
ISRAEL JOURNAL OF MATHEMATICS 85 (1994), 19-56 

ON T H E  R E A L  E X P O N E N T I A L  F I E L D  

W I T H  R E S T R I C T E D  A N A L Y T I C  F U N C T I O N S  

BY 

LOU VAN DEN D R I E S  AND C H R I S  M I L L E R  

Department of Mathematics, University of Illinois 
Urbana, IL 61801, USA. e-mail: vddries@math.uiuc.edu; miller@math.uiuc.edu 

ABSTRACT 

The model-theoretic structure (Ran, exp) is investigated as a speciM case 

of an expansion of the field of reals by certain families of CC~-functions. In 

part icular ,  we use m e t h o d s  of Wilkie to show tha t  ( ~ n ,  exp) is (finitely) 

model  comple te  and  O-minimal .  We Mso prove anMytic  cell decomposi t ion  

and  the  fact t ha t  every definable una ry  funct ion  is u l t imate ly  bounded  by 

an i tera ted exponent ia l  function.  

Introduct ion  

Wilkie [Wl,2] recently proved that the structure 

~xp := (•, <,0, 1, +, - , . ,  exp) 

is model complete, that is, Th(~xp) is model complete. Earlier it was shown, cf. 

[vdD2] and [D-vdD], that the structure 

~ n  := (R, <, O, 1, +, - , . ,  (f)/eR{X,m),me~) 

is model complete, where R{X, m} := 1r X,~} denotes the ring of all 

power series in X1, . . . ,  Xm over R that converge in a neighborhood of [-1, 1] m, 

and where for f E R{X, m} we define f: R m ~ R by 

f(x), f o r x e [ - 1 , 1 ]  m 

/ ( x )  :=  0, for x e R m \ [ - 1 ,  1] m 
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(The subscript "an" stands for "analytic"; by [D-vdD] the sets definable in ~ n  

are exactly the/~nitely subanalytic sets introduced in [vdD2] .) 

These two model completeness results imply, by older theorems of Lojasiewicz 

and Hovanskii, that Ran and Rexp are O-minimal. This raises a question that we 

answer in this article as follows, cf. (6.9): 

THEOREM: (]~n, exp) is model complete and O-minimaL 

(This makes (]~, ,  exp) the largest presently known O-minimal expansion of 

the ordered field of reals.) The proof of this theorem is very much along the lines 

of Wilkie's proof for P~xp: we extend arguments from [Wl,2] to obtain a sort of 

relativization of Wilkie's theorem so that we can add the exponential function to 

suitable model complete and O-minimal expansions of the ordered field of reals, 

and preserve model completeness and O-minimality; see (6.10). 

To check that this relativization applies to ]~n we use a theorem of Frisch IF] 

to the effect that the power series ring JR{X, m} is noetherian; see section 2. We 

also need an easy extension' of Hovanskii's theorem [H]; see section 3. Another 

model complete expansion of the real field is 

(R, <, 0, 1, +, - , . ,  sin ][-r ,  ~r], exp), 

where, say, we define sin I [ - r ,  ~r] to be 0 outside [-~r, ~r] to make it total. In fact, 

our relativization of Wilkie's theorem shows we can replace here sin I[-~r, ~r] by 

the restrictions to [0, 1] m of any Pfaffian chain on R m , provided we put certain 

real constants in the language, cf. (6.12)(ii). 

As mentioned already we follow here Wilkie's method for proving model com- 

pleteness of certain expansions ~[ of the field R, which consists in carrying out 

the following three steps for T := Th(R): 

STEP 1: Show that T is model complete if for each pair of models k and K of 

with k C_ K, every "regular" solution in K n of a system of n equations in n 

unknowns given by terms over k lies in k ~. (See (1.1) below for the notion of 

r egu la r  solut ion.)  

STEP 2: With k and K as in step 1, show that every regular solution in K '~ of 

a system of n equations in n unknowns given by terms over k is k-bounded. 
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STEP 3: Improve the conclusion of step 2 by showing that each such regular 

solution actually lies in k n. 

This way of proving model completeness, in combination with the finiteness 

of the number of regular solutions (Hovanskii), has interesting consequences, the 

most important of which is O-minimality; cf. (5.11). Another is finite model com- 

pleteness, cf. (5.14): Call an L-theory T f in i te ly  m o d e l  c o m p l e t e  if for each 

L-formula r x = ( x l , . . .  ,XM), there is a quantifier free L-formula O(x, y), 
with y = (Yl,---,  YN), such that T ~- r ~ ~yO(x, y) together with an integer 

k > 1, such that T ~- 3<-kyO(x, y). Finite model completeness implies of course 

model completeness, and we actually prove that all structures above are finitely 

model complete. 

Finite model completeness is a weaker variant of the strong model completeness 

of [vdD3]. Related to finite model completeness and O-minimality are some 

further results for ~xp ,  ( ~ n ,  exp) and similar expansions ~ of the field of reals 

discussed in this paper. 

In section 7 we characterize the definable closure of a subset S in any structure 

K elementarily equivalent to ]~ as the set of coordinates of regular solutions of 

systems of equations given by terms with constants from S. 

In section 8 we prove that definable sets can be decomposed into finitely many 

analytic cells and that  definable functions are piecewise analytic. 

In section 9 we provide an iterated exponential bound for the asymptotic 

growth of functions f :  R --~ R that are definable in ( ~ n ,  exp). 

To be able to treat all the above expansions of the field of reals in an efficient 

and uniform way, we introduce in section 3 the notion of "system of Ca-r ings  '' . 

Such a system consists for each n E N of a ring of C~-functions on R '~ closed 

under taking partial derivatives. A large part of sections 3 and 5 is devoted to 

deriving basic facts on such systems when they satisfy extra properties (Hovanskii 

property, noetherianity), and are extended in certain ways. 

During our work on this paper Ressayre ([Re]) found a novel approach to 

proving model completeness of structures like ~x p  and ( ~ n ,  exp), leading to 

other results that seem hard to obtain via Wilkie's method, for instance, simple 

explicit axiomatizations of the theories of these structures relative to the cor- 

responding "restricted theories". Elaborating on Ressayre's ideas one can show 

that the structure ( ~ n ,  exp) admits quantifier elimination when the language is 
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extended only by a function symbol log to denote the logarithm function (de- 

fined to be 0, say, for nonpositive arguments). (See [vdD-M-M].) This in turn 

implies strong model completeness, instead of the finite model completeness of 

this paper. However, this approach does not give O-minimality without a certain 

amount of further work roughly equivalent to what is done in the present paper 

in sections 3 and 5. Also for the results in sections 7, 8 and 9 extra work would 

be needed, though it is fair to say these results are almost visibly evident from 

the Ressayre point of view. Nevertheless, it seems reasonable not to abandon 

the remarkable methods introduced by Wilkie, and to put them into a somewhat 

more general setting, as we have tried to do in this article. 

Lou van den Dries thanks the Institute for Advanced Studies of the Hebrew 

University of Jerusalem for its hospitality and the use of its facilities during the 

writing of this paper. 

1. Prel iminaries  

1.1 DIFFERENTIABILITY AND REGULARITY. We often deal with C~ 

on ordered fields different from R, so it may not be out of place to fix some 

definitions. 

Let K be any ordered field, U an open subset ofK '~. For x = (Xl , . . . ,  x~) E K '~, 

put ]x[ = sup( [x l [ , . . . ,  [x~[). 

Consider a map f = ( f l , - . - ,  fro): U --~ Km. 

We call f d i f f e ren t i ab le  a t  t h e  po in t  a E U if there is a K-linear map 

T: K '~ -~ K m such that  for each e > 0 in K we have I f ( a + x ) - ( f ( a ) + T ( x ) ) l  < elxl 

for all sufficiently small vectors x in l( ~. (Such a map is necessarily unique.) 

Clearly f is differentiable at a iff each of the components fl is differentiable at 

a; then the partial derivatives (OfJOxj)(a) exist, these being defined by the 

usual e-5 definition, with e and 5 ranging over t(. If f is differentiable at a, 

then f is continuous at a, and the matrix of the linear map T as above rela- 

tive to the standard bases is the m-by-n matrix ((Ofi/Oxj)(a)), which we call 

the Jacobian matrix of f at a, and denote by c9( f l , . . . , /m) /O(x l , . . .  ,xn)(a). 

We call f a C~ if f is continuous, and inductively we define f to be a 

Ck+l-map (k _> 0) if f is differentiable at each point a E U and the map 

a ~ O( f l , . . . , fm ) /O( x l , . . . , x ~ ) ( a ) :  U --* K m~ is a Ck-map. Note that if f 

is C k+l, then f is C k. Finally, we call f a C~-map  if f is a Ck-map for all 

k E N; in that case all partials of all orders of the f~'s exist and are continuous on 
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U. (The converse is true for K = •) We leave to the reader the statement and 

(standard) proofs of the usual formal rules such as the chain rule for compositions 

of CLmaps.  

Assume now that the map f above is a C~176 and let a 6 U. 

We say that f is r egu l a r  a t  a if the rank of the Jacobian matrix of f at a 

equals min{m, n}. Otherwise (when the rank is less than min{m, n}) we call a 

a c r i t ica l  po in t  o f  f .  We call b 6 K m a r egu l a r  va lue  o f  f if f is regular at 

every point x 6 U with f (x)  = b. (In particular, all points b 6 KIn\ / (U) are 

regular values of f . )  For b 6 K m we put 

Reg(f,  b ) :=  {x 6 f - l (b ) :  f is regular at x}. 

Given b = (b l , . . . ,  bin) 6 K m we also talk about the system of equations 

f l ( X )  : b l  

f r o ( x )  = bin, 

and we express x E Reg(f,  b) also by saying that x is a r eg u l a r  so lu t ion  of 

the system. When b = ( 0 , . . . , 0 )  we also write V ( f l , . . . ,  fro) or V(f )  for the 

zero set ] -1 (0 )  of f l , . . . ,  fro, and Vreg(fl , . . . ,  fro) or Vreg(f) for Reg(f,  0), the 

set of r e g u l a r  ze ros  of f l , - . - , f m .  Often we have m = n (same number of 

equations as unknowns) and then we denote the determinant of the Jacobian 

matrix of f at a point x 6 U by J(f)(x) or J ( f l , . . . ,  f,~)(x) and call this the 

J a c o b i a n  o f  f a t  x; note that then f is regular at x if and only if J(f)(x)  ~ O. 

(We remark that Wilkie writes VnS(fl , . . . ,  fro) instead of Vr~g(fl, . . . ,  fro) and 

speaks of nonsingular solutions instead of regular solutions.) 

1.2 DEFINABILITY AND O-MINIMALITY. In this paper "def inab le  in a s t ruc -  

t u r e "  means "def inab le  in t h e  s t r u c t u r e  us ing c o n s t a n t s  f r o m  t h e  un-  

de r l y ing  set  o f  t h e  s t r u c t u r e " ,  unless indicated otherwise. If A and B are 

L-structures for the same language L, we write A C_ B to indicate that  A is a 

substructure of B. Terms in a given language are often used to denote the func- 

tions they define in structures for that language, provided it is clear from context 

which structure is intended, and which cartesian power of the underlyin~ set of 

the structure is the intended domain of definition of the function. 
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A structure A = (A, < , . . . )  with a distinguished linear order < on its under- 

lying set A is called O - m i n i m a l  if (A, <) is dense without endpoints and each 

subset of A that is definable in A is a finite union of intervals (a, b) and points, 

where a, b E A U {-c~,  +co), a < b. Then every structure elementarily equivalent 

to A is also O-minimal, cf. [K-P-S], and therefore we may (and shall) call the 

complete theory Th(A) O-minimal. 

Let ~[ be an O-minimal expansion of the structure (•, <, 0, 1, - ,  +, .), and put 

:= Th(~) ,  an extension of RCF, the theory of ordered real closed fields. Then 

has definable Skolem functions, for the same reason that RCF has, cf. [vdD1]. 

Let K ~ T. 

By definability of Skolem functions, the definable closure of any subset of K is 

(the underlying set of) an elementary submodel of K. Moreover, the operation of 

taking the definable closure (in K) of subsets of K is a closure operation satisfying 

the Steinitz exchange property, cf. [P-S], and hence gives rise to a notion of rank .  

In particular, given elementary submodels kl and k2 of K with kl _C k2 we write 

rk(k21kl) for the cardinality of any non-redundant set of generators of k2 over 

kl, "set of generators" to be taken in the sense of the definable closure operation, 

and "non-redundant" meaning that each strictly smaller set has a strictly smaller 

definable closure. (In the case T = RCF, this rank is just transcendence degree.) 

