Differential Equations, Vol. 36, No. 10. 2000, pp. 1512-1520. Translated from Differentsial'nye Uravneniya, Vol. 36, No. 10, 2000, pp. 1369-1376. Original Russian Text Copyright @ 2000 by Akhmetov. Seilova.

\equiv INTEGRAL AND INTEGRO-DIFFERENTIAL \equiv **EQUATIONS**

Control of a Boundary Value Problem for a Linear Impulsive Integro-Differential System

M. U. Akhmetov and R. D. Seilova

Aktyubinsk [hdversit!! "Dunie. "' Aktyubin.sk Higher Air Force School, Aktyubinsk Russia Received September 7, 1998

1. INTRODUCTION

The theory of impulsive differential equations [1-3] includes numerous open problems related to results of the theory of integral and integro-differential equations [4-8].

The aim of the present paper is to find solvability conditions for a control boundary value problem for a linear impulsive integro-differential system. (The control problem for a linear impulsive system was earlier studied in [9].) Moreover. we obtain necessary and sufficient conditions for the solvability of a boundary value problem for a linear impulsive integro-differential system and prove results on the existence and an integral representation of solutions of integro-sum Volterra equations of the second kind and integro-differential equations with impulsive effect at given instances of time.

2. AUXILIARY ASSERTIONS

We take real numbers α and β , $\alpha < \beta$, and positive integers r and p. Let $L_2^r[\alpha,\beta]$ be the space of all square integrable functions $\varphi : [\alpha, \beta] \to R^r$, and let $D^r[\tilde{1}, p]$ be the set of all finite sequences $\{\xi_i\},$ $\xi_i \in R^r, i = 1,\ldots,p.$ We introduce the space $\Pi_p^r[\alpha, \beta] = L_2^r[\alpha, \beta] \times D^r[1,p]$ and denote its elements by $\{\varphi,\xi\}$. We equip this space with the inner product $\{\{\varphi,\xi\},\{\omega,\nu\}\} = \int_{\alpha}^{\infty}(\varphi,\omega)dt + \sum_{i=1}^{\infty}(\xi_i,\nu_i),$ where (\cdot, \cdot) is the inner product in R^r. Throughout the following, $\{\theta_i\}, i = 1, \ldots, p$, is a given strictly increasing sequence of real numbers in the interval (α, β) . By *PAC*[α, β] we denote the set of all piecewise absolutely continuous functions $x(t) : [\alpha, \beta] \to R^n$ that are left continuous everywhere on $[\alpha, \beta]$ and have jump discontinuities at the points $\{\theta_i\}, i = 1, \ldots, p$.

The following lenmms are analogs of the Fubini theorem [4, p. 317].

Lemma 1. Let D_{ij} , i. $j = 1, ..., p$, be constant $n \times n$ matrices, and let $\{\xi_i\} \in D^n\{1, p\}$. Then

$$
\sum_{\alpha < \theta_i < t} \sum_{\alpha < \theta_i \leq \theta_i} D_{ij} \xi_j = \sum_{\alpha < \theta_i < t} \sum_{\theta_i < \theta_i < t} D_{ji} \xi_i
$$

for each $t \in (\alpha, \beta)$.

The proof is by rearranging the terms.

Lemma 2. Let $K(t,s)$ be an $n \times n$ matrix square integrable on the interval $\alpha \leq s \leq \beta$, and let $\varphi_i(t) \in L_2^n[\alpha, \beta], i = 1, \ldots, p.$ Then

$$
\int_{\alpha}^{t} K(t,s) \sum_{\alpha < \theta_i < s} \varphi_i(s) ds = \sum_{\alpha < \theta_i < t} \int_{\theta_i}^{t} K(t,s) \varphi_i(s) ds \tag{1}
$$

for each $t \in (\alpha, \beta)$.

Proof. Consider the functions $\Phi_i(t), i = 1, \ldots, p$, such that $\Phi_i(t) = 0$ for $t \leq \theta_i$ and $\Phi_i(t) = \varphi_i(t)$ for $t > \theta_i$. Then the left-hand side of (1) becomes

$$
\int_{\alpha}^{t} K(t,s) \sum_{\alpha < \theta_i < t} \Phi_i(s) ds = \sum_{\alpha < \theta_i < t} \int_{\alpha}^{t} K(t,s) \varphi_i(s) ds = \sum_{\alpha < \theta_i < t} \int_{\theta_i}^{t} K(t,s) \Phi_i(s) ds.
$$

The proof of the lemma is complete.

