consider the equivalence between the two factorized forms. This
leads to the identity

1
~ @ an
(1.6) Ar+4:<‘3_“(3)—1(12"’(1)[Z;;[(P(")‘Ql) | (1—qi/2>]]> =
o n=1
[}

1

= <sz Z~*@—1 exy) [i %ﬂ [P go) 4+ (1 — qf/‘.’)]]) .

n=1
0

We now substitute eq. (4.1) in (4.6). After a few manipulations and using
the fact that eq. (4.6) is valid for any value of s we get

" <()Xp [W,‘ (/1 z /;I)M]> _ (exp [W (11— ; A)M]> ’
where

(4.8) W, = Z 9“"’ z 21,/"”

and

(4.9) PW —=PW ][ [2

At this point it is important to exploit the different relations connecting P,
P Yo and Voo, This can be done by using eqs. (A.23)-(A.27) obtained in
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the Appendix, which enable us to write for W and W

(4.10) W=3Lym,  W=3 (‘ny) yo
where
4.11 ! + 1 = -
(4.11) g 272
and
Y = Yim for n odd ,
(4.12)
Y = Yl Q=n JT for n even .

In terms of the P we have

(4.13) W=3=pn; W=3=ow,
where

1 1 1 1 1
(4.14) 2—525, or also _z+§:1'

The linear relations we are looking for are obtained by using the fact that
eq. (4.7) should be valid for any value of A, and of z (or ¥).
Expanding eq. (4.7) in power series of A, we get immediately

o (s [} = (o [T,

(4.16) <W,, exp [HTWD =— <Wy exp [E;Wb
and in general

(4.17) (W Wiy oo Wy exp [I—IZEID — (—1)(W—>T).

Using for instance (4.10) we have to equate to 0 all powers of ¥ which would
give the wrong symmetry under reflection (from (4.18) W(y) = W(—1v)).
We shall limit ourselves to write explicitely the equations for the first few
states and trajectories which will be used in the next Section. To lowest order
in ¥y we have

oy
2

yZ
(4.18) <(1 + ¥+ ) (y“//,‘}l’ +% Vﬁ?)'

(e + )= cnw-—v.
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The first nontrivial identity is obtained by looking at the coefticient of y*+!
which should be set to zero. We get

(419) Ly OyOyD oy z PPy D e g

The first two of these identities read

(4.20) Iy =0,

or

(4.21) (PP = %ﬁ ey
and

(4.22) IV PPy = — (W2

It is clear that the Ward identities are written most easily in terms of the
vectors ¥ which are eigenvectors of the R-reflection. On the other hand the
fundamental form appearing in the factorized residue is simple in terms of the
vectors P™ and P™. If one wants to obtain the Ward identities in terms of
these vectors one has to expand W with eq. (4.13) and equate the coefficients
of the expansion in 2.

Let us now discuss the significance of our results. The identities we have
just obtained imply relations between the divergence of one tensor and a com-
bination of lower-rank tensors. The divergences of tensors correspond to time
components in the c.m. system and consequently to unphysical states of negative
norm.

Our identities show that, at least in certain cases, ghosts are accompanied
by « well behaved » particles which are coupled in the same way to all channels.
Hence what one sees experimentally is only the algebraic sum of the particle
plus ghost contribution and if this sum turns out to be positive the presence
of the ghost has no observable consequence. This sitnation is well illustrated
(as we shall see in more detail in the next Section) in the case n=1.

The Ward-like identity of eq. (4.21),

(PP ~ (1),

tells us that the c.m. time component of <PL1)> does couple to all channels in
the same way as the scalar object (1> which corresponds to a well-behaved
particle. It will turn out that the positive residue will always be larger than
the negative one, thus compensating completely all bad effects of (P{'>.

We want to notice that the appearance and cancellation of ghosts in our
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contest has striking analogies with what happens in quantum electrodynamics.
As already pointed out in both cases ghosts appear because of the explicit
covariance of the formalism. In our case the ghosts are related to the presence
of Lorentz particles which lie on Lorentz trajectories needed to have an S-matrix
free of kinematic singularities. In electrodynamics a covariant treatment
requires to represent the photon by means of the four-dimentional e.m. poten-
tial 4,. The time component 4, leads to an unphysical time like photon with
negative metric. It is well known that the presence of Ward identities, which
follow from current conservation, implies that the negative contribution from
time like photons is always exactly cancelled by the positive contribution of
the longitudinal photon.