Given a definable C~-map  f :  K n ---* K n and a point bE K n it follows from 

the implicit function theorem that all points of Reg(f,  b) C K n are isolated in 

Reg(f,  b), and since Reg(f,  b) is a definable set, O-minimality implies: 

Reg(f,  b) is finite, w i th  a un i form f ini te  b o u n d  on card(Reg(f,  b) ) as b ranges over 

K n . 

1.3 ORDERED FIELDS. Let K be an ordered field. We put Pos(K) := {x E 

K: x > 0}. Given a subfield k of K we say that a E K is k-bounded if lal < b for 

some b E Pos(k), and we say that a point ( a l , . . . ,  an) E K n is k-bounded if each 

coordinate ai is k-bounded; the set of k-bounded elements of K is convex in K, 

and hence a valuation ring of K. For k = Q = the prime field in K, we let Fin(K) 

denote the ring of Q-bounded elements, as in [W2]. The valuation on K induced 

by the valuation ring Fin(K) is denoted by OrdK, or just ord if K is clear from 

context, and its value group by ord(K). (This is a slight abuse of notation, since 

ord(0) = c~ is not included in oral(K).) When k is a subfield of K we identify 

ord(k) with a subgroup of ord(K) in the usual way, and we consider ord K as an 

extension of ord k. Note that if K is real closed, ord(K) is divisible, and hence a 
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vector space over Q in a natural way. For real closed K we also use the "euclidean 

norm" [Ix N := (x 2 + . . .  + x~)U: for x = (Xl, . . .  ,Xn) e K n. 

1.4 SMOOTHNESS AND RATIONAL TYPE. Let ]~ be an expansion of the ordered 

field of reals and 5b := Th(~).  

After Wilkie [W2] we call ~ (as well as T) s m o o t h  if the following three 

conditions are satisfied: 

($1) ~ is O-minimal; 

($2) for each model K of T and each definable function f :  K --+ K there is n E l~I 

such that  [f(x)[ _< x n for all sufficiently large x in K; 

($3) for each formula r in the language of T ,  x = (Xl , . . . ,  xn), there are m, 

p E N and C~162 Fi: Ii~ n+"  ~ R for i = 1 , . . . , p ,  definable in 

without constants from R, such that 

~ gx(r ~ 3y(ly I _~ 1 A V(Ni(y)  A Fi(x, y) = 0))), 
i 

where y = (Yl , . . . ,  Y,~) and Ni(y) is a conjunction of formulas yj ~ O. 

(In ($2) it suffices to consider K = IR, and functions definable in 1~ without using 

real constants, but we shall not use this fact.) 

We now have the following important result from Wilkie [W2]: 

PROPOSITION: I f T  is smooth and K is a model o f f  ~ of finite rank, then 

(,) rk(K) > dimQ(ord(K)). 

Actually, smoothness seems mainly a technical condition that  can be verified 

in some concrete cases, and is then further only used via (,). 

Let us say T is of r a t iona l  t y p e  if 2~ is O-minimal and every model K of finite 

rank satisfies (*). We introduce this notion here because there may be ways 

of verifying (,) other than via smoothness. (For example, RCF satisfies (,)  by 

simple valuation theory, and this is essential in Wilkie's proof of "smooth" 

"rational type" .) We have the following result derived by Wilkie [W2] for smooth 

2P. His proof goes through unchanged for T of rational type. 

PROPOSITION: Suppose T is of rational type, K ~ T and k is an elementary 

submodel of K such that rk(Klk ) is finite. Then rk(K[k) > dimQ(ord(K)/ord(k)). 
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2. Ran is smoo th  and R{X, m} is noe ther ian  

2.1 For each f �9 R{X, m}, define the real analytic function ]: R "~ ~ R by 

. .  X 2h-1 ., (1 § x 2 ) - l ) ,  ](Xl, := f ( ( 1  + , . .  

and put 

~ n  := (R, <, 0, 1 , - ,  +,-, (fi)feR{X,m},m~t~). 

One checks easily that ~ n  is interdefinable, both existentially and universally, 

with ~ ,  so model completeness and O-minimality of ~ n  implies that ~ ,  is 

model complete and O-minimal. We now use this interdefinability the other way 

around: 

2.2  LEMMA: ~ n  iS smooth. 

Proo~ For the O-minimality condition (S1), see [vdD2], and for the polynomial 

growth condition ($2), see [vdD2] and [Wl]. It remains to show that Ran satisfies 

(S3), and this is done along the lines of the argument in [W2] for the structure 

:= (R, <, 0, 1, +, - , . ,  e), where e(z) = exp(( l+z2)- l ) :  Work with ~ n  instead 

of Ran, use that ~ n  is model complete, and that the functions ] are C ~ on 

their domain of definition R m . Introduce for each f �9 R{X, m} and subset s of 

{1 . . . .  , m} the C~-function fs: R TM --* R by 

f s (X l , . . .  ,Xra) := f(xll, . . . .  Xlm), 

' = x2(1 § x~) -1 for i e s. Note that then ' = ( l + x 2 )  -1 f o r i ~ t s a n d x ~  where x i 
f8 is also definable in ~ n ,  and that if x l , . . . ,  xm E ~ with xi r 0 for i E s, then 

] ( Y l , . . .  ,Ym) = f s ( x l , . . .  ,Xm), where y~ = xi for i E s, and y~ = x~ -1 for i E s. 
| 

2.3 For later use we also note that the ring ~{X,m} is noetherian. This 

follows from the theorem of Frisch IF] that the ring C{X, m} consisting of all 

f E C~X1,.. . ,  Xm~ such that f converges on a neighborhood of the closed poly- 

disc ir C ~ with center (0, . . . ,  0) and polyradius (1 , . . . ,  1) is noetherian, and the 

fact that C{X, m} = R{X, m} • i .  R{X, m}. 

Let ~(X,  m} be the (noetherian) ring of all functions ] for f E ]~{X, m}. For 

m >_ 1 the ring ~ ( X , m }  does not contain the coordinate functions xl, nor is 

~(X,  m} closed under the operators O/Oxi, and so we adjoin the x('s and note 



Vol. 85, 1994 REAL EXPONENTIAL FIELD 27 

that ~,{X, m}[x l , . . . ,  xm] is a noetherian ring of real analytic functions on ]~m, 

closed under the operators O/Ox~. 

3. Systems of C ~ - r i n g s  a n d  Hovanski i ' s  T h e o r e m  

3.1 DEFINITION. A s y s t e m  of  C~- r i ngs  is a sequence 91 = (91~)meN such 

that for each m: 

(1) 9 ~  is a ring of C~-functions f :  ]~m ~ R under pointwise addition and 

multiplication of functions; 

(2) the coordinate functions xi: R TM --~ ]~ belong to ~ ;  

(3) for f �9 9 ~ ,  the function (x l , . . .  ,Xm, Xm+l) ~-* f (x l , . . . ,X ,~):  RW+I --+ R 

belongs to 9~+1,  and for each permutation s of {1 , . . . ,  m} the function 

(x l ,x2 , . . .  ,xm) ~ f(xs(1) . . . .  ,xs(m)): ]~m ~ ]R belongs to 9 ~ ;  

(4) y �9 9 ~  ~ Of/Oxi �9 ~Y~, for i = 1 , . . . , m .  

(Of course, in (3) it suffices to consider just permutations s = (i, i + 1) with 

l < i < m . )  

To abbreviate, we just write "system" instead of "system of C~-rings " . 

3.2 EXAMPLES. 

1. (Z[Xl, . . . ,  Xm])mer~ is a system, and in an obvious sense the smallest pos- 

sible system; 

2. (R[Xl, . . . ,  xm])mer~ is a system; 

3. (~{X, m}[x l , . . . ,  Xm])mer~ is a system (see (2.3)); 

4. (Z[Xl, . . . ,  xm, exp(x l ) , . . . ,  exp(xm)])meN is a system; 

5. (R[Xl, . . . ,  xm, exp(x l ) , . . . ,  exp(xm)]),~eN is a system. 

3.3 We say that the system 9l has the Hovanski i  p r o p e r t y  (or, more briefly, 

that 91 is an H- sys t em)  if for all m �9 1~t and f l , . . . ,  f,~ �9 9 ~  there is a bound 

H = H ( f l , . . . , f m )  �9 N such that for all a = ( a l , . . . , a ,~ )  �9 9 ~  we have 

(*) card{x �9 ~m:  f l (x )  = a l , . . . ,  fm(X) = am, J ( f l , . . . ,  fm)(X) • 0} __< g .  

To formulate this geometrically, consider a C~-map  f = ( f l , . . . ,  fro): R ~ 

R TM and a E ~m. Then (*) above says that card(Reg(f, a)) < H. 

If Reg(f, a) is finite then by the inverse function theorem there is a neighbor- 

hood g of a such that card(Reg(f, a')) _> card(Reg(f, a)) for all a' in U. Now by 

Sard's lemma such a neighborhood always contains regular values of f ,  hence in 
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the definition of "Hovanskii property" it suffices to require the existence of the 

bound H just for regular values a of the map f = ( f l , . - . ,  fro), that is, for a in 

R "~ with Reg(f, a) = f - l ( a ) .  

The 5 examples above have the Hovanskii property. For the first two this fol- 

lows from Bezout's theorem, or alternatively, one can apply the following simple 

observation to the ordered field of reals: 

Observation: If 9t is a system such that all functions from 9~ are definable in a 

fixed O-minimal expansion ~ of the ordered field of reals, then 91 is an H-system. 

(See end of (1.2).) | 

That the third example has the H-property follows from this observation by 

noting that all functions of R{X, m}[xl , . . . ,  xm] are definable in the O-minimal 

structure ~ n .  

That the last two examples have the H-property follows from Hovanskii's the- 

orem I in [H]. We will extend Hovanskii's theorem to a method for adjoining new 

functions to an H-system to get a larger H-system. 

3.4 Let 9~ be a system. We say that the C~-functions f l , . . . ,  fk: R '~ -~ 

form a Pfaf f ian  cha in  on R '~ over  ~t (or a (P, fft)-chain on R n) if for each 

j = 1 , . . . ,  k there are functions pij E fft~+j, for i = 1 , . . .  ,n,  such that 

(Ofj/Oxi)(x) = p~j(x, f l (X) , . . . ,  f j(x)) on R ~. 

We call k the l eng th  of the chain. 

3.5 Let 9~ be a system and let C~-functions f l , . . - ,  fk: R n --* R be given, not 

necessarily in fits. We let 9~  ( f t , - . . ,  fk) consist of all functions of the form 

x ~-* p(x; f l ( x ) , . . . ,  ]k(x)): R'~ --* R, where p E fft~+k. 

So 91~(f l , . . . ,  fk) is a ring of C~-functions on R n, and is the image of fft~+k 

under the ring homomorphism p ~ (x H p(x, f l ( x ) , . . . ,  fk(x) ) ) from 9~+k into 

the ring of all C~-functions on R n. In particular, if fftn+k is noetherian, so is 

9 ~ ( f l , . . . ,  fk). Note that f l , . . . ,  fk is a (P, fft)-chain precisely when the partials 

Ofj/Oxi belong to ~ ( f l , . . . ,  f j) ,  for each j = 1 , . . . ,  k, and that in that  case 

9 % ( f l , . . . ,  fk) is closed under the operators O/Oxi. 
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3.6 PROPOSITION: Let  9~ be an H-sys t em,  and f l , - . . ,  f k  a (P, ~t)-chain on E ~ 

o f  length k. Then,  given any n functions gl, . . . , g~ in 9 ~ ( f l , . . . ,  fk) defining the 

map g = ( g l , . . . ,  gn): R n ---' E ~ there is an integer M such that  

card(Reg(g, a)) <_ M for all a c R n. 

Remark:  This is proved just like theorem 1 in [H], with minor modifications. 

For the reader's convenience we repeat the argument. 

Proo~ By induction on k. For k = 0 this is just the hypothesis that  ~R is an H- 

system. Let k > 0, and let g = ( g l , . . . , g n ) :  R n --* E ~ with gi e ~ t n ( f l , . . . , f k ) .  

