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ABSTRACT 

The fundamental constant of Grothendieck's inequality, defined below, was 
shown by Grothendieck to be less than sinh w/2 = 2.301 +. We improve the 
bound slightly, and show that for the positive definite case r suffices. 

In 1956, A. G r o t h e n d i e c k  p roved  that  the s u p r e m u m  of  the in jec t ive  t ensor  

no rms  of  the ident i ty  map  on R" is un i fo rmly  bounded  fo r  all n, with least  uppe r  

bound  3' b e t w e e n  w/2 and  sinh zr/2. This  r e m a r k a b l e  resul t  leads d i rec t ly  to a 

n u m b e r  of  impor t an t  t h e o r e m s  involving ~ p - s p a c e s .  These  are g iven  in a pape r  

of  L indens t r auss  and PeXczyf isk i  [2], toge ther  with the fo l lowing mat r ix  

fo rmula t ion  of  3': let A = (a~j) be  a real n • n matr ix ,  n any  finite pos i t ive  

integer,  and ~ an a rb i t ra ry  real Hi lber t  space  with inner p roduc t  ( . ,  .). Define 

[ a l ~  and I a l b y  

(!) Ial,, =sup{lY.2a,~(x,,yj)l:x,,y~ in ~t' of  no rm -< I} 

and 

(2) IAI = sup {12 E a,~t, u j  l : - I <- t,, u j  <-- I}. 

Then  IA I~ ---- 3'IA I- 

The  p roo f  g iven by  G r o t h e n d i e c k  [1, p. 62] and r e f o r m u l a t e d  by  L inden-  

s t rauss  and  Pe , l ' czyhski  [2, p. 279] ob ta ins  3' = sinh 7r/2 = 2.301 + by  ave rag ing  

(2), with k = sgn(x~, to) and  u, = sgn(yj, to), o v e r  the unit  sphere  1"1 in R" with 

normal ized  su r f ace  m e a s u r e  dto. We obta in  a slightly smal le r  bound ,  3" < 2.261, 
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by averaging over  R" with normalized Gaussian measure  and using a varia- 

tional argument  to determine an optimal (in this context)  scalar map corre- 

sponding to the signum function. Our argument  also shows that for positive 

definite matrices A, we have [A [~t =< ~rl2lA 1. 
Sten Kaijser  (private correspondence)  has pointed out that our proof  

generalizes directly to the complex case,  and yields an upper  bound of 1.607 

for  the complex constant.  

For a fixed positive integer n, let dG(x) = (21r) -'/2 exp ( - Ix 1~/2)dx be normal- 

ized Gaussian measure of mean zero and unit variance on R' .  Write L = for 

L:(R ~, d e )  and let II" 1t and ( - , . )  be the Hilbert norm and inner product  in L 2. 

If x = (x,) and y = (y,) are vectors  in R", let Ixl be the Euclidean norm of x, 

and x . y  = Y-xiyi be the inner product  of x and y. For t S 0 ,  write din(t)= 

(2/1r)~ exp ( -  t212)dt, where dt is Lebesgue measure.  All unmarked sums E are 

taken with i and j ranging independently over  the integers f rom I through n. 

Let  0// be the set of measurable  f u n c t i o n s / ( t ) > 0 ,  defined on t =>0, with 

ess sup / ' ( t )  <= I. Given [ E  ~ ,  let ~ be the odd extension of / to domain R, i.e. 

d/(t) = [(t) if t => 0 and ~ ( t )  = - [( - t) if t < 0. Then given x E R", we define 

the real valued functions ~ and ~b~ on R" by 

(3) q ~ ( z ) = x . z  and d/~(z)=~b(x.z) ( z E R " ) .  

Clearly ~o, and ~, are in L 2 for  each x E R". 

LEMMA I. Let [ ~ ~ and d/ the odd extension o[[. If Ixl = lyl--- 1, then 
( i )  (~0~, ~ , )  = x �9 y 

(ii) (q~, ~,)  = K(x �9 y) where 

~0 ~ K = Kt = t / ( t )dm(t)  

( i i i )  II x -  ,xll = - 2 K  + L, w h e r e  

~0 ~ L = L/= ff(t)dm(t). 