This is indeed very similar to what happens here in the Ward like iden-
tity (4.21).

Let us finally point out that the equations we have derived in this Section
are not the most general divergence conditions. Because of the special choice
of a two-particle « final state» we have only obtained an important subset
of all possible equations.

The complete study of Ward-like identities together with a more general
investigation of ghost compensation is deferred to further work.

5. — Some simple examples.

In this Section we consider explicitely in structure of the lowest-energy
levels. Defining N = «(S,), where S, is the squared energy of the level, we
have:

N =0. This is a level containing just a scalar singlet. In general all the
resonances on the leading trajectory factorize in the simplest way as observed
already by several authors (°).

N =1. This level was discussed already in the previous Section. The residue
at the s-pole can be written as

6.1) By = (TP Oy + 5 4 oy ()

Since

we simply get

(5.2) By = (T CURS +5 <<
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VY and U are divergenceless tensors. Hence we have just a spin-one and a
spin-zero meson and no ghost appears.

Before leaving this simple example it is amusing to illustrate the Ward
identity we have used, in the simple case of 3 incoming momenta. Equation (4.21)
is then given by

H2
(5.3) [P0, 1> + prulad] = 7 1>,
which leads to

(5.4) (7 po—7[2) (1) = — (Pr- ) (&) .

Since we know the explicit form of the 4-point function in terms of ratios of
I'-functions it is easy to verify eq. (5.4) ().

In particular, since (x> is regular for (p,n)=0, from (5.4) the scalar
amplitude (1> has to have a zero for p,z— 0. This is indeed the zero used
by LOVELACE (*°) in order to get the connection between the dual amplitude
and PCAC. It is may be more than a coincidence that we are led to understand
the presence of the Lovelace zero on the basis of a Ward-like identity!

N =2. As N increases the complication due to the appearance of new
vectors starts to show up. In particular the residue R, at this pole can be writ-
ten as

. cle —ki)

{5.5) B,=8,4+¢8,+ 9 8, ,

or

el +1)
2

1 5 1 = =
(5.6)  Ra=3 PR @Qu> + 5 <PQ + <P + 1<

In terms of O,, representations R, contains:
a) A second-rank tensor (P,
b) Two four-vectors (PS5 (P,
¢) One Lorentz scalar (1).

For the space components of these tensors all couplings are real (since ¢> 0).

(*°) In the case of more than 3 incoming particles the « direct inspection method »
to prove eq. (4.21) is indeed pretty hard!
(*9) C. LOVELACE: Phys. Lett., 28 B, 265 (1968).

54 — Il Nuovo Cimento A.
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The Ward-like identities at our disposal are the following:

(5.7) IT(PPy = g— @,
(5.8) IT,(PY> = (D,> = <P,‘}’ (1 +%) ——P,§2’> )

This last Ward identity is easily obtained from (4.22). At this point it is
convenient to classify our states in O;, namely to separate their angular mo-
menta J. Instead of using P; and P;” as independent vectors we shall use P;”
and D,. The resulting spin structure is shown in Table I where we have put

TABLE 1. — Tensors appearing in the residue R, and their O, content. States with imaginary
coupling are in parenthesis.

(P> {Dy> Py 1y
PRy J=2,T=0
(P, (Par>i (J=1) (Dpy: J=1 PPy J=1
(P> I =0 (Dyy: (I =0) CPWY: (J=0) A3 J=0

in parenthesis ghostlike states (time components). In terms of c.m. components
the Ward identities (which are the only linear relations among our tensors)
read

<P(1)\:/P;£>N<Dk>: k=1,2,3,

0K/
(5.9) (P>~ <{Dy>
(PP) ~ <15
The relative weight of the various components in eq. (5.6) is such that:

1) The PY P ghost like states are completely compensated by D,.
%0 Yy

ok
No spin-1 ghost appears.

2) The above compensation unfortunately is such that the ghost-like
state D, dominates over Py while P}’ is accomodated by the good scalar (1.
It is easy to get convinced that there is no way to get rid of this difficulty
with our set of tensors only. If we have to compensate for the ghost like Pyy
we have necessarily the trouble for D, and vice versa ().

