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ABSTRACT 

Skew-products of the powers of an ergodic measure preserving transformation 
with a Bernoulli base are shown to be k-automorphisms. 

Introduction 

Let T be an invertible measure preserving transformation (m,p.t.) on a 
probability triple (11, B, P ). 

Let T' be a Bernoulli shift on (~' ,  B',  P'); and let rt be a countable partition 

of 1~' in B'  whose T'-iterates are P ' - independent  and span B'. See ([4], th. 

(10.13)). Let X be a one-to-one integer valued function on 7. 
Define, on lhe product space ( f l ' x l ) , , B ' •  a m.p.t.  S by 

(1) S ( w ' , w ) = ( T ' w '  TX'""w). 

The present paper studies mixing properties of the transformation S, 

The transformation S is a special kind of Skew-Product. The general case 

replaces the powers of the single transformation T by an arbitrary family of 

m.p.t.'s on (11, B, P), parametrized by a function on (91', B', P'). See ([21, p. 91). 

The purpose of this note is to prove that if T is totally ergodic or if T is 

ergodic and X is strongly aperiodic, S is a k-automorphism. 

Questions about mixing properties of skew-products are raised, among other 
places, in [1], [2] and [5]. 

It would be interesting to study which of these special skew-products are (or 

rather are not) Bernoulli shifts, once we know them to be k-automorphisms. 
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Adler and Shields [ I ] establish Bernoullicity when T is an irrational rotation of 

the circle. The problem raised by B. Weiss in [61, p. 682 remains unsolved to the 

present. 

We will assume the reader is familiar with the notions of ergodicity, 

k-automorphism,  Bernoulli shift, as well as aperiodicity,  and strong aperiodic- 

ity of integer valued random variables. Otherwise,  see [4] and [5]. Total 

ergodicity of a m.p.t, means ergodicity of all of its (positive integer) powers.  

Local uniformity of the distribution of sums 

LEMMA. Let X , , X ~ , X , , . . . b e  independent and identically distributed, 

strongly aperiodic, integer valued random variables. Denote for n >= !, S, = 

X, + X2 + �9 �9 �9 + X,,. Then for every positive integer M, 

(2) - P(S~ = m M + j )  = 0 .  !,im.~ ,,- ~ ,-,, P(S, = r a M + i )  ( l /M)  ,_o 

PROOF. For the case M -- 2, this is a rephrasing of one side of the " z e r o - t w o  

law", see [3]. The more general case follows then as an easy consequence.  

Keeping to the notations brought forward in the introduction. 

THEOREM. Assume X is strongly aperiodic. If 71 is an infinite partition of l-l', 

assume further that the distribution of X is such that the partial sums of i.i.d. 

variables distributed like X form a recurrent random walk. Under these 

assumptions, if T is ergodic, S is a k-automorphism. 

PROOF. Let a be a finite partition of 11 in B. We will first show S to be a 

k -au tomorphism on e, = v ; :_=(S"  (rt •  (rather than on B ' •  B). 

To obtain that, it is enough to show that for each e.- measurable bounded real 

function f. 

(3) S u p l E ( g  . S " f ) -  E (g )E( f ) ]  ~ 0  as n ~ ~, 

where S U P is taken over  all real functions g that are bounded by 1 in 

absolute value, measurable with respect  to v ; ' - = ( S " ( ~  • a)) .  

For convenience,  use the common statistical notation 

(4) C ov ( f , g )  = E f t .  g ) -  E( f )  E(g). 
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We will now show that to obtain (3) for any e,,- measurable bounded f, it is 

enough to consider [ ' s  that are B-measurable, and we will then prove (3) for the 

latter. 