Consider the integral equation

$$
x(t) = \int_{\alpha}^{t} G(t,s)x(s)ds + \sum_{\alpha < \theta_i < t} S_i(t)x(\theta_i) + \sum_{\alpha < \theta_i < t} N_i(t)x(\theta_i) + \sum_{\alpha < \theta_i < t} I_i + f(t),
$$
 (2)

where $x \in R^n$, $G(t, s)$ is an $n \times n$ matrix function square integrable on $[\alpha, \beta] \times [\alpha, \beta]$, $S_i(t)$ and $N_i(t)$ are $n \times n$ matrix functions whose columns, as well as the function $f(t)$, belong to $PAC[\alpha, \beta]$, and ${L_i \in D^n[1,p]}.$ Furthermore, we assume that $\det (I - N_i(\theta_i)) + N_i(\theta_i)) \neq 0$ for all $i = 1,\ldots,p$.

Theorem 1. *System* (2) has a unique piecewise continuous solution $x(t) \in PAC[\alpha, \beta]$. It can *be represented in the form*

$$
x(t) = \int_{\alpha}^{t} P_1(t,s)f(s)ds + \sum_{\alpha < \theta, < t} Q_i(t)I_i + \sum_{\alpha < \theta, < t} P_2^i(t)f(\theta_i) + f(t) + \sum_{\alpha < \theta, < t} I_i,
$$
 (3)

where $Q_i(t)$, $P_2^i(t)$, $i = 1, \ldots, p$, and $P_1(t, s)$ are piecewise continuous $n \times n$ matrix functions.

Proof. Let $R(t, s)$ be the resolvent of the Volterra integral equation of the second kind with kernel $G(t, s)$. Then, using Lemmas 1 and 2, we find that system (2) is equivalent to the equation

$$
x(t) = \sum_{\alpha < \theta_i < t} \left[\int_{\theta_i}^t R(t, s) S_i(s) ds + S_i(t) \right] x(\theta_i) + \sum_{\alpha < \theta_i < t} \left[\int_{\theta_i}^t R(t, s) N_i(s) ds + N_i(t) \right] x(\theta_i) + \sum_{\alpha < \theta_i < t} \int_{\theta_i}^t R(t, s) I_i ds + \sum_{\alpha < \theta_i < t} I_i + \int_{\alpha}^t R(t, s) f(s) ds + f(t).
$$
\n
$$
(4)
$$

Let $S_{ij} = \int_{\theta_i}^{\varphi_j} R(\theta_j, s) S_i(s) ds$, $N_{ij} = \int_{\theta_i}^{\varphi_j} R(\theta_j, s) N_i(s) ds$, and $p_{ij} = \int_{\theta_i}^{\varphi_j} R(\theta_j, s) ds + E$, where E is the $n \times n$ identity matrix. Then it follows from (4) that

$$
x(\theta_j) = \sum_{\alpha < \theta_i < \theta_j} \left[(S_{ij} + S_i(\theta_j)) x(\theta_i) + (N_{ij} + N_i(\theta_j)) x(\theta_i+) \right] + \sum_{\alpha < \theta_i < \theta_j} p_{ij} I_i
$$

+
$$
\int_{\alpha}^{\theta_j} R(\theta_j, s) f(s) ds + f(\theta_j).
$$
 (5)

Using Eqs. (4) and (5) , we obtain

$$
x(\theta_{j}) = (E - N_{j}(\theta_{j}) + N_{j}(\theta_{j}))^{-1} \left\{ (E + S_{j}(\theta_{j}) - S_{j}(\theta_{j})) x(\theta_{i}) + \sum_{\alpha < \theta_{i} < \theta_{j}} [S_{i}(\theta_{j}) - S_{i}(\theta_{j})] x(\theta_{i}) + \sum_{\alpha < \theta_{i} < \theta_{j}} [N_{i}(\theta_{j}) - N_{i}(\theta_{j})] x(\theta_{i}) + I_{j} + f(\theta_{j}) - f(\theta_{j}) \right\}.
$$
\n(6)

AKHMETOV. SEILOVA

The expressions (5) and (6) recursively define $x(\theta_i)$ and $x(\theta_i+)$. Since the nonhomogeneous part of this system is a linear combination of the vectors $\int_{0}^{\theta_{i}} R(t,s)f(s)ds$, $f(\theta_{i})$, and I_{i} , $i=1,\ldots,p$, it follows that $x(\theta_i)$ and $x(\theta_i+)$ are also linear combinations of these vectors with matrix coefficients. Substituting the expressions (5) and (6) into Eq. (4) , we find that the solution of Eq. (2) has the form (3) . The proof of the theorem is complete.

3. THE BOUNDARY VALUE PROBLEM

Consider the impulsive integro-differential system

$$
dx/dt = A(t)x + \int_{\alpha}^{t} K(t,s)x(s)ds + f(t), \quad t \neq \theta_{i}.
$$

$$
\Delta x(\theta_{i}) = B_{i}x(\theta_{i}) + \sum_{\alpha < \theta_{i} \leq \theta_{i}} D_{ij}x(\theta_{j}) + \int_{\alpha}^{\theta_{i}} M_{i}(s)x(s)ds + I_{i},
$$
\n(7)

where $x \in R^n$, $\Delta x(\theta_i) \equiv x(\theta_i) - x(\theta_i)$, $t \in [\alpha, \beta]$, $A(t)$, $K(t, s)$, and $M_i(t)$, $i = 1, \ldots, p$, are $n \times n$ matrix functions, the columns of $A(t)$ and $M_i(t)$, $i = 1, ..., p$, are elements of the space $L_2^n[\alpha,\beta],\{f,I\} \in \Pi^n[\alpha,\beta]$, the $D_{i,j}, i,j = 1,\ldots,p$, are constant $n \times n$ matrices, and $K(t,s)$ is a square integrable matrix function on $[\alpha, \beta] \times [\alpha, \beta]$.