The previous example hag shown that our program of ghost killing is only
partly successful. Therefore the many-particle representation in the simplified
formt presented here is not free of negative norm states.

1) The trace P(D i8 just an inde endent, ositive norm scalar which, unfortunately,
cannot save the situation.
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The reason for this difficulty is not hard to understand from an intuitive
standpoint; indeed we see that we have an infinite number of independent
vectors P,» whose time components /7, P’ are negative-norm scalars. One
would therefore need an infinite number of independent positive-norm scalars
in order to obtain a full compensation. However, from the explicit form of
Sect. 3:

(5.10) ~4mp[§ "Pmp$%+cﬂ,

we see that a single scalar (1> exists for each different vector P™ and Q.
The reason is that, in this simplified model with all trajectories being equal
(see Sect. 3}, great compensations occur in the expressions for y and ¢ given
in (2.7) and eliminate all possible new secalars. On the other hand the vector
part Pm@Qm of (5.10) is extremely stable against modifications of the trajec-
tories (12). It is therefore not unconceivable that less restrictive and more
realistic models with the same vector part, could provide the new scalars which
are needed. In particular one could take the realistic situation in which the
external lines are pions, where trajectories coupled with even and odd numbers
of lines are not the same. This would be enough in order to obtain a scalar S
for each vector PP

Another possibility (**) is to take the model itself less seriously and add
phenomenologically to it a smooth background so that the sum of the pole
plus background corresponds to a positive term. In this case the ghosts will
not be so ghastly but would lead to observable dips (of course factorizable!)
in the amplitude (*4).

At this point we want to discuss higher values of N. We shall limit our
attention to the two leading trajectories J >a(s,)—1. At a(s,)=n we have
a spin n on the leading trajectory and a spin #—1 on the first daughter.
They can both be extracted from eq. (3.15) and they read

,

1 noo ¢ ) )
/[)( ! 7PV <(i)/(l1 N1 FEY <P(1 Hpey/ <Q(1 /1,,..1> +

(5.11) R«—w\ t i

1
¥

+ P i PP QL Q> 4 (contributions to J < n—1) .

2 — ) Htins

(2) The only important condition that has to be maintained in order to have the
simplest factorization is the universality of the slopes.

(**) We do not consider as particularly promising the alternative of adding more
« satellites » terms to eq. (2.1) since this, unless we find an appropriate way of adding
similar terms to the multiparticle amplitudes, will spoil our simple factorization.

{('*) A more optimistic point of view is to say that this background will come out
automatically from unitarizing the narrow resonance approximation: see, for instance,
G. VENEZIANO: Proceedings of the Coral Gables Conference, 1969.
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We can now write the « Ward » identity given in eq. (4.19) as

R n—1 H . .
(012) I[ll<Vl(l’;‘)x---lln> = Z (T —F (2)) II(‘I() sBi-1figdeslin ©
Iy

i=1

Replacing now the P, s and @, s in terms of V, s and U, s one can verily that
terms odd under reflection drop as a consequence of (5.12). What is left is the
expression

5 _]_ o %) \__.4_1_ n—l
G.13)  Ro= sy T O~ o (o5 )

/m @ N
l celn-1- <Ul‘1 Hn-1/ +

Vs VKU 4 S U -H (S < m—1) .

The tensor <V!““ o ’V,‘,”> is not irreducible and the only spin n-—1 that is

contained in it comes from the complete symmetrical component
- > 1 — iy —

(011) I U) wHn-3 I ’(’2)~;?,_;_1 z I/I(lat) Vl(l];?--lll—x#u.p--#(-: = V-(fz‘jﬂ)—l *
Using eqgs. (5.12)-(5.14) we finally get (II*=—2(n— a))

= o= 1 174 4 T N
(:)‘ 1 ")) Rﬂ = ’;b—! <I/ .(Ilvzn\’ < (].(11-:71> - m < Vfllg-n—l/ <D fll-)-n—l/‘ -

¢ 1712 l »2) .
-+ En_ j)ﬁn ;_IWL—— a) <V —n-—-1>< -n—-1> 4 (J < N ])

Equation (5.15) tells us that the second trajectory is actually twice degenerate
(with the only exception of N =1 as we have seen) and both its constituents
have the right coupling. Once more the ghostlike J=n—1 component of
V“flL ., has been compensated by other tensors of rank n—1 through Ward-
like identities.