Write gi(x)  = hi(x ,  f l ( x ) , . . . ,  f k ( x ) )  with hi �9 ~ + k .  Given a = ( a l , . . . ,  an) �9 

R n we replace the system of equations gl(x) = a l , . . . , g n ( X )  = an by the 

equivalent system F l ( x , v )  = a l , .  . . . . .  , F , ( x , v )  = a~, G ( x , v )  = O, where 

F 1 , . . . , F ~ , G :  R n+l ~ R are defined by F i ( x , v )  = hi(X, f l ( x ) , . . . , f k - l ( x ) , v ) ,  

G(x ,  v) = f k ( x ) - v .  Note that F1 , . . . ,  Fn �9 ~ + 1  ( f l , . . . ,  fk-1); here f l , . . . ,  fk-1 

are considered as functions on ~n+l that do not depend on the last variable v. Put  

F = (F1 , . . . ,  Fn): E ~+1 --~ ~n and note that x ~ (x, f~(x)): E ~ --~ R ~+1 maps 

g - l ( a )  bijectively onto ( F , G ) - I ( a , O ) ,  and Reg(g,a) onto R e g ( ( F , G ) , ( a , O ) ) .  

Hence, 

card(Reg(g, a)) = card(Reg((F, G), (a, 0)). 

The partial derivatives of the Fi's belong to ~ + 1  ( f l , . . . ,  fk-1),  and on the hy- 

persurface G(x ,  v) = 0 in R ~+1 the partial derivatives of G are also given by 

functions in ~ + 1  ( f l , . . . ,  fk-1),  since on this surface we have f k ( x )  = v. There- 

fore there is a function J �9 ~R~+I ( f l , . . . ,  fk-1) such that  on this hypersurface 

we have J(x,  v) = the Jacobian determinant of (F, G) at (x, v). By the inductive 

hypothesis there is a bound N �9 N such that card(Reg((F, J), (a, r)))  < N for all 

(a, r) �9 R n+l . In this situation theorem 2' from [H] implies: if q �9 N is a bound 

for the number of non-compact connected components of the curve F - l ( a ) ,  for 

every regular value a of F,  then card(Reg((F, G), (a, 0)) _< N + q for all a �9 R ~. 

So we are done if we establish the existence of the bound q. For this, one uses 

again the inductive hypothesis and the fact that the number of non-compact con- 

nected components of a curve F - l ( a )  (a �9 R~ a regular value of F)  is at most 

the maximal number of transversal intersections of F - 1  (a) with hyperplanes in 
R n-l-1" I I  

We will not actually use this proposition until section 5, but it helps to motivate 

the following step towards proving model completeness of certain expansions 
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of the ordered field of reals, which is due to Wilkie for expansions by Pfaffian 

functions. We adapt it here to our context, which includes the case (]ICon, exp). 

3.7 Let 91 be a system. Let L(fft) be the language {<, 0, 1, +, - , -}  of ordered 

rings augmented by an n-ary function symbol f for each f E 9%, and each 

n C 5t. We interpret this symbol f as the corresponding function f on ~n 

and obtain in this way an expansion of the ordered field of real numbers whose 

complete theory we denote by T~. If we further extend L(fft) by a unary function 

symbol exp to get the language L(9t, exp), and interpret this symbol as the usual 

exponential function on R, then we denote the complete L(9~, exp)-theory of 

the corresponding expansion of the ordered field of reals by Tin,exp. Note that 

exp is a (P, iR)-chain of length 1 on R. More generally, given any functions 

f l , . . . ,  fk: ~n __, ]R , we extend L(iR) by new n-ary function symbols f l , . . . ,  fk 

to get the language L(Vt, f l , . . . ,  fk), and the complete theory of the resulting 

L(9t, f l , . . . , fk ) -expans ion  of R is denoted by T~,f 1 ..... lk" Given a model K of 

T~,fl ..... f~ we let L(9~, f l , . . . ,  fk, K) be the language L(~ ,  f l , . . . ,  fk) augmented 

by constants for the elements of K. 

Let 9%[exp(xl),. �9 exp(x~)] be the subring of the ring of COO-functions on R '~ 

generated by exp(xl) . . . .  , exp(xn) over ff~. Note that fit, [exp(xl),. �9 -, exp(x~)] 

is closed under the operators c9/Oxi. 

Let K ~ Tga,exo. 

By writing each f E 9ln[exp(xl) , . . . ,  exp(xn)] as a polynomial in the exp(xi) 

over 9~  we can associate to each such f a definable COO-function fK: Kn --* K, 

and this function ]1( does not depend on the particular way of representing f 

as a polynomial in the exp(xi) over 9~;  the map f ~-* fK is an injective ring 

homomorphism from 9~[exp(x l ) , . . . ,  exp(x,~)] into the ring of all COO-functions 

on K '~, and this map satisfies also (af /aXi)K = COfK/aXi. Hence there is no harm 

in leaving out the subscript K in fK and considering 9%[exp(xl) , . . .  ,exp(x~)] 

also as a ring of functions on K n. Given Cl , . . . ,  c~ E K, we denote by 

9~  [exp(xl) , . . . ,  exp(xn), Cl , . . . ,  cr] 

the ring of C~-functions on K '~ generated by the constant functions Cl , . . . ,  c~ 

over f f~[exp(xl) , . . . ,  exp(x,~)]. Note that 9~[exp(x l ) , . . . ,  exp(xn), c l , . . . ,  cr] is 

then also closed under the operations O/Oxi, and is noetherian if 9% is. 

Call fit n o e t h e r i a n  if each ring 9t~ is noetherian. (The five examples at the 

beginning of this section are all noetherian.) 
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We now have the following variant of lemma 2.7 in [W1]: 

3.8 LEMMA: Let  9~ be noetherian and k, K ~ T~,e• wi th  k C_ K. Let  

t l ( X l , . . . , X m ) , . . . , t k ( X l , . . . , X m )  

be L(ff~, exp, k) - t e rms  such that  the sy s t em 

(*) t l (X l , . . - ,Xm)  . . . . .  t k ( X l , . . . , X m )  ----- 0 

has a solution in Kin�9 Then there exist  f l , . . . , f ~ C 9%[exp(x l ) , . . . ,  exp(x~)] and 

bl , .  �9 bn C k for some n > m such that  the sy s t em o f  equations 

f l ( x l , . . . , x n )  = 51 

f n ( X l , . . . , x ~ )  = bn 

has a regular solution ( a l , . . . ,  as)  C K ~ wi th  ( a l , . . . ,  am) a solution of  (*). 

Proos If a term t i ( x l , . . .  , x m )  is of the form t ( x l , . . . , x m , ~ - ( x l , . . .  ,x ,~))  for 

"simpler" L(~R, exp, k)-terms t ( x l , . . . ,  xm,  Xm+l) and T(Xl , . . . ,  xm), we can re- 

place the equation t ~ ( x l , . . . ,  xm) = 0 in (*) by the two equations 

t ( x l , . . . , Z m , X m + l )  = 0 

r ( z l , . . . ,  x ,~ )  - z ~ + l  = 0 

By unravelling the terms t~ in this way and increasing m we may reduce to the 

case that  all t~ define functions on K m from ~ t~ [exp (x l ) , . . . ,  exp(xm), c l , . . . ,  c~] 

for certain cl . . . . .  c~ E k. Since this ring is noetherian and closed under the 

operations O/Oxi we can apply Theorem 5.1 from [W1] and conclude there are 

g l , - - - ,  gm E ~ / e x p ( x l ) , . . . ,  exp(xm), c l , . . . ,  C~] 

such that  V ( t l , . . . ,  tk )n  vreg(gl . . . .  , g,~) is non-empty. By replacing c l , . . . ,  c, in 

the terms representing the g's by new variables Xm+l . . . .  , xm+~ we obtain func- 

tions f l , . . . , f m  E ~ [ e x p ( x l ) , . . . , e x p ( x n ) ]  on K '~ for n = m + r. Put  fm+l  := 

X m + l , . . . , f m + ~  := Xm+~, bl . . . . .  bm := 0 and b,~+l := c l , . . . , b , ~ + ,  := c~, 

and we have functions f l , . . . ,  f~ and elements b l , . . . ,  bn with the desired prop- 

erty. | 

This lemma has (by Robinson's test) the following consequence�9 
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3.9 LEMMA: Suppose 9t is noetherian. Then  T~,exp is model  complete  i f  for 

all models  k and K of  T~,exp with k C_ K and every n functions f l , . . . ,  fn  E 

9 ~ [ e x p ( x l ) , . . . ,  exp(xn)] and every n elements  bl , . . . , bn E k, every regular so- 

lution in K ~ o f  the sys tem of  equations 

f l ( x l , . . . , x n )  = bl 

f ~ ( x l , . . . , x n )  = b~ 

belongs to k n. 

This lemma reduces the problem of proving model completeness of T~,r to 

more managable proportions�9 

4. Bounding Regular Solutions 

4.1 An ordered exponential field is here a pair (K, exp) with K an ordered 

field and exp: K --* Pos(K) a strictly increasing isomorphism from the additive 

group of K onto the multiplicative group Pos(K), such that  in addition exp(1) E 

Fin(K) and there is for each n E N an E ( n )  E N such that  exp(x) > x n for 

all x > E(n) .  When dealing With • the symbol exp will always denote the 

usual exponential function x ~ e x, but note that  for any real number a > 1 

the function x ~-~ a ~ makes R into an ordered exponential field in the sense just 

defined�9 

For  t h e  r e s t  o f  th i s  s ec t i on  we fix a n  ordered exponential field (K, exp). 

Observe that  Pos(K) is a divisible group, hence ord(K) is a divisible group. 

We may therefore consider ord(K) as a Q-linear space�9 Note also that  the map 

x ~-* ord(exp(x)): K --* ord(K) is Q-linear with kernel Fin(K). 

4.2 We now give an algebraic version of a lemma due to Wilkie [W2]. Consider 

subfields k and k* of K such that  

(i) k c_ k* and Pos(k*) is a divisible group, 

(ii) exp(k) = Pos(k), 

(iii) exp(x) E k* for all x E k* with Ixl < 1. 

For each a E k*, exp(a) is an element of K that  may or may not lie in k*. 

Put  L(k*) := {a E k*: exp(a) E k*}, a Q-linear subspace of k* containing k and 

Fin(k*). Also ord(k) and ord(k*) are Q-linear spaces. 
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4.3 LEMMA: 

(i) The Q-linear map  a ~-+ ord(exp(a)): L(k*) --+ ord(k*) has kernel Fin(k*) 

and induces on residue classes an injective Q-linear map  

L(k*)/ (k  + Fin(k*)) -+ ord(k*)/ord(k) .  

In particular, dimQ(L(k*)/(k + Fin(k*))) _< dimQ(ord(k*)/ord(k)).  

(ii) I[ d i n ~ ( o r d ( k * ) / o r d ( k ) )  < oo and L(k*) contains an e lement  that  is not  

k-bounded, then dimQ(L(k*)/(k + Fin(k*))) < dirnQ(ord(k*)/ord(k)).  

Proo f  (Identical to the proo f  o f  l emma  4.2 in [W2]): Let U := k + Fin(k*). To 

prove (i), let a E L(k*) and assume that ord(exp(a)) E ord(k). Hence there is 

non-zero c E k such that ord(exp(a)) = ord(c). We may assume e > 0, and take 

d C k with exp(d) = c -1, so that N -1 < exp(d+a)  < N for some positive integer 

N, hence d + a  E Fin(k*), so a E k + Fin(k*). 

For (ii), assume m := dimQ(ord(k*)/ord(k)) < oo, that L(k*) contains an 

element that is not k-bounded, and that d imQ(L(k* ) /U)  = m. We shall derive 

a contradiction. Choose positive elements al < .." < am in L(k*) such that  

al + U , . . . ,  am + U is a basis of L ( k * ) / U ,  and such that  for each v E L(k*) with 

v > U, ifv = q l a l + "  "+qmam+u, (q~ E Q, u c U), thenv  > qaj for some positive 

rational q, where j = max{i: qi ~ 0}. Note that e x p ( a l ) , . . . ,  exp(am) E k*. By 

part (i) the elements ord(exp(a l ) ) , . . . ,o rd(exp(am))  span ord(k*) over ord(k), 

so if j is minimal with the property that aj > k, there are q l , . . . ,  qm C Q such 

that ord(exp(qlal + . . .  + qmam)) = ord(aj)  + ord(c) for some non-zero c E k. 

As before this gives d E k with ord(exp(d + qlal  + " "  + qma,~)) = ord(aj) ,  so 

a j / N  < exp(d + qlal  + " "  + qmam) < N a j  for some positive integer N. The left 

hand inequality implies d + qlai  + �9 .. + qmam > k, since aj > k and k is closed 

under the monotone increasing function exp. Thus q~ ~ 0 for some i E { j , . . . ,  m}. 

