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1. INTRODUCTION

The theory of impulsive differential equations [1--3] includes numerous open problems related to
results of the theory of integral and integro-differential equations [4-8].

The aim of the present paper is to find solvabhility conditions for a control boundary value problem
for a linear impulsive integro-differential system. (The control problem for a linear impulsive system
was earlier studied in [9].) Morcover. we obtain necessary and sufficient conditions for the solvability

of a boundary value problem for a linear impulsive integro-differential system and prove results on
the existence and an integral representation of solutions of integro-sum Volterra equations of the
second kind and 111teg10—(hffelent1al equations with impulsive effect at given instances of time.

2. AUXILIARY ASSERTIONS

We take real numbers a and 3. « < /3. and positive integers r and p. Let Lj|e, 3] be the space of
all square integrable functions p : [a. 5] — R". and let D"[1.p] be the set of all finite sequences {¢;},

£ € R, i=1....,p. Weintroduce the space IT)[a, 3] = Li[a, 3] x D"[1, p] and denote its elements
by {p,&}. We equip this space with the inner product ({p, £} {w,v}) = jf(;p,w)dt + 30, (& vi),s
where (-,-) is the inner product in R". Throughont the following, {6;}, i = 1,...,p, is a given
strictly increasing sequence of real numbers in the interval (a,3). By PAC|a, 3] we denote the
set of all piecewise absolutely continuous functions x(t) : [o, 5] — R™ that are left continuous
everywhere on [a, 3] and have jump discontinuities at the points {6;}. i =1,...,p.

The following lemmas are analogs of the Fubini theorem [4. p. 317].

Lemma 1. Let D;;, i.j=1..... p. be constant n x n matrices, and let {&;} € D*{1,p}. Then
Z Z Dijfj = Z Z Djifi
a<d; <t a<f,<80, a<f, <t 0,<0,<t

for each t € (o, 3).
The proof is by rearranging the terms.

Lemma 2. Let K(t.s) be an n x n matriz square integrable on the interval o < s < 3, and let
pi(t) € Lo ], i=1..... p. Then

/ (t.s) Z*" Yds = /tIts,aI (1)

o a<(,<s a<§ ,<t 9,

for each t € («, 3).
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CONTROL OF A BOUNDARY VALUE PROBLEM FOR A LINEAR IMPULSIVE ... 1513

Proof. Consider the functions ®,(t), i = 1,...,p, such that ®,;(t) = 0 for t < 8, and ®;(t) = ¢;(t)
for t > 6;. Then the left-hand side of (1) becomes

/Kts Z@ /K(tsgoz Z /ths
0;

a<f, <t a<@, <t

The proof of the lemma is complete.
Consider the integral equation

i

m(t):/G(t,s)x(s)ds+ S Sme@)+ Y N+ Y L+, (2

o a<f, <t a<f;<t a<f;<t

where x € R™, G(t, s) is an n x n matrix function square integrable on [«, 3] x [a, 8], Si(t) and N,(t)
are n x n matrix functions whose columns, as well as the function f(t), belong to PAC|a, 3], and
{I,} € D™[1,p]. Furthermore, we assume that det (I — N; (0;,+)+ N;(6;)) #0foralli=1,...,p

Theorem 1. System (2) has a unique piecewise continuous solution x(t) € PAC|a, f]. It can
be represented in the form

t

W) = [P+ ¥ QWL+ Y RBOSE+fO+ Y L @)

a a<f,<t a<f, <t a<f;<t

where Q,(t), Pi(t), i =1,...,p, and P\(t,s) are piecewise continuous n X n matriz functions.

Proof. Let R(t,s) be the resolvent of the Volterra integral equation of the second kind with
kernel G(t,s). Then, using Lemmas 1 and 2, we find that system (2) is equivalent to the equation

x(t /Rts s)ds + S;(t)| = (6;) + Z /Rts s)ds + N;(t)| = (6;+)
a<0<t a<f,<t
(4)
+ ) /RtsIds+ZI-l—/Rts s)ds + f(t).
a<f;<t 9; a<d;<t

Let S;; = f:j R (0;,s) Si(s)ds, N;; = f;’ R(0;,s) Ni(s)ds, and p;; = f;:j R(8,s)ds + E, where E is
the n x n identity matrix. Then it follows from (4) that

x(0;) =Y [(Sy+S:i(0;)x(0:)+ (Nij+ N (0,))z(0: )]+ D pili

a<#;<8; a<f,<6,
9,
+ / R(8;.5) f(s)ds + £ (8;).