A further interesting feature that appears here is the occurrence of parity
doublets (M == 0 Toller poles). This happens the first time at N =3 where
the tensor V" V" appears. As we noticed already such an obect is not ir-

reducible and we can write:
(516) <V(1) V(E)><U(1) U(2) - 1<V(l) V(Z) + V(l) V(2)> <U(1) U(2) 4_ U(I) U(2)> _+_

+ i< V‘(‘l) V’('2) __ V‘fl) VL2)> <U;(41) U:a) - U:,D U:‘2)> .

The first term on the r.h.s. of (5.16) is the 17;},'2’ term considered in eq. (5.14).
The second one is a new object which, like the F,, electromagnetic field, is
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composed of one vector and one axial vector particle (parity doublet of spin 1).
N = 3 is the lowest-energy level at which M s 0 quantum numbers begin to
occeur in these models. Notice that the first two highest trajectories are not
parity doublets.

It is clear and easy to verify that all discrete representations of the Lorentz
group are indeed present or, conversely, all higher Toller trajectories should
be seen. This again confirms that simple two-body considerations are very
misleading in the estimate of the level structure.

6. — Conclusions.

We first summarize briefly the main results of our work:

a) The residue of each pole at s, — A -+ Bn factorizes into a finite number
of terms, independently on the number of initial and final external lines.

b) The number of such terms increases with an exp[av7n] law as a
function of n. This very fast increase, characteristic of a system with an
infinite number of degrees of freedom, could not be expected on simple intui-
tive counting of trajectories in the elastic problem.

c) The different terms appearing in the factorized residue are four dimen-
sional tensors. As it is expected, the c.m. time components of these tensors
give rise to unphysical states (« ghosts ») with negative metric.

d) Fortunately one can find Ward identities connecting the divergences
of higher tensors (¢.e. c.m. time components) with tensors of lower rank. Those
relations give rise to a compensation of entire families of ghosts (e.g. for the
second trajectory).

The previous results suggest that the future outlook on the structure of
elementary particles could be rather different from what one could have ex-
pected a few years ago. First of all the somewhat unexpected result of the
enormous multiplicity of the levels shows that models with straight-line trajec-
tories and duality exhibit new peculiar features. The essential many-body na-
ture of the problem can also be understood from other, less direct, arguments.

Indeed two-body problems with short-range potential do necessarily lead
to trajectories which after having reached a certain value of J, start to decrease.
This is because the centrifugal barrier does not allow the existence of resonances
with large J.

It was also pointed out by MANDELSTAM () that infinitely rising trajec-
tories could follow from the opening of more and more channels with increasing

(**) 8. MANDELsTAM: Proceedings of the 1966 Tokyo Summer Lectures on Theoretical
Physics (New York, 1966).



834 8. FUBINI and G. VENEZIANO

energy so that the appearance of new thresholds compensates the decrease
(due to centrifugal barrier of the two-body part of «(f). It can also be seen
that the strict duality present in the models discussed here, requires the pres-
ence of Feynman graphs which correspond to a many-body problem both in
the s- and ¢-channel. The situation is simply illustrated in Fig. 4.

t counted twice

S
a) >———< hone

11

EESEE
=

N

3

L

Fig. 4. — Perturbation theory diagrams for a two-body process. Row a) is the old Born

approximation; Row b) is a twice composite ladder (strip) approximation; Row ¢) is

a N-times composite ladder approximation. The first and second column represent s

and ¢ channel exchange respectively. The third column shows the diagrams responsible
for double counting.

Fig. 4a) shows the old fashioned case of the exchange of an elementary par-
ticle. In this case the two poles 1/(s— M?) and 1/({— M?) should be sum-
med coherently interference model for resonances). Figure 4b) exhibits the graph
which are taken into account in the strip approximation which was suggested
by CHEw and FRAUTSCHI on the basis of the nearest singularities dominance
phylosophy. Again (apart from the square graph shown in Fig. 4b)) the inter-
ference model is almost valid. The situation is completely different with the
graphs of Fig. 4¢) in which a large number N of particles is exchanged in both
the s- and ¢-channel. In this case adding coherently singularities in s and ¢
will make us guilty of a bad crime of double counting. Finally in the limit
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N — oo the same graph represents at the same time poles in s and in t. So we
finally see that the evidence we find for the many-body structure of our levels
is not inconsistent with other features of dual-resonance models.