Pick any e,,- measurable, bounded f and any g as required. Replacing [ by an 

f that depends only on finitely many S"(rl x a ) coordinates and that is close to 

f in L.. will give, (Cauchy-Schwartz inequality) 

]Cov(g,S"f)-Cov(g,S"[)['- = [Cov(g ,S"  (f - f))]'~ 

=< var (g).  vat (S" ([ - f)) =< vat (1" - f ) ,  
(5) 

so it is enough to prove (3) for f ' s .  By changing conveniently the power n in (3), 

we may assume )r is v.M_o(S" (o~ • ~ ))- measurable for some M. Hence [ can be 

expressed as [ = E,T/,. 1~,,, where A.  = {(X, T 'X ,  T ' " X , . . , ,  T ' " X ) =  o,} and L 

is a B-measurable function that agrees w i t h [  on A,.. If f = Zy,. I~,, is a sum of 

an infinite number of terms, replace it by a sum T of a finite sub-collection that 
is close to [ in L2. By a computation like (5), it is enough to prove (3) for [ 

replaced by an arbitrary component f,, 1,,,. Since IA. is independent of (g,]'.), 

Cov(g,S"([, , la,3)=E(I,~,T).Cov(g,S"[, ,) ,  and we obtain finally that (3) is 

implied by (5) for B-measurable ['s. From now on, ]" is such a function. 

Denote V. = X + T ' X  + T '2X + , . .  + T'" 'X. 

(6) Coy (g, S"[) = Coy (g. T""/') = ~. Coy (g, Tkf)P(  V. = k ). 
k 

By the lemma, for fixed M > 0 .  the expression in (6) can be made (as n 

becomes large) arbitrarily close to 

(7) 

M - I  

~_,Cov(g. T " ' * ' f ) . ( l / M )  ~ P(V .  = m M  + i ) =  
r n . i  j - 0 

= ~ P(V.  = m M  + j ) C o v ( g , ( l / M )  ~ T"~ '" f )  = 
m . j  i - 0 

M I 

= ~] P(V, = m M  + j ) C o v ( g ,  T"M(( I /M)  ~ T ' f ) ) .  
tn , j  i = 0  

The last expression is bounded in absolute value by Var((l/M)~..,;~0 ~ ' ~ '  T ' f ) ,  

that can be made arbitrarily small by picking M large enough, since T is 

ergodic. We finished the proof that S is a k-aut, on e,. 
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By theorem (13.4) in [4]. to prove that S is a k-aut, on B' x B. it would be 

enough to show the existence of a sequence (a,,)7,, of finite partitions of s in B 

for which vT.=_~(S"(rt x a . ) )  increase to an algebra that spans B ' x  B. 

Let (/3.)~,, be an increasing (i.e., successive refinements) sequence of finite 

partitions of fl  in B for which v s, ~(T"/3.) increase to an algebra that spans B. 

If r t is a countably infinite partition of IL let a.  =/3~ If r/ is a finite partition. 

then the random variable X is essentially bounded and it assigns probability 

one to a bounded set of integers diameter (some) d > 0. Let a.  = v~ =oT"/3o. a. 

is a "d-sweeping"  of /3.. 

To prove that v. v k S ~ ( ~ x a o ) = B ' x B ,  it is enough to check that it 

contains all sets A that belong to v ~,~ MT"a. for some M. some n. And it does. 

since it contains for every N the set A N CN. with (P'  x P)(C•) --* I as N --* ~c. 

and CN is the event: For the random walk (V.)~ . whose increments are 

distributed like X and V,,=0: " { - M , - M  + 1 , . . - ,  +M}  _C U .N- N{V,,}" (if 

we are in the recurrent case) or 

N 

" { - M - d , - M - d + I , . . ' , - M } N  U { V . } ~ b  
n -  N 

and 
N 

{ M , M + t , . . ' , M + d I N  U { V . } / & , "  
r t = -  N 

(if we are in the "d-sweeping"  case). 

COROLLARY. Assume T to be totally ergodic. Assume X to be non- 

-deterministic, and i.f it assigns probabilty one to no finite set, assume its 

random walk to be recurrent on the integer lattice where it lives. Then S is a 

k-automorphism. 

PROOF. For some integer a, P ( X  = a)  > 0. Let d = g.c.d. 

{ n ~ O I P ( X = a + n ) > O } ,  Then the integer valued random variable Y =  

( I / d ) ( X  - a) is strongly aperiodic. Apply to it the Lemma as in the proof of the 

Theorem,  and express TV'f  = T ' ~  (where V'n  are the partial sums of 

the Y ' s ) ,  thus finishing the proof since T o is ergodic. 
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