Let us study the existence and uniqueness of the solution of Eq. (7) and derive solvability conditions for the boundary value problem

$$
x(\alpha) = a, \qquad x(\beta) = b, \qquad a, b \in R^n. \tag{8}
$$

for this system.

Theorem 2. Let system (7) satisfy the above-mentioned conditions. Then for every $x_0 \in R^n$, there exists a unique piecewise continuous solution $x(t) \in PAC[\alpha,\beta]$, $x(\alpha) = x_0$, of this system defined on the interval $[\alpha, \beta]$.

Proof. Differentiating and verifying the jump conditions, we can show that the integro-sum equation

$$
x(t) = x_0 + \int_{\alpha}^{t} A(s)x(s)ds + \int_{\alpha}^{t} \int_{\alpha}^{\sigma} K(\sigma, s)x(s)ds d\sigma + \sum_{\alpha < \theta, < t} B_i x(\theta_i) + \int_{\alpha}^{t} f(s)ds
$$

+
$$
\sum_{\alpha < \theta, < t} \sum_{\alpha < \theta, \le \theta,} D_{ij} x(\theta_i) + \sum_{\alpha < \theta, < t} \int_{\alpha}^{\theta_i} M_i(s)x(s)ds + \sum_{\alpha < \theta, < t} I_i
$$
(9)

is equivalent to Eq. (7) provided that $x(\alpha) = x_0$. Using the Fubini theorem and Lemma 2, we can rewrite the latter equation in the form

$$
x(t) = \int_{\alpha}^{t} \Psi(t, s) x(s) ds + \sum_{\alpha < \theta_i < t} \Phi_i x(\theta_i) + \sum_{\alpha < \theta_i < t} I_i + F(t),
$$
\n(10)

where

$$
\Psi(t,s) = A(s) + \int_{s}^{t} K(\sigma, s) d\sigma + \sum_{s < \theta_j < t} M_j(s),
$$

$$
\Phi_i = B_i + \sum_{\theta_i \le \theta_j < t} D_{ji}, \qquad F(t) = x_0 + \int_{\alpha}^{t} f(s) ds.
$$

Equation (10) is an equation of the form (2) and hence, by Theorem 1, has a unique solution. The proof of the theorem is complete.

Now let us consider the system of integro-differential equations

$$
\partial h(t,s)/\partial s = -h(t,s)A(s) - \int_{s}^{t} h(t,\sigma)K(\sigma,s)d\sigma - \sum_{s \leq \theta_{j} < t} h(t,\theta_{j})M_{i}(s), \qquad s \neq \theta_{i},
$$
\n
$$
\Delta h(t,\theta_{i}) = -h(t,\theta_{i})B_{i}(E+B_{i})^{-1} - \sum_{\theta_{i} \leq \theta_{j} < t} h(t,\theta_{j}+)D_{ji}(E+B_{i})^{-1}, \qquad (11)
$$

where $h \in R^n$ is a row vector, $t \in [\alpha, \beta], A, K, D_{ij}, M_i$, and B_i are defined in the same way as in system (7), and $\Delta h(t, \theta_i) \equiv h(t, \theta_i) - h(t, \theta_i)$. Suppose that det $(E - D_{jj} (E + B_j)^{-1}) \neq 0$ for all $j = 1, \ldots, p$.

By analogy with Theorem 2, using Theorem 1 and Lemma 2, we can show that for each $h_0 \in R^n$ system (11) has a unique solution $h(t,s)$ such that $h(t,t) = h_0$.

Let $H(t,s) = \text{col}(H_1, H_2, H_3, \ldots, H_n)$ be the matrix such that $H(t,t) = E$ and the rows H_i , $i = 1, \ldots, n$, are solutions of system (11).