In a simple quark language one could say that the present models point
in the direction of qq excitation more than that of l-excitation of higher levels.

It is amusing that this phenomenon of compound levels is not new in nu-
clear physics. Indeed such an effect has been found in isobar analog resonances,
the giant dipole resonance and in fission. The possibility that in analogy with
the nuclear case, also elementary particle levels should have a fine structure
has been raised by FeSHBACH (**). Our theoretical analysis shows that this
may very well be the case.

Another important, although somewhat less pleasant feature is the ap-
pearance of ghosts with negative metric. This phenomenon too is not un-
expected: if one classifies Regge trajectories in parallel Lorentz families, the
particles related to the integer intersection of those trajectories can be clas-
sified as Lorentz particles. They will correspond to finite nonunitary representa-
tions of the Lorentz group and some of the particles will have a negative metric.
A similar situation is present in the program of saturation of superconvergence
relations, where the simplest schemes do indeed correspond to fake solutions
with Lorentz particles of indefinite metric. The surprising fact is that the
model does provide a mechanism for the compensation of effects due to ghost
exchange. What is helping us is the great richness of levels. We indeed find
well-behaved levels which are coupled to all channels in the same way as ghosts
and compensate their effect. This mechanism shows striking analogies which
the well-known compensation between longitudinal and timelike photons in
electrodynamics.

Unfortunately in the schematized model with all equal trajectories we are
only able to obtain compensation for the low-lying states. In spite of that, we
have not lost the hope that a generalized, more realistic model can be found
where no unphysical state appears at least for bosonic reactions (17).

If one considers the general properties of the dual resonance models one
sees that many of the good properties of a reasonable S-matrix are indeed
present. The important exception is of course unitarity, so that one might
feel that the dual-resonance formulae are the lowest-order Born approximation
of a new theory. From this point of view one is led to construct corrections to
the simple models by means of rules for constructing the equivalent of higher-
order Feynman graphs.

The rules for constructing higher-order dual graphs has been given, at least

(%) H. ¥FesuBacu: Comm. Nucl. Part. Phys., 1, 40 (1967).
(*") When half-integer spins are present, the parity degeneracy due to MacDowell
symmetry is likely to increase the difficulty of this problem.
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for a large class of graphs, by KIKKAWA, SAKITA and VIRASORO (!#). Itis amusing
to note that those rules could be obtained in an almost unambiguous way from
duality only. The main question is whether these graphs take into account
at least in a perturbative way unitarity. This can be directly verified if one is
able to recognize that the vertex functions appearing in those graphs are the
same as those appearing in the « Born-like graphs» studied in this paper.

We see therefore that the study of factorization is a necessary « easy »
preliminary step in the «hard » program of enforcing unitarity in a general
dual formula. In a more elementary way we can say that, since unitarity
involves a completeness sum on all states, the first step is to count how many
states we have to deal with.

We have seen in this paper that even this level counting is not so easy and
involves questions, like that of ghosts, which are far from being solved. Only
future investigation will tell whether the present stage of developments of dual
models is the first step for the construction of a reasonable self consistent theory
of elementary particles.

K Kk X
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APPENDIX

In this Appendix we discuss some technical details related to the reflection
operation R introduced in Sect. 2. We have seen that the factorization proper-
ties of the amplitude involves the fundamental vectors

r=1

(A.1) P = otp, m=1,2..),
i=0

where o, =&, &, ... %, %, ({=1,2,...7) and, by definition,

(A.2) %=1, o =0.

In particular it will be useful to define P'® from eq. (A.1) and the prescription
o1 = lim (¢)’ = 1, namely
E~>0

r+1 s+1
(A.3) PO=>p=IT=QV=Yq,.
1=0 i=0

*® K. KIKKAWA, B. SaKITA and M. A. Virasoro: University of Wisconsin preprint
€00-224 (1969). A dual formula for the box diagram was also independently obtained
by the present authors (unpublished).
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The reflection operation R acts on the vectors P as

r=1

(A4) P®— P =3 017,
1=0
where (see eq. (2.14))
(A.5) Pi=Puyiy  0i=1-—0m1i,

the linear transformation from P to P™ turns out to be simply
[n
(A.6) P(n) zd(n)Pm d:'m — (_1)1 ( ) ,
=0 7
the coefficients di” are given also by

(A7) (1 —a) = zd;’”xf.