PROOF. Since x and y have norm I, we have x = (x �9 y)y + y ' ,  where y '  is 

orthogonal to y. Then 

f (x f I, f (,' 
The measure dG is character ized by assigning the function z - - - ) y - z  a 

Gauss ian  distribution of mean zero and variance ly[ 2, so f ly " zl~dG(z) = [Yl ~ -- 
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1. Since the Gaussian distributions are basis-invariant, we may choose coordi- 

nates so that y is one of the basis vectors,  to get f ( y '  �9 zXy �9 z )dG(z)  = 0. This 

completes (i). 

For  (ii), with x = (x �9 y)y  + y '  as before,  

f ( x .  z ) $ ( y "  z )dG(z)  = (x" y) .  f (y. z)~, (y .  z )dG(z )  
f + J ( y ' .  z)~b(y �9 z)dG(z) .  

Again choose coordinates so that y is a basis vector,  and integrate first along y. 
We obtain 

f(y -z)~b(y, z )dG(z)  = fo | q ( t )dm( t ) ,  

and 

f(y ' .  z)~b(y �9 z )dG(z)  = O. 

For (iii), expand H~P~ - ~ H  2, note that 

= ~ q/'(x �9 z )dG(z)  ( q',, 
3 

=~f(t)dm(t), 
and apply (i) and (ii). 

THEOREM I (Grothendieck). There is ~ finite number y, independent of  n, 
such that ]A I~t <= ylA I for all n x n matrices A. 

PaOOF. Let  [ • ~ .  Write K = Ks, L = I4, and let ~ be the odd extension of [. 

For  any fixed n, let A = (a,j) and ~ be given, with IAI-_ < I. 

Note that IA I~ is the supremum of the sums E, HEj a,jxjl I, taken over  xj in ~ of 

norm_-< !. Since any such set {xj} of n vectors spans a subspace of ~ of 

dimension at most n, we may take ~ = R". Further,  the convexi ty  of the unit 

sphere in Euclidean space R" allows us to choose vrctors  x,, y~ of norm I in 

R" such that IA I~, = Xa,j(x, �9 yj). 

By Lemma I, the identity 

(4,,, r = ( ,p~ ,  r + (r ,p,) - ( ~ ,  , p , )  - ( , p ~  - r r - , p , )  

yields: 

(4) a~(~b,,, ~,y,) = (2K - l) ~ a,~(x, �9 yj) 

- 2  a , , (~ , -  r r  ~,,). 
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From (iii), the last sum above is bounded in absolute value by IA I,,(1 - 2K + 

L),  and since IAI_-<I, we also have I~:a.(q,x,. qJ,,)l--< I. Hence the triangle 

inequality applied to (4) yields: 

(5) I>-IEa,(q,.,,•,,)I>=IAI.(12K-1I+2K-L-I). 
This inequality holds for any function [ in ad. In particular, let [ be identically 1. 

Then K = (2/*r) ~ and L = i, so (5) reads 

I >-IA Ix(12(2/~r);- I1 + 2(2/,r)~- 2). 

The coefficient of IAIx is easily seen to be greater than .19, hence IA[• < 

(.19)-' = 5.2 + .  

COROLL^RV !. I f  [ ~ all is such  that  2K~ > Lt, then y _-< (2K~-/-,1)-' .  

PROOF. From the proof of Theorem 1, for any [ ~ ad we have: 

(5) i -> Ia I.(12K - l l + 2 K  - L  - I ) .  

When [ is replaced by c f, c > 0 ,  we get Kcl = cK1 and L# = c2LI, so (5) 

becomes: 

(6) c 2 >= Ia 1~(12cK - il + 2 c K  - c 2 L  - i). 

If c is such that 2 c K  - I _-__ 0, then (6) is trivial, so we only consider constants 

c > 0 for which 4 c K  - c2L  - 2 > 0. By (6), IA Ix <- cZ(4cK - c2L  - 2)-' for all 

such c. For fixed K and L, the minimum value of the right side of this 

inequality occurs when c = I lK .  Since 2 K 2 - L  > 0 ,  this value of c yields 

IAlx--<(2K 2 -  L)- ' .  This completes the proof. 

We observe that the real-valued mapping I - - * ( 2 K ~ t - L t )  is lower, semi- 

continuous in the weak*-topology on L| § d in ( t ) )  and q/ is a weak*-closed 

subset of the unit sphere of this L" space. Hence 2K~ - LI attains its maximum 

on ~ ,  say at t~(t). We now determine t~(t) explicitly. 