Using Egs. (4) and (5), we obtain
z(0;+) = (B — N; (6;,+) + N; (6,)) {(E+5 (6;+) — 55 (6,)) z (6,)
+ 3 S0 = Si0))x(0)+ D [Ni(G;4) - Ni(6)] = (6:+) (6)

a<f, <0, a<f,<0;
C L f (6 -f(f%)}-
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1514 AIKHMETOV. SEILOVA

The expressions (5) and (6) recursively define x (6;) and x(6;4). Since the nonhomogeneous part

of this system is a linear combination of the vectors f:’ R(t,s)f(s)ds, f(6;). and I;, i = 1,...,p,
it follows that x (6;) and + (6;+) are also lincar combinations of these vectors with matrix coeffi-
cients. Substituting the expressions (5) and (6) into Eq. (4). we find that the solution of Eq. (2)
has the form (3). The proof of the theorem is complete.

3. THE BOUNDARY VALUE PROBLEMN

Consider the impulsive integro-differential system

dr/dt = A(t)x +/ v(t.s)x(s)ds + f(t), t#46;.
" 6, (7)
Ar(®)=Ba®)+ S Dyr(9)+ / M;(s)x(s)ds + I,

a<f, <0, “

where @ € R", Ax(6,) = v (6,+) —x(0;). t € [a.7], A(t), K(t,s). and M;(t), i = 1,...,p, are
n X n matrix functions. the colnumns of A(t) and ALi(t), i = 1.....p, are elements of the space
Lie, 3. {f. I} € I"[a./J]. the D; ;. i,j = 1..... p. are constant n X n matrices, and I{(¢,s) is
a square integrable matrix function on [a. 3] x [a. J].

Let us study the existence and uniqueness of the solution of Eq. (7) and derive solvability
conditions for the boundary value problem

r(a) = a. r(3) =0, a.be R". (8)
for this system.

Theorem 2. Let system (7) satisfy the above-mentioned conditions. Then for every ry € R,
there exists a unique piccewise continuous solution x(t) € PAC|a.p]. x(a) = 2g. of this system
defined on the interval [, 3]

Proof. Differentiating and verifving the jump conditions, we can show that the integro-sum
equation

t

_.10+/A (ls+//I\ o.s)x(s)dsdo + Z Bix (6;) + /f(s)ds

a<f, <t o

+ Y Y D +Z/M (s)ds+ 3 1,

a<d, <t n<d,<0, a<f, <t a<f; <t

(9)

[44

is equivalent to Eq. (7) provided that x(«) = 2. Using the Fubini theorem and Lemma 2, we can
rewrite the latter equation in the form

t

at) = / U(t.s)a(s)ds+ > dur(0)+ Y. L+ F(t), (10)

a a<f; <t a<h, <t

where

U(t.s) = )+ /I& o, s)do + Z M;(s

s<,<t
& =B+ Y D Fl)=w+ / f(s)ds
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Equation (10) is an equation of the form (2) and hence, by Theorem 1, has a unique solution.
The proof of the theorem is complete.
Now let us consider the system of integro-differential equations

Oh(t,s)/0s = —h( /hta (0,8)do — Z h(t,0;) M;(s), s #6;,
s<0, <t (]_1)
AR (t,0) = —h(t,0) B, (E+B)™' = Y n(t.0;+)D; (E+B)™'
0;<6,<t

where h € R" is a row vector, t € [a, 3], A, K, D;;, M;, and B; are defined in the same way as
in system (7), and Ah(t,8;) = h(t,0;+) — h(t,0;). Suppose that det (E - Dj; (E+ Bj)—l) #0
forall j=1,...,p

By analogy with Theorem 2, using Theorem 1 and Lemma 2, we can show that for each hy € R"
system (11) has a unique solution h(t, s) such that h(t,t) = hy.

Let H(t,s) = col (Hy, Hy, Hy, ..., H,) be the matrix such that H(t,t) = E and the rows H;,
i=1,...,n, are solutions of system (11).