Theorem 3. Let $x(t) = x(t, \alpha, x_0)$ be a solution of the Cauchy problem for Eq. (7). Then

$$
x(t) = H(t, \alpha)x_0 + \int_{\alpha}^{t} H(t, s)f(s)ds + \sum_{\alpha < \theta_i < t} H(t, \theta_j +) I_i.
$$
 (12)

Proof. Let $x(t) = x(t, \alpha, x_0)$ be a solution of Eq. (7), and let $\varphi(s) = H(t, s)x(s)$. We have $[1, p. 20]$

$$
\varphi(t) - \varphi(\alpha) = \int_{\alpha}^{t} \varphi'(s) ds + \sum_{\alpha < \theta, < t} \Delta \varphi(\theta_i).
$$
 (13)

We take some i. Then

$$
\Delta \varphi (\theta_i) = H(t, \theta_i +) x (\theta_i +) - H(t, \theta_i) x (\theta_i) = H(t, \theta_i) \Delta x (\theta_i) + \Delta H(t, \theta_i) x (\theta_i +).
$$

Summing both sides of the last relation over all i such that $\alpha < \theta_i < t$ and using Lemma 1 and the relation

$$
\sum_{\alpha < \theta_i < t} H(t, \theta_i) \int_{\alpha}^{t} M_i(s) x(s) ds = \int_{\alpha}^{t} \left[\sum_{s \leq \theta_i < t} H(t, \theta_i) M_i(s) \right] ds
$$

(which can be proved by analogy with Lemma 2), we obtain

$$
\sum_{\alpha < \theta_i < t} \Delta \varphi (\theta_i) = \sum_{\alpha < \theta_i < t} [\Delta H (t, \theta_i) (E + B_i) + H (t, \theta_i) B_i] x (\theta_i) + \sum_{\alpha < \theta_i < t} H (t, \theta_i) \int_{\alpha}^{\theta_i} M_i(s) x(s) ds
$$

+
$$
\sum_{\alpha < \theta_i < t} \sum_{\alpha < \theta_j \leq \theta_i} H (t, \theta_i +) D_{ij} x (\theta_j) + \sum_{\alpha < \theta_i < t} H (t, \theta_i +) I_i
$$

=
$$
\sum_{\alpha < \theta_i < t} \left[\Delta H (t, \theta_i) (E + B_i) + H (t, \theta_i) B_i + \sum_{\theta_i \leq \theta_j < t} H (t, \theta_j +) D_{ji} \right] x (\theta_i)
$$

+
$$
\sum_{\alpha < \theta_i < t} \int_{\alpha}^{\theta_i} H (t, \theta_i) M_i(s) x(s) ds + \sum_{\alpha < \theta_i < t} H (t, \theta_i +) I_i.
$$
 (14)

AKHMETOV, SEILOVA

Differentiating the expression $\varphi(s) = H(t, s)x(s)$, we obtain

$$
\varphi'(s) = (\partial H/\partial s)x(s) + H(t,s)\left[A(s)x(s) + \int_{\alpha}^{t} K(s,v)x(v)dv + f(s)\right].
$$

This, together with the Fubini theorem, implies that

$$
\int_{\alpha}^{t} \varphi'(s)ds = \int_{\alpha}^{t} \left[\partial H/\partial s + H(t,s)A(s) + \int_{\alpha}^{t} H(t,v)K(v,s)dv \right] x(s)ds
$$
\n
$$
+ \int_{\alpha}^{t} H(t,s)f(s)ds.
$$
\n(15)

Now, since H is a solution of Eq. (11), it follows from Eqs. (13)–(15) that

$$
\varphi(t) - \varphi(\alpha) = \int_{\alpha}^{t} \left[\partial H/\partial s + H(t, s)A(s) + \int_{\alpha}^{t} H(t, v)K(v, s)dv \right] x(s)ds + \int_{\alpha}^{t} H(t, s)f(s)ds
$$

+
$$
\sum_{\theta_{i} \leq \theta_{i} < t} \left[\Delta H(t, \theta_{i}) (E + B_{i}) + H(t, \theta_{i}) B_{i} + H(t, \theta_{i} +) D_{ij} \right] x(\theta_{i})
$$

+
$$
\int_{\alpha}^{t} \sum_{s \leq \theta_{i} < t} H(t, \theta_{i}) M_{i}(s) x(s) ds + \sum_{\alpha < \theta_{i} < t} H(t, \theta_{i} +) I_{i}
$$

=
$$
\int_{\alpha}^{t} H(t, s) f(s) ds + \sum_{\alpha < \theta_{i} < t} H(t, \theta_{i} +) I_{i}.
$$

The proof of the theorem is complete.

Now we consider system (7) with the boundary conditions

$$
x(\alpha) = 0, \qquad x(\beta) = 0. \tag{16}
$$

The following assertion is an easy consequence of Theorem 3.

Theorem 4. The boundary value problem (7) . (16) is solvable if and only if

$$
\langle \{H_j(\beta,s),H_j(\beta,\theta_j)\},\{f,I_j\}\rangle = 0
$$

for all $j = 1, \ldots, p$.