By the choice of the basis a l , . . . ,  am this implies d +  qlal  +" �9 �9 + qmam > qaj for 

some positive rational q. But then exp(d+q~a~ + . . .  +qmam)  > exp(qaj )  > N a j ,  

contradicting the right hand inequality above. | 

4.4 ASSUMPTIONS IN PROPOSITION (4 .5 ) .  Let an H-system 9~ be given such 

that 

(i) ~1 contains the function x ~ (1 + x2)-1: R -+ JR, as well as the function 

e: ~ -+ ~, where e(x)  = exp((1 + x2)-1); 

(ii) T~ is of rational type (for example smooth). 
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Let also K have extra structure so that  K ~ Tin; in particular the function 

e c 9~1 has an interpretation eK: K ~ K, and more generally each function 

g E ~ N  has an interpretation as a C~176 gK: KN --+ K. We assume further 

that  the exponential map exp on K satisfies exp((1 +x2) -1) = eK(x ) for all x C K. 

(These condition are all satisfied if (K, exp) ~ T~,exp.) 

Note that  then exp is a Coo-function on K with expt(x) = exp(x) for all x. In 

the following we shall drop the subscript K in gK for g in 9~. 

We finally assume k is an elementary substructure of the T~-model K such that  

exp(k) = Pos(k). Under these assumptions we have: 

4.5 PROPOSITION: Let  t l ( x , y ) , . . . , t n ( X , y )  be L(9~,k)-terms, x = (Xl , . . . ,Xn)  

and y = (Yl , . . . ,  Ym), m <_ n, and let a = ( a l , . . . ,  an) E K n be a regular solution 

of the system of Coo-equations 

t,(x, exp(x,),..., exp(xm)) ---- 0 

t,~(x, exp(xl) ..... exp(xm)) = 0 

Then al,..., am are k-bounded. 

Remark: Only the case m = n is relevant, but the particular induction in the 

proof suggests the formulation with m _< n. 

Proof." By induction on m. For m -- 0 there is nothing to prove. Assume m > 0 

and put an+j := exp(aj) for j = l,...,m and ~ := (al,...,an,an+1,...,an+m), 

:-- (xl,..., Xn, Xn+l,..., Xn+m), SO ~ is a regular solution of the system 

ti(5:) = 0 (i = 1 , . . . , n )  
exp(xj)  - x,~+j = 0 ( j  = 1 , . . . , m ) .  

(From now on the index i runs over {1 , . . . ,  n} and j over { 1 , . . . ,  m}.) 

Take S C_ {1 , . . . ,  n + m} with card(S) = n such that  the n-by-n matr ix  

( ( otd ax, )(a) )l ses 

is nonsingular. Let k* be the elementary substructure of the Tin-model K gener- 

ated over k by the as for s E {1 , . . . ,  n + m } \ S .  Then (as)ses  is a regular solution 

of the system 

= 0 = 1 , . . . , n )  
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where x' = (xs)scs and p~(x') is the L(~,  k*)-term obtained by substituting as 

for x~ in t~(2) for s E {1, . . .  , n + m } \ S .  Since T~ is O-minimal the p-system can 

have only finitely many regular solutions in K n, and because k* is an elementary 

substructure of K this implies as E k* for s E S as well. Suppose some aj with 

1 _< j _< m is not k-bounded, say ]all > k. We will derive a contradiction. Since 

exp(al) = a n + l , . . . , e x p ( a , ~ )  = an+m lie in k*, we have a l , . . . , a m  E L(k*). 

Hence by the previous lemma and the assumption that T~ is of rational type we 

get: 

a l , . . . ,  am are Q-linearly dependent over k + Fin(k*). 

So there are integers k (1) , . . . ,  k(m),  not all zero, and c E k, such that 

c + k(1)al + . . .  + k(m)am e Fin(k*). 

Since lall > k, some k(j)  with 2 _< j _< m is nonzero. To simplify notation we 

may as well assume that k(m) ~ 0, m > 1. Taking negatives and changing c if 

necessary we may even assume: 

k(m) > 0 and 0 < c + k(1)al + . . .  + k(m)am < 1. 

Take d C k* such that c+~-~ k(j)aj  = (l+d2) -1. Note that d r 0. Exponentiating 

this relation and rearranging gives: 

exp(c)- ( I I  exp(aj )k(j)) " exp(am)k(m) -- e(d) -- O. 
j<rn 

Now consider the following system H ( x l , . . . ,  Xn, Xn+l, Xn+2) of (n+2) equations 

over k: 

t ~ ( x l , . . . , x n , e x p ( x l ) , . . . , e x p ( x m _ l ) , x ~ + l )  =O ( l < i < n )  

2 --1 (c + ~ k ( j )x j )  - (1 + xn+2) = 0 
k(m) 

exp(c). ( I I  exp(xj)k(J)) " xn+l - e(xn+2) = O. 
j<m 

Clearly ( a l , . . . ,  an, exp(am), d) is a solution of this system. Let h i , . . . ,  ha, 

ha+l, h a + 2 : ] < n + 2  __+ K be the definable C~176 on the left hand side of 

this system H, in particular, for (Xl , . . . ,  xn+2) E K n+2 and 1 < i < n: 

h~(x l , . . . ,  Xn, exp(xm), Xn+2) = t~(x l , . . . ,  Xn, exp(x l ) , . . . ,  exp(xm)), 

2 - 1  h n + l ( x , , . . .  , xn+2)  = (c + k ( j ) x j )  - (1 + xn+2) , 
k(m) 

hn+2(x l , . . . ,  x~+2) = exp(c). ( I I  exp(xj)k(J)) 'Xn+l - e(x,~+2). 
j<m 
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Let A := exp(c). I-I exp(aj) k(j) and B := 2d/( l  +d2) 2, and note that  A = e(d). A 

routine computation using these formulas, row and column operations, and row 

expansion by the last two rows of the Jacobian matrix shows: 

J ( h l , . . . ,  hn+2)(a, exp(am), d) -- - k ( m ) .  A .  B .  exp(-am) �9 J (P l , . . .  ,pn)(a), 

where a = ( e l , . . . ,  an) and p~(x l , . . . ,  xn) = t~(x, exp(x l ) , . . . ,  exp(xm)). Thus, 

this Jacobian determinant is non-zero. Hence ( a l , . . . ,  a,~, exp(am), d) is a regular 

solution of the system H, whose equations do not involve exp(xm). However, we 

cannot apply the inductive hypothesis yet, since some k(j) might be negative, 

in which case hn+2 might not be of the required form. But multiplying hn+2 by 

(YIj<m exp(xj)) p for a suitable p > 0 we obtain a new equation giving rise to an 

equivalent system to which we can apply the inductive hypothesis to conclude 

that a l , . . . , a , ~ - i  are k-bounded, contradicting the assumption lall > k. This 

finishes the proof. | 

4.6 REMARKS. (1) Note that the hypotheses in (4.4) are satisfied by the system 

~}~ = (]~{X, m}[x l , . . . ,  Xm]), 

and any pair of models (K, exp), (k, exPk ) of T~,exp with (k, exPk ) C_ (K, exp). 

This is the case that is of interest in connection with proving model completeness 

of ( ~ n ,  exp). 

(2) Proposition (4.5) corresponds to section 2 in [W2], and most of the proof is 

along the same lines. However, the hypotheses of (4.5) are weaker than in [W2], 

since we do not assume that (K, exp) and (k, exp Ik) are models of T~,exp. The 

last part of our proof is accordingly different and does not depend on Hovanskii's 

theorem or results in [Wl], unlike the proof in [W2]. 

5. Substitution, O-Minimality and Finite Model Completeness 

In this section we show how to enlarge an H-system by functions of a Pfaffian 

chain to a "substitution closed" H-system. Under an additional noetherianity 

assumption on the original system we can then show that  zero sets of functions 

defined by terms have only finitely many connected components, see (5.10). We 

use this to derive O-minimality from model completeness in (5.11). We also show 

that under certain conditions model completeness implies finite model complete- 

ness; see (5.14). 

Let ~R be a system. 
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5.1 We say that  ~ is s u b s t i t u t i o n  c losed if for all f E 9% and g l , . . . , g ~  E 

fRm we have f ( g l , . . . ,  gn) E ~ .  The first two examples of (3.2) are substitution 

closed, the last three are not. 

5.2 Using induction on terms and the chain rule one easily shows that  the 

functions f :  R "~ ~ R defined by L(fR)-terms t ( x l , . . . , x m ) ,  (m = 0, 1, 2 , . . . ) ,  

form a system that  contains ~R and is substitution closed; it is the smallest such 

system. We call it the substitution closure of fR and denote it by ~R ~. 

5.3 LEMMA: Let L([R)-terms Q(y ) , . . . , t k ( y )  be given, y = (Yl , . . - ,Y, ) .  Then 

there are L(~.R)-terms TI(y ) , . . . ,  TN(y) and functions f l , . . . ,  fk+N in 9%+N such 

that the map y ~-~ (y, T I (y ) , . . . ,  TN(y)): I~ n --+ R '~+N maps V ( t l , . . . ,  tk) bijec- 

tively onto V ( f l , . . . ,  fk+g), and Vreg(t l , . . . ,  tk) onto V~r fk+N). 

Proo~ If all terms ti(y) define functions in 9% we can take N = 0 and let fi be 

the function defined by t~(y). If, say, tk(y) is of the form t(y, T(y)) with simpler 

L(~) - t e rms  t(y, z) and v(y), z an extra variable, then the system of k equations 

tl(y) . . . . .  tk(y) = 0 is equivalent to the system of k + 1 equations t l (y)  = 

. . . .  tk - l (y)  = t(y,z)  = ~-(y) - z = 0: the map y ~ (y,T(y)): ]~ ~ R n+l maps 

the solution set of the first system bijectively onto the solution set of the second 

system, with regular solutions corresponding to regular solutions. Unravelling 

terms in this way and introducing extra variables we construct in a finite number 

of steps the desired terms and functions. | 

5.4  PROPOSITION: Let L(9~)-terms t l ( x , y ) , . . . , t n ( x , y )  be given, where x = 

( x l , . . . , x m )  and y = (Yl,-..,Y,~). Then there are terms 7 1 ( x , y ) , . . . , T N ( x , y )  

from L(~R) and a map g = (gl, . . . ,gm+n+g): ]~rn+n-kN ___+ ~rn+n+N with all 

gi E fR~+,~+N such that for each a E ]~m the map 

y ~-* (a, y, Tl(a, y) . . . .  , TN(a, y)): ~['~ --* R m+n+N 

maps V(tl(a,  y) . . . .  , t~(a, y)) bijectively onto g - l ( a ,  O, 0), and maps 

vreg(tl(a, y ) , . . . ,  t~(a, y)) onto Reg(g, (a, O, 0)). 

Proof: By the lemma there are L(9~)-terms 71(x, y ) , . . . ,  TN(X, y) and functions 

f l , . . . ,  f,,+N E ~ + ~ + N  such that  the map 

( x , y )  }--'+ ( ( x , y ,  TI (X ,y) , .  .. , TN(X,y)):  ~m+n ----+ ~rn+n+N 
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maps  V ( t l , . . . , t ~ )  bi ject ively  onto V ( f s , . . . ,  f~+N), and v r e g ( t l , . . . , t n )  onto 

Vreg( f l , . . . ,  fn+N). The way these te rms  Ti and  functions f j  are ob ta ined  in 

the  proof  of the  l e m m a  also shows tha t  for each fixed a E R "~ the  m a p  y 

(y, Tl(a ,y) , . . . ,TN(a,y)):  R "~ ~ ~ + N  maps  Vr~g(t l (a,y) , . . . , t~(a,y))  bijec- 

t ive ly  onto Vr~g(fl(a, y, z ) , . . . ,  f~+N(a, y, z)). Thus  for fixed a C ~'~ the  sys t em 

of equa t ions  t l (a,y)  . . . . .  t,,(a,y) = 0 is, in this  sense, equivalent  to the  

sys t em f l (a ,y ,  z) . . . . .  f,~+N(a,y, z) = 0, which in tu rn  is equivalent  to the  

sys t em x l  = a s , . . . ,  xm = am, f l (x ,  y, z) . . . . .  f~+N(X, y, z) = 0. Now define 

g ~ E ~ m + n + N  b y g i = x i  for l < i < m ,  gm+j = f j  for l _ < j  < n + N ,  a n d l e t  

g :=  ( g x , . . . ,  gm+n+N): R ~ + n + N  -I '  R m+n+N- Then  one easily verifies the  c la im 

in the  propos i t ion .  | 

5.5 COROLLARY: Suppose 9~ is an H-system. Then ~ is also an H-system: 

given any L(~)- terms t l ( x , y ) , . . . , t ~ ( x , y ) ,  x = ( x l , . . . , x m ) ,  y = (Yl , . . . ,Y~) ,  

there is a bound H G N such that for all a G ]~m we have 

card(Vreg(t l(a,y) , . . . , t~(a,y)))  ~ H .  