Let h be a bounded measurable function on [0,oo) such that h(t)>=O on 

[/~ =0] ,  h ( t ) ~ l  on [p~ = i1 and e s s s u p , ~ o l t ~ ( t ) + e h ( t ) ( =  I for �9 > 0  suffi- 

ciently small. Fix such an e, write K '  and L' for the K and L corresponding to 

the funct ion/~ + eh, and delete the/z-subscript  on K,. and L..  Then 

fO ~ 2 K ' 2 - L  ' = 2 K 2 - L  +2~ [ 2 K h ( t ) t - ~ ( t ) h ( t ) l d m ( t ) + O ( ~ 2 ) .  

Since 2 K ' - L  >= 2 K  ' 2 -  L', and �9 can be taken arbitrarily small, 
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0 >-_ fo[2Kh(t) t  - tz(t)h(t)]dm(t). (7) 

Three cases need to be considered. 

Case I. Let  h(t)>-O and supported on [ # = 0 ] .  By (7), 0 _  -> 

~2tKh( t )dm( t ) ,  which is impossible unless [tz = 0] has measure zero. Hence 

# ( t )  > 0 a . e .  

Case 2. Let  h(t)<=O and supported on [Ix = i]. Then (7) implies 0_- > 

~h( t ) (2Kt  - l)dm(t), so 2Kt - 1 > 0 for all t such that t z ( t )=  1. 

Case 3. Let  h(t) be supported on [0<  ta. < 1]. Note that, for any �9 <_- 1, 

there are functions h, satisfying the given properties, which are strictly positive 

or strictly negative on [ 0 < t ~ < l ] .  For any such functions h , 0 _  >-- 

~h( t ) [2Kt - t~ ( t ) ]dm( t ) ,  and this is possible only if 2Kt = t z ( t )  a.e. on 

[ 0 < ~  < 11. 

The information obtained from these cases determines a.e. the maximal 

function # ( t )  = 2Kt if 0 <= t <= i/2K a n d / z ( t )  = i if t >- I/2K. 
Calculating 2 K 2 - L  for this /~, we immediately obtain the equations 

1 = 2. f'/2kdm (t) and 2K 2 - L = 2K(2/Tr)~ exp( - I/8K:) - ~. From tables in [3], 

2K ~ -  L > .4423, so by Theorem 2, y < 2.261. 

If  the given matrix A is positive definite, the corresponding value of y is at 

most ~r/2. Grothendieck showed [1, p. 51] that 7r/2 is a lower bound for y (over 

all matrices) by calculating, for each n, the exact value of a particular tensor 

norm of the identity on R', showing that this norm is dominated by the 

supremum of the injective tensor norms, and letting n-pop. We show the 

sufficiency of r for positive definite A by exploring the fact that the last sum 

in inequality (4) is non-positive for such matrices. 

Let A be a positive definite n x n matrix with [A]  - 1. Consider the vector 

space of n-tuples of vectors in R'. This is a Hilbert space when endowed with 

the inner product (x,y)=5".xj .y,. Here x = ( x , , . . . , x , )  and y = ( y , , . . . , y , ) ,  

each x~ and y, in R'. This inner product induces the norm [[x]{ 2= EIx~[ 2. Now 

Y.ao(xl .yj)=(Ax, y )=(A ix ,  Aiy), since A is positive definite: hence 

[Ea,j(x, .yj)l < [lAtxll �9 [[A �89 with equality, in particular, whenever x = y. This 

establishes: 

LEMMA 3. If A is positive definite, there exist vectors x, , .  . ., x,, each of unit 

norm in R' ,  such that [A I = E aa(xj �9 xl). 
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THEOREM 4. For  dny positive definite n x n matrix  A ,  [A [,t ~_ 1r/2. 

PROOF. We follow the proof of Theorem 2. Again .f ~ �9 and ~, |s the odd 

extension of f. 
Assume [A[<-I and choose x , , . . . , x ,  of norm I in R" such that [AIR-- 

E a,j(x, .x j) .  Then inequality (4) of the proof of Theorem 2 holds with yj 

replaced by x~. But 2 ajj(~p,,- 0~,, ~p,,- ~ , )  is non-negative, so Y. a,(0~,, Oz~)->-- 

[A[ ,~(2K-1)  and I < - [ A [ , r ( 2 K - I ) .  Replace f by c [ , c > O .  Then c~->__ 

IA [,t(2cK - I), so [A Is --< c ' ( 2 c K  - I)-' whenever c >= 112K. The  minimum 

value of this bound for {A [~, over all c, occurs when c = l /K ,  so [A I~ < I /K2. 

K is clearly maximized when f is identically l, and then K = (2/~r) i. Thus 
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