Theorem 5. Problem (7) , (8) is solvable if and only if

$$
\langle \{H_j(\beta,s), H_j(\beta,\theta_j+)\}, \{f(s), I_j\}\rangle = H_j(\beta,\beta-)b - H_j(\beta,\alpha+)a, \qquad j=1,\ldots,p.
$$

Proof. We claim that there exists a continuous function $\varphi(t)$ such that $\varphi(\theta_i) = 0, j = 1, \ldots, p$, and the substitution $x(t) = y(t) + \varphi(t)$ reduces problem (7), (8) to the system

$$
dy/dt = A(t)y + \int_{\alpha}^{t} K(t,s)y(s)ds + f(t) - \left[\varphi'(t) - A(t)\varphi(t) - \int_{\alpha}^{t} K(t,s)\varphi(s)ds\right], \qquad t \neq \theta_i,
$$

$$
\Delta y(\theta_i) = B_i y(\theta_i) + \sum_{\alpha < \theta_i \leq \theta_i} D_{ij} y(\theta_j) + \int_{\alpha}^{\theta_i} M_i(s)x(s)ds + I_i
$$
\n(17)

with the boundary conditions

$$
y(\alpha) = 0, \qquad y(\beta) = 0. \tag{18}
$$

Indeed, let $\varphi_1(t)$ be the Lagrange polynomial such that $\varphi_1(\alpha) = a$, $\varphi_1(\beta) = b$, and $\varphi_1(\theta_j) = 0$. $j = 1, \ldots, p$. Substituting $x(t) = z(t) + \varphi_1(t)$ into Eqs. (7) and (8), we obtain

$$
dz/dt = A(t)z + \int_{\alpha}^{t} K(t,s)z(s)ds + f(t) - \left[\varphi_1'(t) - A(t)\varphi_1(t) - \int_{\alpha}^{t} K(t,s)\varphi_1(s)ds\right], \qquad t \neq \theta_i,
$$

$$
\Delta z(\theta_i) = B_i z(\theta_i) + \sum_{\alpha < \theta_j \leq \theta_i} D_{ij} z(\theta_j) + \int_{\alpha}^{\theta_i} M_i(s)z(s)ds + \int_{\alpha}^{\theta_j} M_i(s)\varphi_1(s)ds + I_i
$$
(19)

and
$$
z(\alpha) = 0, \qquad z(\beta) = 0.
$$
 (20)

Now we take a Lagrange polynomial $\varphi_2^0(t)$ such that $\varphi_2^0(\alpha) = 0$, $\varphi_2^0(\beta) = 0$, and $\varphi_2^0(\theta_j) = 0$, $j = 1, \ldots, p$. Using this polynomial, we construct a function $\varphi_2(t)$ as follows. Let

$$
k_1 = \int\limits_{\alpha}^{\theta_1} M_1(s)\varphi_1(s)ds, \qquad p_1 = \int\limits_{\alpha}^{\theta_1} M_1(s)\varphi_2^0(s)ds.
$$

Then we set $\varphi_2(t) = -k_1 p_1^{-1} \varphi_2^0(t)$ for $t \in [\alpha, \theta_1]$. Now let

$$
k_2 = \int\limits_{\alpha}^{\theta_2} M_2(s)\varphi_1(s)ds + \int\limits_{\alpha}^{\theta_1} M_2(s)\varphi_2(s)ds, \qquad p_2 = \int\limits_{\theta_1}^{\theta_2} M_2(s)\varphi_2^0(s)ds.
$$

We set $\varphi_2(t) = -k_2 p_2^{-1} \varphi_2^0(t)$ for $t \in (\theta_1, \theta_2]$.

Proceeding this way, we define $\varphi_2(t)$ on the entire interval $[\alpha, \beta]$ so that the substitution $z(t)$ = $y(t) + \varphi_2(t)$ reduces problem (19), (20) to system (17) with the boundary conditions (18). Hence $\varphi(t)=\varphi_1(t)+\varphi_2(t).$

By Theorem 4, problem (17), (18) is solvable if and only if

$$
\langle \{H_j(\beta, s), H_j(\beta, \theta_j +)\}, \{F, I_j\} \rangle = 0, \qquad j = 1, \dots, p,
$$
 (21)

where $F(t) = -\varphi'_1(t) + A(t)\varphi(t) + \int_{\alpha}^t K(t,s)\varphi(t)ds$. Integrating by parts in (21) and using the Fubini theorem, we complete the proof.

4. CONTROLLABILITY OF THE BOUNDARY VALUE PROBLEM

Consider the boundary value problem (8) for the system

$$
dx/dt = A(t)x + \int_{\alpha}^{t} K(t,s)x(s)ds + C(t)u(t) + f(t), \qquad t \neq \theta_i,
$$

$$
\Delta x(\theta_i) = B_ix(\theta_i) + \sum_{\alpha < \theta_j \leq \theta_i} D_{ij}x(\theta_j) + \int_{\alpha}^{\theta_i} M_i(s)x(s)ds + Q_i v_i + I_i.
$$
 (22)

Here $x \in R^n$, A, K, M_i, and B_i, $i = 1, \ldots, p$, are the same matrices as in Eq. (7), $C(t)$ and Q_i , $i = 1, \ldots, p$, are $n \times m$ matrices, m is a given positive integer, the columns of $C(t)$ belong to $L_2^n[\alpha,\beta]$, the Q_i , $i = 1,\ldots,p$, are constant matrices, and the solutions of system (22) belong to $PAC[\alpha, \beta]$.