5.6 PROPOSITION: Suppose the system ~R is substitution closed and f l , . . . ,  fk 

is a (P, ~) -  chain on ]~n. Let t(x) with x = ( x l , . . . ,  Xm) be an L(~,  f l , . . . ,  fk)- 

term, defining the function t: R m --* R. Then there  is a (P, ~R)-chain F 1 , . . . ,  FK 

on R m, such that t C 9~m(F1,...,FK> and each function Fi is defined by an 

L(~ ,  f l , . . . ,  fk)-term. 

Proof'. By induc t ion  on complex i ty  of the  t e rm  t(x). If t(x) is a cons tan t  (given 

by an e lement  of 9t0) or one of the  variables xi ,  we can take  K = 0. If  the  

desired resul t  holds for t e rms  t l(x) and t2(x), then  also for t l(x) + t2(x) and  

t t ( x ) ,  tz(x), using the fact t ha t  if F 1 , . . . ,  FK and G1, . . . ,  GL are  (P,~R)-chains 

on R m, then  F 1 , . . . ,  FK, Gx , . . . ,  GL is a (P, ~R)-chain on ]~m. Let  now t(x) be 

f ( r l (x ) , . . . ,TM(X))  with  f e ~tM and L(9~, f l , . . . , f k ) - terms  r l ( x ) , . . . , T M ( X ) ,  

and  assume induct ive ly  t ha t  we have a (P, ~t)-chain F 1 , . . . ,  FK on R "~ such t ha t  

T 1 , . . . ,  rM E ~ m ( F 1 ,  �9 �9  FK}, where ~'i is the  funct ion on R m defined by the  t e rm  

Ti(X). Take funct ions P l , . . .  ,PM in ~ + K  such t ha t  Ti(X) = pi(x, F(x)) for all  

x e l~ m where F(x) = ( F I ( x ) , . . . ,  Fg(x))  e R g.  Then  

t(x) = f(ps(x,  F(x)) . . . .  ,pM(x, F(x))) for all  x in R m, 

and  since [R is subs t i t u t ion  closed this  gives t E ~ ( F 1 , . . . ,  FK). 
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Finally, let t(x) be a t e rm  f ( ~ ' l ( x ) , . . . ,  TM(X)) as before, except  tha t  instead 

of f E ~ M  we assume f is one of the function symbols  f j ,  j E { 1 , . . . ,  k} and 

M = n. We also make the same inductive assumpt ion  and use the same nota t ions  

as in the previous case, so F 1 , . . . ,  FK and P l , . . .  ,Pn and F(x)  are as explained 

above. We also put  ~-(x) := (TI(X), . . . ,Tn(X)) E N n for x E R'~, and introduce 

functions g l , . . .  ,gk on R m by gj (x ) :=  fj(V(X)), SO the function t occurs among  

g l , .  �9 gk. Hence it suffices to establish the following claim: 

CLAIM: F I , . . . , F K ,  g l , . . . , g k  is a (P, fft)-chain on I~ m. To see this, let hrj E 

fft~+j be such tha t  (Ofj/Oy~)(y) = h~j(y, f i ( Y ) , . . . ,  f j (Y))  on ]~n, j = 1 , . . . ,  k, 

r = 1 , . . . , n ,  so tha t  

( a g j / O x d ( x )  = . (a  /Oxd(x) 

= ~ hrj (T(X), g , ( x ) , . . . ,  gj(x))" (OT~/OXi)(X) 

= Gij(x, F(x) ,  g l ( x ) , . . . ,  gj(x)) on R m, 

for some Gij E 9~+K+j ,  using the inductive assumpt ion  on T I , . . .  ,7~ and  the 

assumpt ion  tha t  ff~ is subs t i tu t ion  closed. | 

5.7 Let f l , . . . ,  fk be a (P,9~)-chain on N n. 

Clearly the functions on R m, (m = 0, 1, 2 , . . . ) ,  defined by L(fft, f l , . . . ,  fk)-  

t e rms  form a subs t i tu t ion  closed system; we denote it by 9 ~ ( f l , . . . ,  fk} ~. From 

proposi t ions (5.5), (5.6) and (3.6) we deduce: 

5.8 COROLLARY: I fg~  is an H-system, so is f ig(f1,. . . ,  fk} ~. 

Next a differential-topological result whose proof  follows Wilkie 's  elegant proof  

of a t heo rem of Hovanskii; cf. Proposi t ion  5.3 f rom [Wl]. 

5.9 PROPOSITION: Let Xl, . . . , xm, Yl, . . . , yn denote the usual coordinate func- 

tions o n  R mq-n  , and let R be a noetherian ring of C~176 on R m+~ con- 

taining the yj and closed under the operators O/Oyj for j = 1 , . . . ,  n. Suppose 

also that for a11 f l , - . - ,  fn E R there is a bound H E N such that for all a E R m 

we have card(Vreg(fa))  _< H ,  where fa: R n ---* R n is given by 

f~(y) : ( f l ( a ,  y ) , . . . ,  fn(a, y)). 

Then there is for each function g E R a bound N(g)  E N such that for a11 a E Rm 

the set {y E ~n: g(a,y)  = 0} has at most N(g)  components. 
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Remark: Following [Wl] we define a c o m p o n e n t  of a topological space Y to 

be a closed-and-open subset of Y. The components of Y clearly form a boolean 

algebra of subsets of Y. Note that an atom of this boolean algebra is necessarily 

connected. Therefore, if Y has only finitely many components, then the atoms 

of this boolean algebra are exactly the connected components of Y in the usual 

sense of "connected component", so Y has then only finitely many connected 

components. 

Proo~ Let g E R and suppose there is no such bound N(g). Then there is 

for each j E N a point aj E ]~m such that the subset {y E 1~": g(aj, y) = 0} of 

En has pairwise disjoint components Coj , . . . ,  Cjj. Let L be the extension of the 

language L of ordered rings obtained by including a function symbol f for each 

function f E R, a unary relation symbol for the subset N of ~, an (m + 1)-place 

relation symbol for the relation {(j, aj): j E N}, and an (n + 2)-place relation 

symbol for the relation {(i , j ,y):  y E Cij, 0 < i < j, j E N}. Let R be the 

corresponding expansion of the ordered field of real numbers and let K be a c +- 

saturated elementary extension of ~, where r is the cardinality of the continuum. 

Take a nonstandard natural number k in K, that is, k > n for all n E N and 

K ~ "k E N". Then (the K-interpretation of) each Cik with i _< k and K 

"i E l~' is a nonempty open-and-closed subset of Y := {y E Kn: g(ak, y) = 0}, 

in particular Cik is also closed in K ~. Let M be the ring of all functions y 

f(ak,  y): K ~ --* K, for f E R, where of course f is interpreted here as a function on 

K m+~. Then M is a ring of K-definable C~176 from K n to K, M contains 

the coordinate functions Yl , . . . ,  Yn on K '~, and M is closed under the operators 

O/Oyj for j = 1 , . . . , n .  Moreover, M is noetherian since it is a homomorphic 

image of the noetherian ring R. This means we can apply theorem 5.1 from 

[Wl]: for each i _< k with K ~ "i E N" there are f~ l , . . . , f i n  E M such that  

Cik M Vreg(f i l , . . . ,  fin) r 0. But there are at most continuum many possibilities 

for f i l , . . . ,  fin, while there are more than continuum many (pairwise disjoint) 

sets Cik. This gives a contradiction since by the hypothesis of the proposition 

each set Vreg(f i l , . . . ,  fin) is finite. I 

5.10 COROLLARY: Let 9{ be a noetherian H-system and let f l , . . . , f k  be a 

(P, ~)-chain on R ~. Let t l(x,  y ) , . . . ,  t~(x, y) be L(fR, f l , . . . ,  fk)-terms, where 

x = ( x l , . . . ,XM) ,  y = (Yl , . . . ,YN) .  Then there is a boundB = B ( t l , . . . , t ~ )  E N 

such that for each a E ~M the set Va( t l , . . . , t r )  := {y E ]~N: t l (a,y)  . . . . .  
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tr(a, y) = 0} has at most B components. 

Proo~ If some t~ is of the form t (x ,y ,  T(x, y)) for "simpler" L(9~, f h . . . ,  ]k)- 

terms t(x, y, YN+I) and 7(x, y), then we can replace the single equation t~(x, y) = 

0 by the two equations t(x, y, YN+I) = T(X, y) -- YN+I = 0, and increase N and 

r by 1. Continuing to unravel terms in this way and increasing N and r (keep- 

ing M fixed) we may reduce to the case that  for each i = 1 , . . . , r  the term 

t~(x,y) defines either a function o n  ~M+N that belongs to  ~)~MTN, or  ti(x , y) 

is of the form f j ( z l , . . . , z ~ )  - zn+l where 1 < j < k and Z l , . . . , z ~ , z n + l  are 

distinct variables among X l , . . . , x M , Y l , . . . , y  N. The function on  ~M+N de- 

fined by such a term f j ( z l , . . . ,  z~) is easily seen to belong to a (P ,~)-chain  

Oil ~MTN. By concatenating these (P, ~R)-chains we obtain a single (P, 9~)-chain 

gl . . . .  , gt on ~M-bN such that  each term t~(x, y) defines a function on  ~Mq-g 

that belongs to  ~)~M+N ( g l , . . . ,  gl). Since the system 9~ is noetherian, the ring 

~)~M+N ( g l , . . .  ,gl) is noetherian and closed under the operators O/Oyj. More- 

over, the system fR(gl, . . . ,g~)S is an H-system by (5.8), so that by corollary 

(5.5) the hypothesis of (5.9) is satisfied by the ring ~M+N ( g l , . - - ,  gl). Then the 

conclusion of (5.9) applied to the sum of squares of t l , . . . ,  tr gives the desired 

result. I 

5.11 COROLLARY: Let 9~ be a noetherian H-system and f l , - . . ,  fk a (P, ~)-chain 

on R n . Then we have: 

(i) Given an existential L(ffr f l , . . . ,  fk)-formula r  xm,xm+l)  there 

is a bound C = C(r E N such that for all r l , . . . , r m  E R the set 

r  rm, R) C_ R is a union of at most C intervals and C points. 

(ii) If  T~,fl ..... f~ is model complete, then T~,f~ ..... fk is O-minimal. 

Part  (i) extends Cor. 5.4 of [Wl] and is an easy consequence of the previous 

corollary. Part  (ii) is immediate from (i). 

5.12 FINITE MODEL COMPLETENESS. Let 9~ be a noetherian system and f l ,  

�9 .-,  fk a (P, ~)-chain on ~ .  Let r be an existential L(fR, f l , . . . ,  fk)-formula, 

x ---- (Xl , . . . ,  XM). Introducing extra existentially quantified variables and arguing 

as in the proof of (5.10) one obtains an equivalence: 

T ,Sl ..... r  3y ( f (x ,  y) = 0), 

where y = (Yl, .- .  ,YN), for some f E ~:~M+N (g l , . . .  ,gz) and certain gl . . . .  ,gl 
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forming a (P, fl~)-chain o n  ]~M+N such that each function gi is defined by a term 

gi(x,y)  from L(~R, f l , . . . ,  fk). With such f and g l , . . . , gz  we have: 

5.13 LEMMA: There are finitely many N-tuples hi = (h11, . . . ,  h l g ) , . . . ,  hj  = 

(h  j l , . . .  ,hJN ) with hjr E ~M+N ( g l , ' "  ",gll SUCh that 

Tm,f, ..... f ,  ~- 3 y ( f ( x , y )  = O) ~-* 

3y( f (x ,  y) = 0 A V (hi(x,  y) = 0 A det(Ohj/Oy)(x,  y) r 0)), 
l(_j<_J 

where (Ohj/Oy) is the N-by-N Jacobian matrix (Ohjr/Oys)l<_r,~<g. 

Proof: Let K ~ Tin,f1 ..... fk and a = ( a l , . . . , a M )  E K M. 