In order to show that (A.6) is true we simply observe that

(AS) P(m Z Ql ﬁz Z 1— Or+1—1 ) Prir-: =
=2 (—0)p;= zzd,zm@; py=Z PP
i k

It will also be useful to define new vectors

(4.9) Ve =3 G—e)p, VO=II.
i=0
These vectors have the simple reflection property:

(A.10) Vi _R> Vim — (— 1)V,

which is easily verified.
The linear transformation between P® and V™ is given by

I,'(ﬂ) — Z O(n)P(i)’
(A.11) -
P(n) — E O(n) V(n) ,
i=0
where

1 (n) (n) i w 1\
(A.12) (g—a) AT :(—1)(‘)(5) .

(7

Equations (A.6) and (A.11) can be given the expression of formal power ex-
pansions

(A.13) Pw=(1—P)y, V»=E—P)pr.
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Before deriving the identities that will prove useful in Sect. 4, we have to
derive the simple equality

© —¢ i1
. fn) tn+1 _— .
w19 oret==(i=)

Equation (A.14) is proven by expanding [1 —#3—)]' in power series of
(3 —x), using (A.12) and then equating each power in .
We can now obtain the desired identities:

(A.15) z Vim Yyl = sz z 0?‘) Yyl = — 2P<n)zn+1 ,
n=0 i=0 n=1 n=0
where
—y 1 1 1
A.16 = S I=z,
(A.16) Eiypr % Rty T3

One can similarly proceed to derive the identity

N Dn) nt+l — < UV _____z, ﬂ+1:
(417) 3P S =5)

a=0 =0

— i V'n) z, ! — E_P n) 2"+1
- 1—2j2) ’

n=0 n=0

provided

alk

(A.18) +§=1 .

Equation (A.17) can be also derived by the formal expression (A.13)

o z/ 2 o
Al ! 1— naln — [ — Pgn
(A19) # RO B = e T T A

where the second equality is just the condition (A.18). Taking the logarithm
of the second equality in (A.19) we get

{A.20) logz'—1log[l— (1— P)2']=log (—#)—log (1 — Pz).
From (A.18) we have also

(A.21) logz' =log(—2)—log(l—=2), log(l—=2)-+log(l—2')=0.
Equation (A.20) ean then be transformed into

(A.22)  1log(l—=z')—log[l' — (L — P)z']= }log (1 —2) —log [1 — Pz].
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By expanding in powers of z and z' and recalling that P® =a we have
finally

@ y(n)zn @K ‘f/}(n)z/n
(A.23) R D
n§=-:1 " n=1 7
where
(A &)4) {//m) — P(n) _E , y(n) — p(n) _z
94 & 5 : >

We now proceed in the same way, starting from the equality

A.25 LG
(A.25) 1—yV  1—2zP
Taking the log and adding on both sides log(l1 —z) we get

1 1 —2)y? 1
(A.26) ;log((r j—)y-)—log(l—yV):EI();{(lwz)—log(]—zP).

The argnment of the first log iy just (I —#¥/1), so that we get

© %'Ln)yn w {W“')Z"
(A.27) S =37

n=1 7 n=1 3
where Z® is defined in (A.24) and

) o for n odd,
(A.28) ¥ =<
Ny =] for n even .

Obviously (A.23) and (A.27) can also be proven directly without any appeal
to the formal eq. (A.13).

Note. — After this work was completed, one of us (G.V.) and the authors of ref. (18)
have been able to derive anambiguously a formula for Fevnman-like dual diagrams
with a single loop, using the factorization properties obtained in this paper.