If for each element $\{f, I\} \in \Pi^n[\alpha, \beta]$ and for all $a, b \in \mathbb{R}^n$, there exists a control $\{u, v\} \in \Pi^m[\alpha, \beta]$ such that problem (22) , (8) is solvable, then we say that the *control problem* γ_1 is solvable. The problem γ_1 with $a = 0$ and $b = 0$ will be referred to as the *control problem* γ_2 .

1518 AKHMETOV, SEILOVA

Lemma 3. The control problem γ_1 is solvable if and only if so is the control problem γ_2 .

Proof. Let the problem γ_1 be solvable. Since the problem γ_2 is a special case of the problem γ_1 , we find it is also solvable. Conversely, suppose that the problem γ_2 is solvable. Let $\varphi(t)$ be the same function as in the proof of Theorem 5. Replacing $x(t)$ by $y(t) + \varphi(t)$, we find that $y(t)$ satisfies the system

$$
dy/dt = A(t)y + \int_{\alpha}^{t} K(t,s)y(s)ds + C(t)u(t) + [f(t) - \varphi'(t) + A(t)\varphi(t)], \qquad t \neq \theta_i,
$$

$$
\Delta y(\theta_i) = B_i y(\theta_i) + \sum_{\alpha < \theta_i \leq \theta_i} D_{ij} y(\theta_j) + \int_{\alpha}^{\theta_i} M_i(s)y(s)ds + Q_i v_i + I_i
$$

and the boundary conditions $y(\alpha) = 0$ and $y(\beta) = 0$. This problem is solvable by assumption. The proof is complete.

Theorem 6. The problem γ_1 is solvable if and only if the trivial solution of system (11) satisfies the *relation*

$$
\langle \{Cu, Q, v_i\}, \{h^{\mathrm{T}}, h^{\mathrm{T}}\} \rangle = 0 \qquad \forall \{u, v\} \in \Pi_p^m[\alpha, \beta]. \tag{23}
$$

Proof. Sufficiency. Let $h(t,s)$, $h(t,t) = h$, $h \in Rⁿ$, be a solution of system (11); then $h(t, s) = hH(t, s)$. Therefore, by the assumptions of the theorem, the infinite system

$$
\langle \{Cu, Qv\}, \{H^{\mathrm{T}}(\beta, s)h^{\mathrm{T}}, H^{\mathrm{T}}(\beta, \theta_i)h^{\mathrm{T}}\}\rangle = 0, \qquad \forall \{u, v\} \in \Pi_p^m[\alpha, \beta],
$$

has only the trivial solution $h = 0$. Let us show that there exist n elements $\{u^k, v^k\} \in \Pi_n^m[\alpha, \beta],$ $k=1,\ldots,n,$ such that $N = \langle \{Cu^k, Qv^k\}, \{H_j^T, H_j^T\} \rangle_{jk}, j,k = 1,\ldots,n$, is a nondegenerate matrix.

Suppose the contrary. We take some $\{u^k, v^k\} \in \Pi^m[\alpha, \beta], k = 1, \ldots, n$. Without loss of generality, we can assume that the last row of N can be represented as a linear combination of the remaining rows. By h^0 we denote a nontrivial solution of the system

$$
\langle \{Cu^k, Qv^k\}, \{H^{\mathrm{T}}h^{\mathrm{T}}, H^{\mathrm{T}}h^{\mathrm{T}}\}\rangle = 0, \qquad k = 1, \ldots, n-1.
$$
 (24)

For every $\{u, v\}$, there exist numbers $\mu_k, k = 1, \ldots, n-1$, such that

$$
\left\langle \{Cu, Qv\}, \left\{H_j^{\mathrm{T}}, H_j^{\mathrm{T}}\right\}\right\rangle = \sum_{k=1}^{n-1} \mu_k \left\langle \{Cu^k, Qv^k\}, \left\{H_j^{\mathrm{T}}, H_j^{\mathrm{T}}\right\}\right\rangle, \qquad j = 1, \ldots, n-1.
$$

Therefore, relation (24) implies relation (23), where $h = h^0$.

Indeed, let $h^0 = (h_1^0, h_2^0, \ldots, h_n^0), h_i^0 \in R$, $i = 1, \ldots, n$. Then we can write $h^0 H = \sum_{i=1}^n h_i^0 H_i(t, s)$. Hence

$$
\langle \{Cu, Qv\}, \{H^{\mathrm{T}}h^{0\mathrm{T}}, H^{\mathrm{T}}h^{0\mathrm{T}}\}\rangle = \langle \{Cu, Qv\}, \left\{\sum_{j=1}^{n} H_{j}^{\mathrm{T}}(t,s)h_{j}^{0\mathrm{T}}, \sum_{j=1}^{n} H_{j}^{\mathrm{T}}(t,s)h_{j}^{0\mathrm{T}}\right\}\rangle
$$