Theorem 3. Let x(t) = x (t,, o) be a solution of the Cauchy problem for Eq. (7). Then

2(t) = H(t, a)zo + / Hit,s)f(s)ds+ 3 H(t,0,4) L. (12)

a<f, <t

Proo]f. Let z(t) = z (t, o, xp) be a solution of Eq. (7), and let ¢(s) = H(t,s)x(s). We have
1, p. 20

t

olt) - pla) = [P(s)ds+ Y Ap(6). (13)

« a<f, <t

We take some i. Then
Summing both sides of the last relation over all ¢ such that o < 6; < t and using Lemma 1 and the

relation
H(t,6)) /M ds—/[ 3 H(t,()i)Mi(s)} ds

a<9 <t 8<8, <t

(which can be proved by analogy with Lemma 2), we obtain

0;
S Ap(B)= Y [AH(L6)(E+B)+H(t,0,) Blz(6,)+ 3 H(t,0,¢)/M,(s):c(s)ds
a<f, <t a<f, <t a<f, <t «
+ S S HE64)Dyx @)+ Y H(t604) T,
a<f;<t a<d, <0, a<f;<t

=Y IAH(t,Qi)(E+Bi)+H(t,9i)Bi+ >, H(t701+)Dﬁ}w(9i)

a<fd;<t 0,<6;<t

+ Y /Hte ) Mi(s)a(s)ds+ S H(t,0,4) .

a<f, <t o a<@;<t
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1516 AKHMETOV, SEILOVA

Differentiating the expression p(s) = H(t.s)x(s). we obtain
t
©'(s) = (OH/Ds)x(s) + H(t, s) [A(s).r(s) + /I\'(s. v)r(v)do + f(s)] .

This, together with the Fubini theoren:. implies that

t

[¢1 a

+ /H(t, 5)f(s)ds.

OH/ds+ H(t.s) /H (t.v)K (v, s)dv] x(s)ds

Now. since H is a solution of Eq. (11). it follows from Eqs. (13)—(15) that

t

Alt) = ple) = [

(41

OH/0s + H(t. s) +/Hf VY (v. s )(ll] .l‘(s)ds-l—/H(t. s)f(s)ds

+ Y [AH(t.0.)(E+B)+ H (t.6,) B, + H (t,6,+) D;;] « (6,)

6,<0,<t
+/ S OH(L0)M(s)a(s)ds + S H(t.64+) ],
s<0, <t a<f, <t

a<f, <t

- /H(f.s)f(s)ds-b— S H(t64) I

The proof of the theorem is complete.
Now we consider system (7) with the boundary conditions

x(a) = 0. x(3) =0. (16)
The following assertion is an easy consequence of Theorem 3.
Theorem 4. The boundary value problem (7). (16) is solvable if and only if
({H;(3.5). H, (3.0;)} {f. I;}) =0
forallj=1,...,p
Theorem 5. Problem (7), (8) is solvable if and only if
({H;(8.8), H; (3.0,4+)} {f(s), ;}) = Hy(3,3-)b — Hy(B.at)a,  j=1.....p.

Proof. We claim that there exists a continuous function p(t) such that ¢ (;) =0, j =1,...,p,
and the substitution w(t) = y(t) + ¢(t) reduces problem (7), (8) to the system

P (t) — Alt)e(t) — /K(t-, 8)@(8)618]» t # 0,

dy/dt = A y+/Ix(f s)y(s)ds + £()

Ay(8;)=Bwy )+ > Dyy(0 +/M( s)ds + I,
(17)
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with the boundary conditions
y(@) =0,  y(B)=0. (18)

Indeed, let ¢ (t) be the Lagrange polynomial such that ¢(a) = a, ¢1(3) = b, and ¢,(8;) = 0.
j=1,...,p. Substituting x(¢) = z(¢) + 1 (t) into Egs. (7) and (8), we obtain

t

dsdt = Atz + [ K(t.s)2(s)ds + f(0) - [«z&(t) ~ A - [ K S)wl(S)dS] 46,

«

Az(8)=Biz(0)+ 3 Dyz(8)+ / Mi(s)(s)ds + / M;(s)p1(s)ds + T
e : ° (19)
and
z(a) =0, 2(8) =0. (20)

Now we take a Lagrange polynomial 3(¢) such that ¢3(a) = 0, ¢3(3) = 0, and ¢} (6;) = 0,
j=1,...,p. Using this polynomial, we construct a function y,(t) as follows. Let

0, o;
ky = /Afl(s)gol(s)ds, P = /J\fl(s)gog(s)ds.
Then we set p,(t) = —kypi " @3(t) for ¢ € o, 6;]. Now let
62 2 (7]
iy = / My(s)1(s)ds + / My(s)pa(s)ds,  py= / Ma(5)3(s)ds.
a a [

We set ©,(t) = —kops ' p3(t) for t € (6,,65].
Proceeding this way, we define (,(t) on the entire interval [a, §] so that the substitution z(t) =
y(t) + @2(t) reduces problem (19), (20) to system (17) with the boundary conditions (18). Hence

p(t) = pi(t) + a(t).
By Theorem 4, problem (17), (18) is solvable if and only if

<{Hj(/3’s)7Hj (/6’0J+)}7{FVI]}> =07 j=1,...,p, (21)
where F(t) = —¢|(t) + A(t)p(t) + [ K(t,s)p(t)ds. Integrating by parts in (21) and using the

Fubini theorem, we complete the proof.