Given h E 9~M+N ( g l , . . . ,  gl), let ha: K N --* K be given by ha(b) = h(a, b). Let 

Ra be the ring of all such functions ha, so Ra is a noetherian ring of definable 

C~ on K g containing the coordinate functions Yl , . . . ,  YN and closed 

under the operators O/Oys. 

Hence, if K ~ 3y( f (a ,  y) = 0), it follows from Theorem 5.1 of [Wl] that  there 

are hi . . . .  , hg E ~MTN (g l , . . .  ,gl) such that 

K ~ 3 y ( f ( a , y ) =  0 A hi(a, y) . . . . .  hN(a,y)  = 0 A det((Ohr/Oys)(a,y))  r 0). 

Since this is true for all models K of Tm,fl ..... j,~ and all a E K N the desired 

conclusion follows by a standard compactness argument. | 

5.14 COROLLARY: Let 9~ be a noetherian H-system and f l , . . . ,  fk a (P, 9~)-chain 

on R n . I f  Tm,I1 ..... f~ is model complete, then it is finitely model complete. 

Proof: Given an existential formula r with x = (xl . . . .  , XM), let f ,  g l , . - . ,  gl 

be as in (5.12) and take N-tuples h i , . . . ,  hg E (~M+N (gl , - . - ,gl})  N for which 

we have an equivalence as in the lemma. By (5.10) there is a bound B 6 N, 

B > 1, such that  for each K ~ Tm,fl ..... f~ and a 6 K M w e  have 

where hja denotes the N-tuple (h j la , . . . ,  hjNa) of C~-functions on K N. Using 

this fact one easily constructs a quantifier free formula O(x, y), such that 

and 

T~,I~ ..... s~ ~- 3-<BYO( x, Y)" m 
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6. P r o o f  t h a t  (R~,  exp) is m o d e l  c o m p l e t e  

43 

6.1 The lemmas in this section are straight forward extensions of results in 

section 6 and 7 of [Wl], and for proofs we can mostly refer to [Wl]. We use 

similar notations to facilitate comparison. 

We fix a noetherian H-system 9~ and a (P, 9~)-chain F 1 , . . . ,  Fz on ~m. 

6.2 LEMMA: Let K ~ T~,FI ..... F~, let r >_ 2 and let g l , - . . , g r :  Kr --* K be given 

by L(fft, F1, . . . , Fl, K)-terms. Put 

V := {P E K~: gl(P) . . . . .  g~-l(P) = 0}, 

and suppose that det (O(gl , . . . ,  gr_ l ) /O(xz , . . . ,  xr) ) (P)  ~ 0 for all P E V. Then 

there is a finite set G of pairs (I, r such that: 

(i) The first component I of each pair ( I , r  E 6 is an open interval in K and 

the second component r I --, K ~-1 is a definable Coo-map. 

(ii) For each (1, r E 6 ,  if  sup(l)  E K, then IIr  oo  a s  x -~ sup(I),  a n d  

similarly i f  inf(I) E K. 

(iii) V is the disjoint union of the graphs F(r for (I, r E 6 .  

Proof." See the proof of Theorem 6.2 in [W1]. I 

Besides the originally given (P, ~)-chain F 1 , . . . ,  Ft it is useful to consider also 

related (P, ~R)-chains: 

6.3 DEFINITION. An (n, r)-sequence (relative to (9~, F 1 , . . . ,  Ft)) is a sequence 

a = ( a l ,  �9 � 9  an) of L(~ ,  F 1 ,  �9 � 9  Fl)-terms whose variables are among x l , . . . ,  xr, 

such that  the functions f l , - - - , f ~ :  ~ ~ ]R defined by a l , . . . , a s  respectively 

form a (P, ~R)-chain on W. (This notion of (n, r)-sequence is related to Wilkie's.) 

Clearly an (n, r)-sequence is also an (n, s)-sequence for each s >__ r. 

6 . 4  D E F I N I T I O N .  Given an (n,r)-sequence a = ( a l , . . . , a n ) ,  a model K 

Tin,F1 ..... F~ and a tuple a = (al . . . .  ,aM) E K M we define R~(a,K,a) to be 

the ring of all functions f :  K ~ ~ K for which there is p E ~M+~+n such that  

f ( x )  = p(a,x,  a l ( x ) , . . .  ,an(x)) for all x = (Xl , . . .  ,xr)  E K ~. 

Note that  then R~(a, K, a) is a noetherian ring of definable C~176 on 

K ~ closed under the operators O/Ox~ for i = 1 , . . . ,  r. If M _< N and a E K M is a 

subsequence of b E K N, then R~(a, K, a) C_ R~(b, K, a). 
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Given a substructure k C_ K we let R~(k,K,a)  be the union of the rings 

R~(a, K, a) over all a E k M, M E l~. Then R~(k, K, a) is also a (possibly not 

noetherian) ring of definable C~ on K ~ closed under the operators 

O/Oxi for i = 1 , . . . ,  r. It contains the functions on K ~ given by the constants in 

k, the elements of ~ ,  and the terms a l , . . .  ,c~. 

6.5 DEFINITION. Let a be an (n,r)-sequence and k _ K ~ T~,FI ..... El. Then a 

point P E K ~ is called (k, r  if there are g l , . . . ,  g~ E R~(k, K, a) such 

that P E Vreg(gl, . . .  ,g~). 

By routine arguments (see (3.8), (3.9) and the proof of (5.9)) we get: 

6.6 LEMMA: T91,F1 ..... F~ is model complete i f  and only i f  for all models k and K 

of T~,F,...,F with k C K and ali (n, r)-sequences a (n >_ 0, r _> 1), each (k, a)- 

definable point of K ~ lies in k ~. 

Remark: In this paper we apply the general results on an arbitrary (P, ~R)-chain 

F1 , . . . ,  Fl only to the particular (P, s of length 1 on ~[ that consists of the 

single function exp. For that  reason we do not actually need lemma (6.6), and 

will use instead lemma (3.9), which is more convenient in that case. We also point 

out that it suffices to consider in lemma (6.6) (n, r)-sequences ( a l , . . . ,  an) such 

that  each ai is of the form F j ( Y l , . . . ,  y,~) where Yl , . - . ,  Y,~ are distinct variables 

among Xl, �9 �9 �9 xr. | 

6.7 LEMMA: Let a -- (6rl, . . . , tTn) be an (n,r)-sequence, r >_ 2, and let k and 

K be models of T~,F1 ..... v, with k C_ K. Assume in addition to the hypotheses of 

lemma (6.2) that gx , . . . ,  g~-i E R~(k, K, a) and that each (k, a)-definable point 

of V C_ K ~ lies in k ~. Let ( a , P )  E V be a k-bounded point, a E K, P E K ~-1. 

Then there are "h, 72, J~l, J~2, B1, B2 in k with 72 < 71 < a < t31 < 32 and 

[[P[] < B1 < B2, and an integer M > 1 and definable C~ r (72,/32) -~ 

K ~-1 (for i = 1 , . . . ,  M)  such that 

(i) [[~i(t)[[ < B 1 for i =  1 , . . . ,  M and t E ('~2,fl2), 

(ii) V N ((72,~32) x {Q E K~-I: [[Q[[ < B2}) is the disjoint union of the graphs 

F(r for i = 1 , . . . , M .  

Moreover, for any such ~l, "Y2, ~1, ~2, B1, B2 and M there exist C~ 

kv~: (72,/32)k -* k~-~, definable in k, for i = 1 , . . . ,  M,  such that (i) and (ii) hold 

with g~i in place of r where all notions are interpreted in k. 
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Remark: It also follows from the additional assumption that  each point of V 

with first coordinate in k lies in k ~. 

Proof." Just like the proof of lemma 6.3 in [Wl], except that theorem 4.9 of [W1] 

should not be applied to R~(k, K, a) (since we don't know if this ring is noether- 

ian) but to a suitable (noetherian) subring Rr(a, K, a). The role of theorem 6.2 

of [Wl] is taken over by lemma (6.2) above. | 

6.8 LEMMA: Suppose Tm is model complete. (Hence O-minimal by (5.11).) Let 

k and K be models of T~,F1 . . . . .  F ,  with k C_ K. I f  a is an (n, r)-sequence, r >_ 1, 

such that for each s _> r each (k, a)-definable point ofK ~ is k-bounded, then each 

(k, a)-definable point of K ~ lies in k ~. 

Proof." By induction on n. The case n = 0 follows from model completeness of 

Tin. The proof is otherwise along the lines of the proof of lemma 2.8 in section 

7 of [W1], and is in fact smoother and shorter, since there are no problems with 

domains of definition as in [W1]. Of course the role of lemma 6.3 in [Wl] is taken 

over by lemma (6.7) above. | 

6.9 THEOREM: (]~an, exp) is finitely model complete and O-minimaL 

Proof'. Apply the above to the noetherian H-system 

m := m}[Xl, . . . ,  xm])meN 

and the (P, ~R)-chain of length 1 on R consisting just of the function exp. Propo- 

sition (4.5) (see also (4.4)) shows that the hypothesis of (6.8) is satisfied in this 

situation for the (r, r)-sequence (exp(xl ) , . . . ,  exp(xr)), for each r > 1. Hence the 

desired result follows from (6.8), (3.9), (5.11) and (5.14). | 

If one analyzes what is really used in this proof one obtains: 

6.10 PROPOSITION: Let iR be a noetherian H-sys te~  such that fRi contains the 

functions x H (1 + x2)-1: R --+ R, and x ~-~ exp((1 + x2)-1). Suppose Tm is 

model complete and of rational type. Then Tm,exp is finitely model complete and 

O-minimal. 

We now apply this proposition to show that  expanding the model complete 

structures of [Wl] by exp preserves model completeness. 
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6.11 Let a Pfaffian chain G 1 , . . . , G I :  U ~ N o n  an open set U C_ R m with 

m > 1 and [0, 1] m C_ U be given, that  is, the G's  are real analytic functions, and 

there are polynomials Pij E ~[[Xl, . . . ,  Xm+i] for i = 1 , . . . , l , j  = 1 , . . . ,  m such 

that  (OGi/Oxj)(x) = pij(x, G I ( X ) , . . . ,  Gi(x) ) on U. 

Let C be a subfield of R containing all coefficients of all polynomials pij, 

for instance the field generated by these coefficients. Define Fi: Nm ~ N for 

i = 1  . . . .  , r u b y  
f Vi(x) ,  i f x e [ 0 , 1 ]  m 

Fi(z) 
O, if x C St ~ [0, 1]~ .  

Then one of the main results of [W1] is (slightly reformulated): 

(]~, <, (c)cec, - ,  +, ", F1 , . . . ,  Fl) is model complete. 

To show that  further expansion of this structure by exp preserves (finite) model 

completeness, we now construct a suitable noetherian H-system. Given any 
1 subset s of {1 , . . .  ,m},  define Fi,s: E ra --~ R by Fi,s(x) = F~(x~,.. .  ,xm), where 

i r O, for j E s 
x j =  ~ (1 2 - 1  {1,. .  m}\s .  + xj ) , f o r j E  ., 

The functions (1-~-x2)- l , . . . ,  (1 +X~m) -1 on R "~ followed by a suitable arrange- 

ment of the functions Fi,8, (i E { 1 , . . . , l }  and s C {1 , . . .  ,m})  are easily seen to 

form a Pfaffian chain g l , . . .  , g i  on R m whose corresponding polynomials have 

coefficients in C. 

Given any n E N, sequence a = ( a ( 1 ) , . . . ,  a (m) )  E {1 , . . . ,  n} TM and function gj 

of this chain we define gj,~: ~:'~ -~ R by gj, ,~(Xl, . . . ,xn)  = gj(x,~(U,...,X=(m)), 

and put  

~ t  n ---- C[x l , . . . ,Xn , (g j , a )  ] (j ranging over { 1 , . . . , L }  and a over {1 , . . . , n}m) ,  

a noetherian subring of the ring of all C~176 on R n. One checks easily 

that  9t := (91~) is a system of C~-rings,  and that  the T~-expansion of the 

ordered field of reals is interdefinable, both  existentially and universally, with the 

original structure (•, <, (c)cec, - ,  +, ", F 1 , . . . ,  Fz). Hence T~ is model complete 

and O-minimal, so 9t is a noetherian H-system. We can now draw the following 

conclusions. 
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6.12 COROLLARY: 

(i) (•, <, (C)ceC, --, +, ", F 1 , . . . ,  Fl) is finitely model  complete  and smooth.  

(ii) (JR, <, (c)cec,  - ,  +, ", F1, . . . , Fl, exp)) is finitely model  complete  and O-mi- 

nimal. 