\n
$$
= \sum_{k=1}^{n} \langle \{Cu, Qv\}, \{H_{j}^{\mathrm{T}}, H_{j}^{\mathrm{T}}\}\rangle h_{j}^{0\mathrm{T}} = \sum_{j=1}^{n} \left[\sum_{k=1}^{n-1} \mu_{k} \langle \{Cu^{k}, Qv^{k}\}, \{H_{j}^{\mathrm{T}}, H_{j}^{\mathrm{T}}\}\rangle \right] h_{j}^{0\mathrm{T}}
$$

\n
$$
= \sum_{k=1}^{n-1} \mu_{k} \sum_{j=1}^{n} \langle \{Cu^{k}, Qv^{k}\}, \{H_{j}^{\mathrm{T}}, H_{j}^{\mathrm{T}}\}\rangle h_{j}^{0\mathrm{T}} = \sum_{k=1}^{n-1} \mu_{k} \langle \{Cu^{k}, Qv^{k}\}, \{H^{\mathrm{T}}h^{0\mathrm{T}}, H^{\mathrm{T}}h^{0\mathrm{T}}\}\rangle
$$

\n
$$
= \sum_{k=1}^{n-1} \mu_{k} \times 0 = 0.
$$

Thus, h^0H is a nontrivial solution of Eq. (11) satisfying (23). We see that N is necessarily a nondegenerate matrix. Now we consider the boundary value problem (16) for the system

$$
dx/dt = A(t)x + \int_{\alpha}^{T} K(t,s)x(s)ds - C(t)\sum_{j=1}^{n} m_k u^k + f(t), \qquad t \neq \theta_i,
$$

$$
\Delta x(\theta_i) = B_i x(\theta_i) + \sum_{\alpha < \theta_j \leq \theta_i} D_{ij} x(\theta_j) + \int_{\alpha}^{\theta_i} M_i(s)x(s)ds - Q_i \sum_{j=1}^{n} m_k v_i^k + I_i,
$$
\n(25)

where the $\{u^k, v^k\} \in \Pi^m[\alpha, \beta]$ have been defined above and $m_k \in R^1$, $k = 1, \ldots, n$. Since N is a nondegenerate matrix, it follows that the system

$$
\sum_{k=1}^n \left\langle \left\{ C u^k, Q v^k \right\}, \left\{ H_j^{\mathrm{T}}, H_j^{\mathrm{T}} \right\} \right\rangle m_k = \left\langle \left\{ f, I \right\}, \left\{ H_j^{\mathrm{T}}, H_j^{\mathrm{T}} \right\} \right\rangle, \qquad j = 1, \ldots, n,
$$

is solvable for the m_k ; therefore, by Theorem 4, problem (25), (16) is solvable.

Necessity. Suppose the contrary: the problem γ_1 is solvable and system (11) has a nontrivial solution h satisfying Eq. (23). We can readily show that there exists an element $\{f, I\} \in \Pi^n[\alpha, \beta]$ such that $\langle f, I \rangle, \{h^T, h^T\} \rangle \neq 0$. We take some element with this property. Then, adding the last inequality to Eq. (23), we see that the pair $\{f, I\} \in \Pi^n[\alpha, \beta]$ satisfies $\langle \{Cu+f, Qv+I\}, \{h^T, h^T\} \rangle \neq$ 0 for all $\{u, v\}$. Since this contradicts Theorem 4, we arrive at the desired assertion.

It follows from the last theorem that the problems γ_1 and γ_2 are solvable if and only if the system \langle { Cu, Qv }, $\{H^T(\beta, s)h^T, H^T(\beta, \theta_i)h^T\}\rangle = 0$ has only the trivial solution for $h \in R^n$ for every $\{u, v\} \in \Pi_{p}^{m}[\alpha, \beta]$. Moreover, the problems γ_1 and γ_2 are solvable if and only if $\det(H(\beta, t)C(t)) \neq 0$ and $\det(H(\beta,\theta_i)Q_i) \neq 0, i = 1,\ldots,p$, for all $t \in [\alpha,\beta]$.

Now let Γ be the Gram matrix of the elements $\{H_i C, H_i (\beta, \theta_i +) Q_i\}, j = 1, \ldots, n$, i.e.,

$$
\mathbf{\Gamma} = \int\limits_{\alpha}^{\beta} H(\beta, t) C(t) C^{T}(t) H^{T}(\beta, t) dt + \sum_{i=1}^{p} H(\beta, \theta_{i} +) Q_{i} Q_{i}^{T} H^{T}(\beta, \theta_{i}).
$$

Theorem 7. *The problem* γ_1 *is solvable if and only if the Gram matrix* Γ *is nondegenerate.*

