A PROOF OF THE GROTHENDIECK INEQUALITY
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ABSTRACT

The fundamental constant of Grothendieck’s inequality, defined below, was
shown by Grothendieck to be less than sinh /2 =2.301 +. We improve the
bound slightly, and show that for the positive definite case /2 suffices.

In 1956, A. Grothendieck proved that the supremum of the injective tensor
norms of the identity map on R" is uniformly bounded for all n, with least upper
bound y between /2 and sinh /2. This remarkable result leads directly to a
number of important theorems involving %,-spaces. These are given in a paper
of Lindenstrauss and Pelczyinski [2], together with the following matrix
formulation of y: let A =(a;) be a real n X n matrix, n any finite positive
integer, and # an arbitrary real Hilbert space with inner product (-, -). Define
|A|x and |[A| by

)] |Alx = sup{|Z a;(x, y;)|: X, i in ¥ of norm=1}
and
Q) |A|=sup{|Z2 atiyy|: — 1 = t, uy = 1}.

Then |Alx = y|A|.

The proof given by Grothendieck [1, p. 62] and reformulated by Linden-
strauss and PeJ czyniski [2, p. 279] obtains y = sinh /2 = 2.301 + by averaging
(2), with ¢ = sgn(x;, ) and u; = sgn(y,, w), over the unit sphere  in R" with
normalized surface measure dw. We obtain a slightly smaller bound, y <2.261,
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by averaging over R" with normalized Gaussian measure and using a varia-
tional argument to determine an optimal (in this context) scalar map corre-
sponding to the signum function. Our argument also shows that for positive
definite matrices A, we have |A|x = 7/2|A|.

Sten Kaijser (private correspondence) has pointed out that our proof
generalizes directly to the complex case, and yields an upper bound of 1.607
for the complex constant.

For a fixed positive integer n, let dG(x) = (2m) "> exp(— |x[*/2)dx be normal-
ized Gaussian measure of mean zero and unit variance on R". Write L’ for
L*R",dG)andlet |- and (-, - ) be the Hilbert norm and inner product in L.

If x =(x;) and y = (y;) are vectors in R", let |x| be the Euclidean norm of x,
and x -y = Z x;y; be the inner product of x and y. For t =0, write dm(t) =
(2/m) exp (— t*[2)dt, where dt is Lebesgue measure. All unmarked sums £ are
taken with i and j ranging independently over the integers from 1| through n.

Let 4% be the set of measurable functions f(t) =0, defined on t =0, with
esssup f(t) = 1. Given f € 4, let ¢ be the odd extension of f to domain R, i.e.
Y()=f@)if t=0and $(t)= —f(—1t) if t <0. Then given x €R", we define
the real valued functions ¢, and . on R" by

3) e(z)=x-z and $.(z2)=¢(x-2) (zER").
Clearly ¢, and ¢, are in L’ for each x ER".

LemMA |. Let f € U and ¢ the odd extension of f. If |x]|=|y|=1, then
U] (P @) =x"y
(i) (¢ ¥,) = K(x - y) where

K=K, = r (f(¢)dm (¢)
(i) |l — ¢ lP=1-2K + L, where

L=L,= f fi(H)dm(1).

Proor. Since x and y have norm |, we have x =(x - y)y + y’, where y' is
orthogonal to y. Then

f(x “zZ)y - 2)dG(z) = (x 'y)-f |y 'ZIZdG(Z)+f(y’-Z)(y'Z)dG(Z).

The measure dG is characterized by assigning the function z—>y-z a
Gaussian distribution of mean zero and variance |y|*, so [ly - z’dG(z) =|y|’ =
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1. Since the Gaussian distributions are basis-invariant, we may choose coordi-
nates so that y is one of the basis vectors, to get f(y' - z)Xy - 2)dG(z) = 0. This
completes (i).
For (ii), with x =(x - y)y + y' as before,
[ 2wty 6@ =0+ [ 0200y -6 @)
+[ 020 2246 (@).

Again choose coordinates so that y is a basis vector, and integrate first along y.
We obtain

j (v - 29y - 2)dG(z) = j O 0

and

[ o' 20216 =0

For (iii), expand |l¢. — ¢}, note that

(o ) = f ¥i(x - 2)dG(z) = f " F@)dm @),

and apply (i) and (ii).

THeoreM | (Grothendieck). There is & finite number vy, independent of n,
such that |Alx < y|A| for all n X n matrices A.

Proor. Let f€ 9. Write K = K, L = Ly, and let ¢ be the odd extension of f.
For any fixed n, let A =(a;) and ¥ be given, with |A|=1.

Note that |A |» is the supremum of the sums T, a,x;||, taken over x; in ¥ of
norm = 1. Since any such set {x;} of n vectors spans a subspace of ¥ of
dimension at most n, we may take # = R". Further, the convexity of the unit
sphere in Euclidean space R" allows us to choose véctors x;, y; of norm 1 in
R” such that |A |x = Za;(xi - y;).

By Lemma 1, the identity

W ¥,)=(eu ) + (Yo 0))— (¢ 0)— (¢ — &, ¥~ @)
yields:

(4 2 @y )= 2K — 1) 3 ai(x: - y,)
- Z ai!(‘px: - 'l’xl* ¢)1 - ‘py,)-
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From (iii), the last sum above is bounded in absolute value by |A|»(1 —2K +
L), and since |A|=1, we also have |Za,(¢., ¢,)|=1. Hence the triangle
inequality applied to (4) yields:

(5) 1=z IE ay (s )

This inequality holds for any function f in 4. In particular, let f be identically 1.
Then K =(Q2/w) and L =1, so (5) reads

= [Alx(2K ~1|+2K —L — 1).