4. CONTROLLABILITY OF THE BOUNDARY VALUE PROBLEM

Consider the boundary value problem (8) for the system

dz/dt = A(t)z + / K(t,8)x(s)ds + CO)ult) + F(t),  t# 6,
o N (22)
Az(8)=Bax(®)+ 3 Dyx(6;)+ / M;(s)a(s)ds + Quv, + I..

(1<9J'S0i

Here x € R*, A, K, M;, and B;, i = 1,...,p, are the same matrices as in Eq. (7), C(t) and

Q;, i = 1,...,p, are n x m matrices, m is a given positive integer, the columns of C(t) belong
to L3, B3], the Q;, i = 1,...,p, are constant matrices, and the solutions of system (22) belong
to PAC[w, 8]

If for each element {f, I} € II"[a. 3] and for all a,b € R", there exists a control {u, v} € II™[e, ]
such that problem (22), (8) is solvable, then we say that the control problem ~, is solvable. The prob-
lem v, with a = 0 and b = 0 will be referred to as the control problem ~,.
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Lemma 3. The control problem ~, is solvable if and only if so is the control problem ~,.

Proof. Let the problem 4, be solvable. Since the problem +, is a special case of the problem ~,,
we find it is also solvable. Conversely, suppose that the problem <, is solvable. Let ((t) be the

same function as in tlie proof of Theorem 5. Replacing x(t) by y(¢)+ ¢(t), we find that y(t) satisfies
the system

t

dyfdt = Aty + [ K(t.5)y(s)ds + Cult) +[10) - & (6) + A@olt], ¢ 40,

a

0,
Ay (6;) = By (0;) + Z D,y (65) + / M;(s)y(s)ds + Qv + I,
n<9,§9; o

and the boundary conditions y(a) = 0 and y(3) = 0. This problem is solvable by assumption.
The proof is complete.

Theorem 6. The problem ~, is solvable if and only if the trivial solution of system (11) satisfies

the relation o
{Cu.Qu} {n".n"}Hy =0 V{uv}ell}|og]. (23)

Proof. Sufficiency. Let h(t.s). h(t.t) = h, h € R", be a solution of system (11); then
h(t,s) = hH(t.s). Therefore. by the assumptions of the theorem, the infinite system

({Cu, Qu}. {H"(3.8)h" . H" (3.6,) h"}) = 0, V{u. v} € II'[a, 3],
has only the trivial solution h = 0. Let us show that there exist n elements {u*,v*} € 0y, 3],
k=1,...,n,such that N = <{C’u", QU’"} . {HJT, HJ.T}>J*, J:k =1,...,n, is a nondegenerate matrix.
Suppose the contrary. We take some {v*. %} € I™[e. 3], k = 1,....n. Without loss of gen-

erality, we can assume that the last row of N can be represented as a linear combination of the
remaining rows. By h® we denote a nontrivial solution of the system

({cu®, Qu*y {H"N' H™W"}y =0, k=1,....,n—1. (24)
For every {u, v}, there exist numbers ji. & = 1,...,n — 1. such that

<{C’u, Qv}, {HJT H}}> = nz_:l;l,\. <{Cuk. QuF}, {HJT HJT}> , j=1,...,n~—1.