Proof. Let the problem γ_1 be solvable. By Theorem 6, system (23) has only the trivial solution $h = 0$. Setting $\{u, v\} = \{C^{T}(t)H^{T}(\beta, t), Q_{i}^{T}H^{T}(\beta, \theta_{i})\}$ in this equation, we find that the system $h\Gamma = 0$ has only the trivial solution. Conversely, if the equation $h\Gamma = 0$ has only the trivial solution, then system (23) has only the solution $h = 0$. The proof is complete. Let

$$
\mathbf{K} = \mathbf{\Gamma}^{-1} \Biggl\{ H(\beta, \beta) b - H(\beta, \alpha) a - \int_{\alpha}^{\beta} H(\beta, t) f(t) dt - \sum_{i=1}^{p} H(\beta, \theta_{i} +) I_{i} \Biggr\},
$$

$$
S(t) = H(\beta, t) C(t), \qquad P_{i} = H(\beta, \theta_{i} +) Q_{i}.
$$

From Theorem 6, we obtain the following assertion.

Theorem 8. Suppose that the problem γ_1 is solvable. Then the control $\{U, V\}$, where

$$
U = ST(t)K, \t Vi = PiTK,
$$

is a solution of the problem γ_1 .

Proof. By Theorem 5, the problem γ_1 is solvable if and only if

$$
\int_{\alpha}^{\beta} H(\beta, t)[f(t) + C(t)u(t)]dt + \sum_{i=1}^{p} H(\beta, \theta_i)[I_i + Q_i v_i] = H(\beta, \beta - b) - H(\beta, \alpha +)a. \tag{26}
$$

Substituting the expressions

$$
U = CT(t)HT(\beta, t)hT, \qquad V_i = Q_i HT(\beta, \theta_i) hT
$$
 (27)

for $\{u, v\}$ into Eq. (26), we obtain a system of linear equations for h. Using the solution of this system in Eq. (27), we obtain the desired expression for $\{U, V\}$. The proof of the theorem is complete.

The control $\{U, V\}$ allows one to describe the set of all controls solving the problem γ_1 .

Theorem 9. A control $\{u, v\}$ solves the problem γ_1 if and only if it has the form $u = U + \xi$. $v_i = V_i + \nu_i$, where $\{\xi, \nu\} \in \Pi^m[\alpha, \beta]$ is orthogonal to all columns of the matrix $\{S^T(t), P_i^T\}$ *in* $\Pi^m[\alpha, \beta]$.

Proof. Indeed, let $\{u, v\}$ be a control solving the problem γ_1 . Then

$$
\int_{0}^{3} S(t)(u(t) - U(t))dt + \sum_{i=1}^{p} P_i(v_i - V_i) = 0.
$$

If we assume that $\xi = u - U$ and $\nu_i = v_i - V_i$, then we obtain the desired assertion.

Conversely, suppose that $u = U + \xi$ and $v_i = V_i + v_i$. Then condition (26) is satisfied and the control $\{u, v\}$ solves the problem γ_1 .

We equip $\Pi^m[\alpha,\beta]$ with the norm $\|\{u,v\}\|_m = \langle \{u,v\}, \{u,v\}\rangle^{1/2}$. Following [10. p. 157], we can show that $\{U, V\}$ has the least norm in $\prod_{i=1}^{m} [\alpha, \beta]$ of all controls solving the problem γ_1 .

ACKNOWLEDGMENTS

The work was supported by the INTAS under grant no. 96-0915.

REFERENCES

- 1. Samoilenko, A.M. and Perestyuk. N.A., *Differentsial nye uravneniya s impul'snym vozdeistviem* (Impulsive Differential Equations). Kiev. 1987.
- 2. Myshkis, A.D. and Samoilenko, A.M.. *Mat. Sb.*, 1967. vol. 74, no. 2, pp. 202–206.
- 3. Lakshmikantham, V., Bainov, D.D., and Simeonov, P.S., *Theory of Impulsive Differential Equations*, Singapore, 1989.
- 4. Kolmogorov, A.N. and Fomin. S.V.. *Elementy teorii funktsii i funktsional nogo analiza* (Elements of Function Theory and Functional Analysis), Moscow, 1989.
- 5. Lando, Yu.K., *Differents. Uravn.*, 1977, vol. 13, no. 11, pp. 2070–2075.
- 6. Akhmetov, M.U., *Mat. Fizika i Nelineinye Kolebaniya*, 1987, no. 42, pp. 5–9.
- 7. Ilama Mohana Rao, M.. Srivastava Saujay. K.. and Sivasundaram, S., *J. Math. Anal. Appl.,* 1992, **vol.** 163, pp. 47-59.
- 8. Anokhin, A., Berezansky, L., and Braverman. E., *Dynamic Systems and Applications*, 1995, vol. 163, **I)P.** 173-188.
- 9. Akhlnetov, M.U., Perestyuk, N.A., and Tleubergenova, M.A., Ukr. *Mat. Zh.,* 1995, vol. 47, no. 3, l)P. 307-314.
- 10. Krasovskii, N.N., *Tcoriya upravleniya dvizheniem* (Theory of Motion Control), Moscow, 1974.