1= |A|x(2QI7) = 1]+ 227} = 2).

The coefficient of |A|x is easily seen to be greater than .19, hence |A|x <
(19)7'=52+.

CoroLLARY 1. If f € U is such that 2K3> L,, then y =QK3-L,))™".
Proor. From the proof of Theorem 1, for any f € % we have:
) 1z|A|x(2K-1/+2K-L —1).

When f is replaced by cf,c >0, we get K,=cK; and L, =c’L,, so (5)
becomes:

(6) 22 |A|x(2¢K — 1]+ 2cK ~ ¢’L — 1).

If ¢ is such that 2cK — 1 =0, then (6) is trivial, so we only consider constants
¢ >0 for which 4cK —c’L —2>0. By (6), |A]x = c¢*(4cK — ¢’L —2)' for all
such c. For fixed K and L, the minimum value of the right side of this
inequality occurs when ¢ = 1/K. Since 2K*— L >0, this value of ¢ yields
|Alx =(2K?— L)™'. This completes the proof.

We observe that the real-valued mapping f— (2K3j— L) is lower, semi-
continuous in the weak*-topology on L°(R*,dm(t)) and % is a weak*-closed
subset of the unit sphere of this L” space. Hence 2K} — L, attains its maximum
on 4, say at x(¢). We now determine ux(t) explicitly.

Let A be a bounded measurable function on [0,) such that A(t)=0 on
[u=0] h(1)=1 on [u = 1] and esssup,.o|u(t)+eh(t)|=1 for € >0 suffi-
ciently small. Fix such an ¢, write K’ and L’ for the K and L corresponding to
the function u + €h, and delete the p-subscript on K, and L,. Then

2K"*-L'=2K*-L +26J::[2Kh(l)t —u(®h())dm(t)+ O(e?).

Since 2K*— L =Z2K”— L', and € can be taken arbitrarily small,
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)] OZJ:[ZKh(t)t — uw()h(t)ldm(t).

Three cases need to be considered.

Case 1. Let h(t)=0 and supported on [u=0}. By (7), 0=
[52tKh(t)dm(t), which is impossible unless [n = 0] has measure zero. Hence
u(t)>0ae.

Case 2. Let h(t)=0 and supported on [p =1]. Then (7) implies 0=
Joh(t)2Kt — 1)dm(t), so 2Kt — 1= 0 for all ¢ such that p(t)=1

Case 3. Let h(t) be supported on [0 < pu <1]. Note that, for any € =1,
there are functions h, satisfying the given properties, which are strictly positive
or strictly negative on [0<pu <I1]. For any such functions h0=
f2h(t)[2Kt — u(t)ldm(t), and this is possible only if 2Kt = pu(t) a.e. on
o<u<l1]

The information obtained from these cases determines a.e. the maximal
function p(¢)=2Kt if 0=t =1/2K and u(t)=1if t =1)2K.

Calculating 2K?*— L for this u, we immediately obtain the equations
1=2-f*dm(t)and 2K*— L = 2K (2/m)! exp(— 1/8K?) —!. From tables in [3],
2K?*— L > .4423, so by Theorem 2, y <2.261.

If the given matrix A is positive definite, the corresponding value of y is at
most 7/2. Grothendieck showed [1, p. 51] that /2 is a lower bound for y (over
all matrices) by calculating, for each n, the exact value of a particular tensor
norm of the identity on R", showing that this norm is dominated by the
supremum of the injective tensor norms, and letting n — <. We show the
sufficiency of 7/2 for positive definite A by exploring the fact that the last sum
in inequality (4) is non-positive for such matrices.

Let A be a positive definite n X n matrix with |[A| = 1. Consider the vector
space of n-tuples of vectors in R". This is a Hilbert space when endowed with
the inner product (x,y)=Zx -y. Here x =(x,,---,x,) and y =(y;," ", yx),
each x; and y, in R". This inner product induces the norm [|x[’ = =|x;|>. Now
Say(x - y)=(Ax,y)=(Alx, Aly), since A is positive definite: hence
[Zay(x; - y;)|=[|A'x|-|Aly], with equality, in particular, whenever x = y. This
establishes:

LemMa 3. If A is positive definite, there exist vectors x,, - - -, x», each of unit
norm in R", such that |A| =2 a,(x; - x;).
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Tueorem 4. For dny positive definite n X n matrix A, |A |x = 7 /2.

Proor. We follow the proof of Theorem 2. Again f € % and ¢ is the odd
extension of f.

Assume |[A[=1 and choose x,,---,x. of norm 1 in R" such that [A|x =
Say(x - 1;). Then inequality (4) of the proof of Theorem 2 holds with y,
replaced by x,. But T a,(¢., — ¢, ¢s, — ) is non-negative, so0 = ay(¢, ¥,) =
|Alx(2K —1) and 1=|A|x(2K —1). Replace f by cf,c>0. Then ¢’z
|A[x(2cK — 1), 50 |A|x =c*2cK —1)"' whenever ¢ =1/2K. The minimum
value of this bound for | A |+, over all ¢, occurs when ¢ = 1/K, 50 [A [» = 1/K”.
K is clearly maximized when f is identically 1, and then K = (2/m). Thus
lA la- =7/2.
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