Therefore, relation (24) implies relation (23), where h = h°.
Indeed, let h® = (RY. hy.... . h2), W e Rii=1..... . Then we can write R°H = "
Hence

{({Cu,Qu}, {HR"" HT1"}) = <{C’u Qu}. {ZHT (t.s) ZHT (t,s) 0T}>
= i <{C’u,Qv}, {HJIH}}> hJ = i {ZY_: i <{Cu ,Qu*}, {H},H;}ﬂ h‘;T
k=1 Jj=1
S S (et @ity (B = S ((Cat @ty (BT TR
k=1 j=1 h=1

n-—-1

:Z/LkX():O.
k=1

i MOH (t, ).
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Thus, h°H is a nontrivial solution of Eq. (11) satisfying (23). We see that N is necessarily a
nondegenerate matrix. Now we consider the boundary value problem (16) for the system

dx/dt = A(t)x + /K(t, s)x(s)ds — C(t) i mpu® + f(t), t#46;,
: 0; "~ n (25)
Az(8)=Bz(@®)+ S Dyz(6)+ / Mi(s)z(s)ds — Q. vk + I,

a<f, <8,

where the {u*,v*} € II™]a, 8] have been defined above and my, € R', k = 1,...,n. Since N is
a nondegenerate matrix, it follows that the system

S {{ow, @} {HI HI Vymy = ({1 {HTHT ), G=1..0m,
k=1
is solvable for the my; therefore, by Theorem 4, problem (25), (16) is solvable.

Necessity. Suppose the contrary: the problem ~; is solvable and system (11) has a nontrivial
solution h satisfying Eq. (23). We can readily show that there exists an element {f, I} € II"[a, 5]

such that ({f,I},{hT,hT}) # 0. We take some element with this property. Then, adding the last
inequality to Eq. (23), we see that the pair {f, I} € I"[a, 0] satisfies ({Cu + f,Qu + I}, {hT,hT}) #
0 for all {u,v}. Since this contradicts Theorem 4, we arrive at the desired assertion.

It follows from the last theorem that the problems 7, and 7, are solvable if and only if the system
({Cu, Qu}, {HT(3,5)R", HT (3,6;) h"'}) = 0 has only the trivial solution for h € R" for every
{u,v} € IIJ'[, B]. Moreover, the problems 7, and -y, are solvable if and only if det(H(3,t)C(t)) # 0
and det (H (38,60,)Q;) #0,i=1,...,p, for all t € [, A].

Now let T' be the Gram matrix of the elements {H,;C, H; (3,0;+)Q;}, j =1,...,n, ie.,

4 P
r= [HEHCOC O (3,04 + Y H (3.64) QQTH" (5.6).

Theorem 7. The problem ~, is solvable if and only if the Gram matriz T’ is nondegenerate.
Proof. Let the problem 7, be solvable. By Theorem 6, system (23) has only the trivial solution
h = 0. Setting {u,v} = {CT(t)HT(3,t),QFHT (3,0;)} in this equation, we find that the system

hI' = 0 has only the trivial solution. Conversely, if the equation hI' = 0 has ouly the trivial
solution, then system (23) has only the solution h = 0. The proof is complete. Let

8
K= F‘l{H(ﬂ, B~ H(B,a)a~ [ H(B,0)f(t)dt - S H(5,604) I}
2 i=1
S(t)=H(B,t)C(t),  P=H(B,0+)Qi
From Theorem 6, we obtain the following assertion.
Theorem 8. Suppose that the problem =y, is solvable. Then the control {U,V'}, where
U= ST(HK, V, = P'K,
is a solution of the problem .
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Proof. By Theorem 5. the problem 4, is solvable if and only if

D

3 .
/H(/3. HIf () + C(t)yu(t)]dt + Z H(3.6,) [I; + Q;v,) = H(B.3-)b~ H(B.a+)a. (26)

i=1
Substituting the expressions
U=CYt)H"(3.t)h", Vi=Q.HY(3.60,) h" (27)

for {u, v} into Eq. (26), we obtain a system of linear ecquations for k. Using the solution of this
system in Eq. (27), we obtain the desired expression for {U.V}. The proof of the theorem is
complete.

The control {U.V'} allows one to describe the set of all controls solving the problem .

Theorem 9. A control {u.v} solves the problem ~, if and only if it has the form v = U + &.

v = %/’,- +]l/i, where {&.v} € II"[a. 3] is orthogonal to all columns of the matriz {S(t), P}
in IIMia, 3].

Proof. Indeed, let {u. v} be a control solving the problem ~;. Then

3 p
/S(t)(u(t) —U(t)dt+Y_ P (v; = Vi) = 0.
’ i=1

If we assume that £ = u — U and v; = v, — V;. then we obtain the desired assertion.
Conversely, suppose that « = U + € and v; = V; + v;. Then condition (26) is satisfied and the
control {u,v} solves the problem ~;.

We equip 1" [av. 3] with the norm |[{u. v}l = ({u, v}, {u. v})/2. Following [10. p. 157], we can
show that {U,V} has the least norm in II"™[«. 3] of all controls solving the problem 7.
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