Proof: The functions in 9~ are "uniquely" existentially definable in 

(~, <, (c)~cc,-, +,., F~,.. . ,  Fz), 

hence finite model completeness of this structure follows from finite model com- 

pleteness of T~, which in turn follows from (5.14). Smoothness is obtained in 

the same way as smoothness of Te, as in [W2], see also the proof of (2.2). Now 

(ii) is obtained from (i) by applying (6.10): note that we can always extend 

the chain F 1 , . . . ,  Fz if necessary to include the functions x ~-* (1 + x2) -1 and 

x ~ exp((1 + x2) -1) in 9~1. | 

7. Characterization of definable closures 

In this short section we keep the notations of the previous section: Kt is a fixed 

noetherian H-system and F1 , . . . ,  Fz a (P, ~)-chain on Rm. 

Definition: Given an L-structure K and a subset S of K we say that an element 

c c K is existentially definable over  S if there is an existential L(S)-formula 

r in one free variable y such that K ~ r and K ~ -~r for all b E K with 

b r c. The existential-definable closure of  S in K is the set of all elements 

of K that are existentially definable over S. (Clearly this existential-definable 

closure is the underlying set of a substructure of K.) | 

If Th(K) is model complete, "existentially definable" equals "definable", and 

the existential-definable closure of S in K equals its definable closure in K, and in 

this case the definable closure is also the underlying set of the smallest elementary 

submodel of K contaiding S. In particular, if K is a real closed field, the definable 

closure of S in K equals the relative algebraic closure in K of the field generated 

by S in K. When T~,F1 ..... Ft is model complete and K ~ T~,F1 ..... F, we w~mt to 

find a similarly simple characterization of the definable closure of S in K. We 

may as well characterize instead the existential-definable closure of S in K, which 

has the advantage that we do not have to assume T~,F1 ..... Fz is model complete. 

The answer is not as simple as for real closed fields, but still perhaps of interest. 
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PROPOSITION 7.1: Let K ~ T~,FI ..... E, and S C_ K. Let c 6 K. Then c is exis- 

tentially definable over S if and only if c is a coordinate of a regular solution (in 

K M for some M 6 N) of a system of equations 

t l (X l , . . . ,XM)  . . . . .  tM(Xl , . . . ,XM)-=O 

with t l , . . . ,  tM terms of L(~t, F1, . . . ,  Ft, S). Moreover, the existential-definable 

closure of S in K is existentially dosed in K. 

Proof: Such a system of equations has only finitely many regular solutions, 

and by lexicographically ordering these solutions we can tell them apart,  and 

this enables us to existentially define each coordinate of each regular solution. 

For the reverse inclusion, let E(S)  be the set of a E K that  are coordinates of 

regular solutions of systems as above. We claim that  if a, b E E(S) ,  then also 

a + b E E(S).  To see this, let a be the i-th coordinate of a regular solution 

of the system t l (x)  . . . . .  tM(X) = 0 with x = ( x l , . . . ,XM) ,  and b the j - t h  

coordinate of a regular solution of the system ul(y) . . . . .  ug(y)  = 0 with 

Y = (Y l , . . . ,  YN), and with the t 's and u's terms of L(9~, F 1 , . . . ,  Ft, S). We may 

as well assume the variables Xl , . . .  , x M,Y l , . . .  ,YN are distinct, and take one 

extra variable z. Then a + b is clearly the (M + N + 1)-th coordinate of a regular 

solution in K M+N+I of the system 

t l ( X )  . . . . .  t M ( X )  = U l ( y )  . . . . .  u N ( u )  = z - + y j )  = 0.  

In the same way one shows ab E E(S),  and even that  E(S)  is (the underlying 

set of) a substructure of the L(9~, F 1 , . . . ,  Fz)-structure K. The proof will now be 

finished by showing that  E(S)  is existentially closed in K, since this clearly implies 

that  E(S)  is the existential-definable closure of S in K. By the considerations of 

(5.12) and lemma (5.13) it suffices to show: 

CLAIM: Let h i ( y ) , . . . ,  hN(y) be L(fR, F1, . . . ,  Ft, E(S))-terms, y = (Y l , . . . ,  YN), 
and let ( b l , . . . , b N )  E K N be a regular solution to the system hi(y) . . . . .  

hg(y)  = O. Then bj E E(S)  for ali j . 

To prove this claim, write each hi(y) as tj(a, y) where t l(x,  y ) , . . . ,  tg(x ,  y) are 

L(9~,F1, . . . ,Fz)- terms,  x = ( x l , . . . , X M )  and a = ( a l , . . . , a M )  e E(S)  M. For 

each i E {1 , . . . ,  M}, let zi = (Z i l , . . . ,  zin(i)) be a tuple of new variables and let 

tn ( z i ) , . . . ,  tln(i)(zl) be L(9~, F 1 , . . . ,  Fz, S)-terms such that  ai is a coordinate of 

a regular solution in K '~(i) of the system til(Zi) . . . . .  tin(i)(zi) = O, say the 



Vol.  85, 1994  R E A L  E X P O N E N T I A L  F I E L D  49 

m(i)- th  coordinate of such a regular solution, 1 _< m(i )  <_ n(i) .  Let n = E n(i) .  

We now consider the following system of M + N + n equations in the variables 

X l , .  � 9  X M ,  Y l , .  � 9  Y N ,  Z l l ,  �9 � 9  Z l n ( 1 ) ,  �9 �9 ",  Z M I , ' .  ", Z M n ( M ) :  

. . . . .  t N ( x , y )  = o ,  

t l l ( Z l )  . . . . .  t l n ( 1 ) ( Z l )  : 0 

. . . . .  = o 

t M I ( Z M )  . . . . .  t M n ( M ) ( Z M  ) -~ 0 

X 1 - -  Z l m ( 1  ) . . . . .  X M -- Z M m ( M  ) = O. 

Note that  the number of variables of this system is also M + N + n. This 

system has a regular solution of the form ( a l , . . . ,  a M ,  b l , . . . ,  b g , . . .  ). Hence 

each bi C E ( S ) .  | 

8. A n a l y t i c  Cel l  D e c o m p o s i t i o n  

8.1 We call a system ~ a n a l y t i c  if all functions in ~R are (real) analytic. 

In this section we show that  if F 1 , . . . ,  Fl is a (P, ~R)-chain over an analytic sys- 

tem ~t, then F 1 , . . . ,  Fz are themselves analytic, and the usual cell decomposition 

theorem can be improved to give analytic cells, when we assume also that  ~t is 

noetherian and T~,F1 ..... F~ is model complete. First a purely analytic result. 

8.2 LEMMA: Let  f :  U --* ]~ be a Cl- funct ion on an open set U C_ R m such that  

O f /Ox i  = p i ( x , f ( x ) )  on U for i = 1 , . . .  ,m ,  where the pi: V --* ]~ are analytic 

functions on an open set V C_ R m+l that  contains the graph o f  f .  Then  f is 

analytic. 

Proof'. Let m _> 1 and assume inductively that  the lemma holds for m replaced 

by m - 1. Since analyticity is a local property, we may take U = I1 x . . .  x Ira, 

with open intervals I 1 , - . . , I , ~ ,  and that  V -- U x J ,  where J is also an open 

interval. Take a point r E Im and define the c l - func t ion  g: I1 • . . .  • Ira--1 ---* R 

by g ( x l , . . . ,  xm-1)  = f ( x l , . . . ,  xm-1,  r). Then the inductive hypothesis implies 

that  g is analytic. Next we use the a n a l y t i c  d e p e n d e n c e  on  p a r a m e t e r s  a n d  

in i t ia l  va lues  o f  s o l u t i o n s  of  a n a l y t i c  o r d i n a r y  d i f f e r en t i a l  e q u a t i o n s ,  

which for the reader 's  convenience we state in a global form as follows : 
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FACT: Let  p: W • I • J ---* R be analytic, with W open in ]~n and I,  J open 

intervals, and fix r E I. For each a E W and b E J,  consider the collection Ca,b 

o f  Cl- funct ions  h: I '  ~ • such that  I '  is an open subinterval o f  I containing 

r, the graph o f  h is contained in [ x J, h'(x) = p(a, x, h (x ) )  for all x E I ' ,  and 

h(r)  = b. Then  Ca,b contains a "maximal solution" Y~,b: I~,b ~ ]~, that  is, Ia,b 

contains every interval I ~ as above and Ya,b extends every function h E C~,b. 

Moreover, D := { (a ,b ,x ) :  a E W,b  E J , x  C I~,b} is an open subset o f R  n+2 and 

y: (a, b, x )  --~ ya,b(X): D ~-* ]R is anaIytic. . 

Now apply this to W :-- 11 • . . .  x Ira- l ,  I :-- Ira, J := J and p := pro. 

Then clearly f ( x x , . . . ,  Xm-x,  Xm) : y (XI , . . . ,  Xm--1, g(Xl , . . . ,  Xm--X), Xm) in the 

notation above. Hence the analyticity of f follows from the analyticity of g and 

y. | 

8.3 COROLLARY: I f  91 is an analytic system, then the functions in any (P, 91)- 

chain over any ]~m are analytic. 

Proof." By induction on the length of the chain, using the lemma above. | 

Note that  the systems of (3.2) and those introduced in (6.11) are all analytic. 

Also, if 9t is analytic and f l , . . . ,  f~ is a (P, 91)-chain over R m, then the corollary 

implies that  91 ( f l , . . . ,  fk/* is analytic. 

8.4 Let ]~ be an expansion of the ordered field of reals. A map f :  A --* R n 

with A C_ ]~m is called ]~-analytic if A is definable and there is a definable 

open neighborhood U of A in ]~'~ and a definable real analytic map F: U --~ R n 

such that  f = F lA .  Here and in the rest of this section we take "definable" in 

its absolute sense, that is "definable in R without constants".  In particular, an 

R-analytic map is definable. 

Let A C_ ]~m and B C_ ]~  be definable and f = ( f l , . . . , f n )  : A -~ ]~ .  Then: 

(i) the inclusion map A --~ R "~ is R-analytic; 

(ii) each coordinate map ( x l , . . . ,  Xm) ~ xi: A ~ R is ]~-analytic; 

(iii) f is ~-analytic if and only if each fi is ~-analytic; 

(iv) if f is ]~-analytic and g: B --* R k is ]~-analytic, then the composition 

g o f :  A N f - l ( B )  ~ R k is ]~-analytic. 

8.5 We define ~-analytic cells in ]~  as certain kinds of definable subsets of R ~ ; 

the definition is by induction on n: 

(i) the ~-analytic cells in ]~ = R 1 are just the definable points {r} and the 

definable open intervals (a, b), - o~  < a < b < +ec;  
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(ii) let C C_ R n be an ~-analytic cell and let f ,  g: C --~ R be ]~-analytic 

functions such that f < g on C; then ( f ,g)  := {(x,r)  �9 C • ~: f ( x )  < 

r < g(x)} is an ]~-analytic cell in Rn+l; also, the graph r(f) c_ c • 

and the sets ( - ~ , f ) : =  {(x,r)  �9 C • R: r < f (x)} ,  ( g , + o c ) : =  {(x , r )  �9 

C • R: g(x) < r} and ( -oc ,  +c~) :-- C • R are ~-analytic cells in R n+l. 

In this way all ~-analytic cells are obtained. Note that an ~-analytic cell in 

R n is a real analytic submanifold of R n , definably-analytically isomorphic to ~'~ 

for some m < n. 

8.6 An ]~-analytic decomposition of ~ is a special kind of partition of li( n into 

finitely many ]~-analytic cells. Definition is by induction on n: 

(i) An ~-analytic decomposition of R 1 = R is a collection of intervals and 

points of the form { ( - ~ ,  al), (al, a2 ) , . . . ,  (ak, +c~), { a l } , . . . ,  {ak}} with 

al < " "  < ak definable real numbers. (For k = 0 this is {1~}.) 

(ii) An ~-analytic decomposition of E TM is a finite partition of ]~n+l into 

~-analytic cells A such that the set of projections ~-(A) is an ~[-analytic 

decomposition of R ~. (Here ~r: ~n+l ~ ll~ is the projection on the first n 

coordinates.) 

An ~-analytic decomposition of R n is said to p a r t i t i o n  a set A C_ R '~ if A is 

a union of cells in the decomposition. 