In the case of the sclf-energy diagram we have found

+eo 1 1

Ag g :fd4J fdxldxzm;a(qﬁ—-lmz—mq:)—l (1 —x)(1 = &) x0T

—®© o0

exp [E O by p 1 mi)] [f(ym,) 098"

2130 —xgay)

where py, py arc the external momenta (p, +p, = 0); ¢, ¢, the internal ones, and
fle) =TT (L —a*)* is the partition function (%).
P
This formula, which demands some slight modification of the prescription of ref, (1%),
is now heing investigated.
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RIASSUNTO

In questo lavoro viene studiata la struttura dei livelli nei modelli duali con risonanze
strette. A questo scopo vengono usate le ampiezze per la diffusione di molte particelle
proposte recentemente da vari autori, e si considera la struttura del residuo in ciascun
polo. Si ottiene che per ciascun autovalore dell’energia E,=4/s, il residuo si fat-
torizza in un numero finito di temini (grado di degenerazione del livello) e che questo
numero cresce con n come exp [cE,]. L’interpretazione fisica di questo rapido aumento
¢ da trovarsi nella natura essenzialmente di molti corpi dei modelli compatibili con
la dualitd. La presenza di stati con accoppiamento immaginario discende facilmente
dal formalismo covariante quadridimensionale, che d’altra parte assicura I’assenza di
singolaritd cinematiche. Si riesce comunque a trovare un meccanismo di compensazione
analogo a quello che esiste in elettrodinamica quantistica (identitd di Ward). Anche
se il problema di una sistematica compensazione di tutti gli stati non fisici non ¢ stato
risolto, tali difficoltd sono eliminate per le traiettorie piu elevate.

CrpykTypa ypoBueil s Moaeneil ABOMHBIX Pe30HAHCOB.

Pe3ome (*). — B 370l cTaThe PacCMATPHBACTCS CTPYKTypa YpOBHeH 1uis MoJieneit
Y3KOro pe3oHaHca C JBOMCTBEHHOCThIO. [[na 3Toi menu Mbl GyIeM HMCIONIB30BATH MHOTO-
YaCTUYHBIE NBOMHBIE AMIUIATYIbI, HEOABHO MPEIJIONKEHHBbIE HECKONBKHMH aBTOPDaMH, U
OyneM M3y4YaTh CTPYKTYPY BBIYETA IJIS KaXXHOTO IMOJIKOCA, B TOM, YTO KacaeTcs ero ¢akro-
pusauud. MBI mMoyyaeM, 4TO Uil K&KZOTO COOCTBEHHOTO 3HAYCHUS IHePruM E,=+/s,
BBIYET, OEUCTBUTENILHO, GAKTOPU3YETCS B KOHEYHOE YMCIIO WICHOB (YHCIIO BBIPOXICHHBIX
YPOBHEi), H YTO 3TO YMCIIO YBEIMYMABAETCH C 7, KaK exp [cE,]. dusndeckas HHTEpupeTauns
3TOrO CHJIIBHOTO YBEJIHYEHHS COCTOUT, IO CYLIeCTBY, B MHOrO-4aCTHUYHOM Ipupone Moze-
Jeif, COOTBETCTBYIOIINX ABONCTBeHHOCTH. [losiBJICHHE COCTOSAHUI ¢ MHUMON KOHCTAHTOH
CBA3U CJIEIyeT HEIOCPEICTBEHHO M3 KOBAPHAHTHOTO YETBIPEX-MEPHOI0 MOAX0Aa, KOTODbIHI
MEI BBIOpain M KOTOPBIH 00eceYrBaeT OTCyTCTBAE KHHEMATHYECKAX CHHTYISpHOCTeH. TeM
He MeHee, OOHApyXEHO, YTO 3[eCh TAKXKE MOABIACTCA MEXaHW3M YHMUTOXKEHHS, aHAJIOTH-
YHEIM MEXaHH3MY YHHMYTOXEHHS, CYHIECTBYIOLIEMY B KBAaHTOBOM 3lleKTpoauHamuke (To-
xXmecTBa Yopna). Xord mpobjieMa CHACTEMATHYECKOTO YHHYTOXKEHHS BCEX « TyXOB» B
peaNbBHOM Cllydae He pelleHa, Mbl HAXOOWUM, YTO TAKHUM IyTEM IJIABHBIA U MPHYMHSAFOMIKAK
HauboJbiiiee OECHOKOMCTBO OyX, B OEHCTBUTENIbLHOCTH, HCKIIIOYAETCH.

(*) Ilepesedeno pedaxyuel.