8.7 Let now ~ be a noetherian H-system and F 1 , . . . ,  Ft a (P, ~)-chain on 1~ TM. 

Let ~[ be the corresponding L(~t, F1 , . . . ,  Fl)-expansion of the ordered field of 

reals, so R is a model of T~n,F, ..... F~. Then the usual Cell Decomposition Theorem 

for O-minimal structures, cf. [P-S], can be refined as follows: 

8.8 THEOREM: Assume 9~ is analytic and T~,F1 ..... F~ is model complete. Then: 

(In) For any definable sets A1 . . . .  , Ak C_ R ~ there is an ~-analytic decomposi- 

tion of R ~ partitioning A1, . . . ,  Ak. 

(II~) For every definable function f :  A ~ R, A C_ 1~'~, there is an ~-analytic 

decomposition o f R  ~ partitioning A such that each restriction f lC: C --~ R 

is ~-analytic for each cell C C_ A in the decomposition. 

Proo~ By induction on n. Note first that by (5.11)(ii) the theory we are dealing 

with is O-minimal. Ordinary cell decomposition then gives (11). For (II1), let 

f :  A ~ R be definable with A C_ R. Model completeness gives an equivalence: 

~ (x, y) �9 r ( f )  ~ 3z(F(x, y, z) = 0), (z = ( Z l , . . . ,  zN)) for some function 
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F C ~2+N (g l , . . - ,  gl} where g l , . . . ,  gl is a (P, 9t)-chain on ~2+N such that each 

gi is defined by an L(ff~, F1 , . . . ,  Fz)-term. By lemma (5.13) and corollary (8.3) 

there are finitely many (1 + N)-tuples 

h i  = ( h l l , . . . , h l l + N ) , . . . , h y  = ( h j l , . . . , h j l + g )  

of N-analytic functions hjr on ~2+g such that: 

~ 3y, z(F(x,  y, z) = 0) 

*-* V 3y, z(F(x, y, z) = 0 A hi(x, y, z) = 0 A det(Ohj/O(y, z))(x, y, z) ~ 0). 
l(j~_J 

Thus A = U l< j< j  Aj, where Aj is the set of a E A such that 

~ 3z(hj(a, f (a) ,  z) -- 0 A det(Ohj/O(y, z))(a, f (a) ,  z) ~ 0). 

Applying ordinary cell decomposition to the restrictions of f to the Aj's we may 

reduce to the case that J = 1, A is an interval (i.e., an open N-analytic cell in 

•1) and f is continuous. Then the analytic implicit function theorem implies 

f is analytic, so f is ~-analytic. Next assume inductively that ( I1 ) , . . . ,  (In), 

( I I1 ) , . - . ,  (IIn) hold. Then the usual O-minimal cell decomposition theorem, 

together with the inductive hypothesis easily gives (I~+1). (One may consult 

the proof of the cell decomposition theorem in [P-S] for more details.) Next one 

derives (II~+l) in almost the same fashion as we derived (II1) from (I1). Again, 

we refer to [P-S] for similar arguments of this kind. | 

8.9 REMARK. What if we consider sets and functions that are definable using 

constants? In practice this is no problem since usually 9% = R so that  there is 

then no difference between "definable in the absolute sense" and "definable using 

constants from R". Even if 9~o does not contain all constants, we can usually 

extend [R so that 9~o = R. 

8.10 Let us consider the 1-variable case in more detail. Under the assumptions 

of the theorem, let g : ~ -~ R be definable using constants in ~. We claim: 

There are reals al < .." < ak such that g is analytic on each interval (ai, ai+x) 

for i = 0 , . . . ,  k, where ao := - c ~  and ak+l := +c~. 

To see why, note that there are r l , . . . , r ~  E R and a definable function 

f :  R n+x ~ ~ such that g(x) = f ( r l , . . . , r , ~ , x )  for all x, where "definable" is 

taken here in the absolute sense. Then the claim follows easily from the piece- 

wise analyticity of f implied by the theorem. 
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9.1 Define exp , (x)  for n E N and z C N by exp0(x ) := x and expn+l(x  ) := 

exp(exp~(x)). 

9.2 PROPOSITION: Let g: N ~ R be definable (using constants) in ~ x p .  Then 

there are m, n C N and a constant C > 0 such that 

Ig(x)l < c .  expn(x m) 

for all sufficiently large x. 

Remark: The proof given below actually produces m and n from an algebraic 

differential equation satisfied by g on some interval (a, +c~). But first we treat  

a few generalities on such differentially algebraic functions. 1 

9.3 Let U be a nonempty connected open set in E ~, and let An(U) be the 

integral domain of (real) analytic functions f :  U ~ R. We say that  f E An(U) 

is d i f f e r en t i a l l y  a l g e b r a i c  if the integral domain 

N[ol'~lf/Ox'~: a E N ~] C_ An(U) 

generated by the partials of f over the field ~ of constant functions on U has 

finite transcendence degree over R. 

(If U is an interval on the real line, this is clearly equivalent to the standard 

definition that  there is a non-zero polynomial p ( X 0 , . . . ,  Xk) over R such that  

p(f(x) ,  f ' ( x ) , . . . ,  f(k)(x)) = 0 for all x E U.) 

Let V C_ R '~ be a nonempty connected open set, f l , . . . , f n  E An(U x V). 

Let x = ( X l , . . . , x m )  range over U and y = (Yl , . . . ,Yn)  over V. Suppose 

r / i , . . . ,  r/n: U --~ R are continuous such that  for all x in U, 

r/(x) := (r / l (X), . . . , r /n(x))  �9 V ,  f l(x,r/(x))  . . . . .  f~(x,~l(x)) : 0 

and g(x) # O, where g(x) := det( (Of~/Oyj)(x, r/(x) ). 

By the analytic implicit function theorem the functions r/l, �9 �9 r/~ are then also 

analytic, and for each i = 1 , . . . ,  m and x E U: (0 l 0X  / / 
(,/ " = - �9 

\ or/nlOx~ / \ OInlOyl 2. OfnlOy~ / 

ll~176 ) 
O/n/Oxl 

where the left side is evaluated at x and the right side at (x, r/(x)). 
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9.4 LEMMA: Suppose f l , . . . ,  fn are differentially algebraic. Then 7]1 . . . .  , 7/n are 

also differentially algebraic. 

Proof'. Let X[fl . . . .  , f~]d be the subring of An(U x V) generated over X by the 

partials of all orders of f l , . . . ,  fn. Note that  the function J: U --+ X introduced 

above is real analytic and has no zero on U. Clearly ( , )  above can be written as 

(**) (O~lj/Oxi)(x) = J (x)  - 1 .  Fji(x, ~?(x)), for some F j i e  R [ f l , . . . ,  fn] d. 

By taking further derivatives in (**), using the chain rule, one derives inductively 

(***) for each a e Nm:  (Ol~l~j/Ox~)(x) = J(x)  - ' (~ )  �9 Fj~(x, h(x)) 

for some n(a) E N and Fj~ E X [ f l , . . . ,  fn] d. Consider now the R-algebra homo- 

morphism An(U • V) --* An(U) sending each function f C An(U • V) to the 

function x H f (x ,  r/(x)): V ~ X. Let R C_ An(U) be the image of X [ f l , . . . ,  f,~]d 

under this homomorphism. Note that  J E R. By (* �9 *) we know that  

X[Th,.. .  ,~n] d C_ R[J -1] C_ Frac(R), 

w h e r e  j - 1  is the multiplicative inverse of J inside the fraction field Frac(R) of 

R, which we consider here as a subfield of the fraction field of An(U). Hence: 

tr.deg•R[r/1,... ,  r/n] d < tr.deg~cR[J -1] = tr.degRR ___ t r .degr tX[f l , . . . ,  fn] d < oo. 

Therefore 7/1,.. . ,  r/n are differentially algebraic. | 

Similar but easier arguments show (with U C X "~ and V C_ X n as above): 

9.5 LEMMA: Let f E An(U) and g l , . . . , g m  e An(V) be differentially algebraic, 

such that the image of g := (gl . . . .  , gin): V -'* ]R m is contained in U. Then 

f ( g l , . . ' ,  gm) := f o g e An(V) is differentially algebraic. 

9.6 LEMMA: / / r t  = m + 1 and we assume i n / emma  (8.2) in addition that the 

p~ E An(V) are differentially algebraic, then f is differentially algebraic. 

9.7 COROLLARY: Let all functions of the analytic system fit be differentially 

algebraic, and let [ '1 , . . . ,Fz  be a (P,9:t)-chain on X m. Then ali functions of 

R (F1 , . . . ,  Fl) s are differentially algebraic. 
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9.8 PROOF OF PROPOSITION (9.2). We first note that by (8.10) each definable 

g: • ~ R is analytic on an interval (a, +co). The germs at +oo of such definable 

functions form of course a subring of the ring of germs at + ~  of all real valued 

functions on ~; this subring is actually a field, since by O-minimality, if g: X 

R is definable, then g(x) is ultimately of constant sign (positive, negative, or 

zero) for large x. Moreover, this field is a differential field, since for large x the 

derivative g'(x) exists, is a definable function of x, and taking the germ at +co 

of this derived function is a well defined operation on germs. This means that 

the germs at +oo of definable functions g: R ~ R form, what is called, a Hardy 

field. Let ~t be the system (R[Xl, . . . ,xn]),eN, so by (9.7) the functions in the 

extended system 9~ (exp) s are all (analytic and) differentially algebraic. Now we 

note that the proof of analytic cell decomposition shows that our function g is 

piecewise "implicitly defined" by equations in ~R (exp) 8, so that by (9.7) and (9.4) 

there is a E R such that g is analytic on (a, + ~ ) ,  and differentially algebraic on 

that interval, that is, there is a nonzero polynomial p(X0,. �9 X~) over R such 

that p(g(x), g ' ( x ) , . . . ,  g(')(x)) = 0 for x > a. By a general result on differentially 

algebraic functions in Hardy fields due to M. Singer, cf. [Ro, Th.3], it follows 

there is an m E N and a positive constant C such that Ig(x)[ < C .  expn(x TM) for 

all sufficiently large x. | 

9.9 Theorem 3 in [Ro] actually supports a more general result. To see this we 

need a relative version of "differentially algebraic function". Let ~ be an analytic 

system; let U be as in (9.3), and call f E An(U) d i f ferent ia l ly  a lgebra ic  over 

9~ if the subring of An(U) generated by f and its partials of all orders over 

~ I U  :=- {glU: g E [Rm} has finite transcendence degree over 9~ lV .  Then 

the corresponding relative versions of (9.4), (9.5), (9.6) and (9.7) go through. 

Applying this to ~t := (R{X, re}Ix1, . . . ,  xm])meN, the proof in (9.8) leads to the 

following extension of (9.2). 

9.10 PROPOSITION: Let g: ~ -~ R be definable (using constants) in (Ran,exp). 

Then there axe m , n  E N and a constant C > 0 such that [g(x)[ < C .  expn(x TM) 
for ali sufficiently large x. 

We leave the details of the proof to the reader. 



56 L. VAN DEN DRIES AND C. MILLER Isr. J. Math. 

Refe rences  

[D-vdD] 

[vdD1] 

[vdD2] 

[vdD3] 

[vdD-M-M] 

[F] 

[H] 

[K-P-S] 

[P-S] 

[Re] 

fro] 

[Wl] 

[w2] 

J. Denef and L. van den Dries, P-adic and real subanalytic sets, Ann. 

Math. 128 (1988), 79-138. 

L. van den Dries, Algebraic theories with definable Skolem functions, 

Journal of Symbolic Logic 49 (1984), 625-629. 

L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and 

some nondefinability results, Bull. AMS 15 (1986), 189-193. 

L. van den Dries, The elementary theory of restricted elementary func- 

tions, J. Symb. Logic 53 (1988), 796-808. 

L. van den Dries, A. Macintyre and D. Marker, The elementary theory of 

restricted analytic fields with exponentiation, Annals of Mathematics, to 

appear. 

J. Frisch, Points de platitude d'un morphisme d'espaces analytiques, Inv. 

Math. 4 (1967), 118-138. 

A. G. Hovanskii, On a class of systems of transcendental equations, Soviet 

Math. Dokl. 22 (1980), 762-765. 

J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. 

II, Trans. AMS 295 (1986), 593-605. 

A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. 

AMS 295 (1986), 565-592. 

J.-P. Ressayre, Integer parts of real closed exponential fields, preprint. 

M. Rosenlicht, The rank of a Hardy field, Trans. AMS 280 (1983), 659- 

671. 

A. J. Wilkie, Model completeness results for expansions of the real ordered 

field I: Restricted Pfafl~an functions, preprint 1991. 

A. J. Wilkie, Model completeness results for expansions of the real field 

H: the exponential function, preprint 1992. 


