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1. I N T R O D U C T I O N  

The  theory of impulsive differential equations [1--3] includes numerous  open problems related to 
results of the theory of integral and integro-differential equations [4-8]. 

The  aim of the present 1)aper is to find solvability conditions for a control boundary  value problem 
for a linear impulsive integro-differential system. (The control problem for a linear impulsive system 
was earlier s tudied in [9].) Moreover. ~ obtain necessary and sufficient condit ions for the solvability 
of a boundary  value problem for a linear imlmlsive integro-differential system and prove results on 
the existence and an integral representat ion of solutions of integro-sum Volterra equat ions of the 
second kind and integro-differential equations with impulsive effect at given instances of time. 

2. AUXILIARY ASSERTIONS 

We take real nulnbers n and .3. ~ </;1. and positive integers r and p. Let L g[~,/3] be the space of 
all squm'e integrable flmctions g :  [o'./3] ~ R",  and let D ~ [1, p] be the set of all finite sequences {{~}, 

= . ,, ., = r [a,/3] D"[1, p] and denote  its elements ~ E'R", i 1 , . .  ,p. We introduce the space lip[dr, 9] L 2 x 

by {~,~}. We equip this space with the inner product  {{~,~}. {w,u}) = j ~ ( 4 ) , w ) d t  + Zf=x (~i,ui),  

where (., .) is the inner product  in R". Throughou t  the following, {0~}, i = 1 , . . .  ,p, is a given 
strictly increasing sequence of real numbers  in the interval (ct,/3). By P A C [ a ,  13] we denote  the 
set of all piecewise absolutely conti lmous fimctions x(t) : [(t, 13] ~ R" tha t  are left cont inuous 
everywhere on [(~,/3] and have j u m p  discontilmities at the points {0~}, i = 1 . . . . .  p. 

The  following lenmms are analogs of the Fubini theorem [4, p. 317]. 

L e m m a  1. Let D~j, i . j  = 1 . . . . .  p, be co~stant n x n matrices, and let {~} e D~{1,p}.  Then  

a < 0 ; < t  a<0,_<0, c~<O,<t O,<_O~<t 

for each t ~ (~, 13). 

The  proof  is by rearranging the terms. 

L e m m a  2. Let K( t . . s )  be an n x n matr ix  square integrable 077, the interval c~ < s < 13, and let 
~ ( t )  e L'~ [a,/3], i = 1 . . . . .  p. Th, en 

t t 

[ KI, 2 z [ ill 
X n<0,<s ,~<o,<t o, 

f o r  each t E (ct,/3). 
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CONTROL OF A BOUNDARY VALUE PROBLEM FOR A LINEAR IMPULSIVE .. .  1513 

P r o o f .  Consider the functions (I)~(t), i = 1 , . . .  ,p, such tha t  (I)~(t) = 0 for t _< 0~ and O~(t) = ~p~(t) 
for t > 0~. Then  the left-hand side of (1) becomes 

t t t 

a ~<O,<t c~<O,<t ct<O~<t Oi 

The  proof  of the l emma is complete.  
Consider the integral equat ion 

t 

x(t) = f c ( t , s ) x ( s ) d s +  ~ Si(t)x(Oi) + ~ N~(t)x(Oi+) + ~ I ,+ f(t), (2) 
a ~<O,<t a<Oi<t ~<O;<t 

where x e R '~, G(t, s) is an n • n mat r ix  function square integrable on [a, 3] • [a,/3], S~(t) and N~(t) 
are n • n matr ix  functions whose colmnns,  as well as the function f(t), belong to PAC[a, fl], and 
{L} C Dn[1,p]. Fur thermore,  we assume tha t  det  ( I  - N~ (0~+) + N, (0~)) r 0 for all i -- 1 , . . .  ,p. 

T h e o r e m  1. System (2) has a unique piecewise continuous solution x(t) E PAC[a,/3]. It can 
be represented in the form 

t 

x(t) = f Pl(t,s)f(s)ds + ~_, Q~(t)I,~ + ~_~ P.j(t)f (0~) +.f(t) + ~ 1,~, (3) 
a o<0,  < t  (~<0, <t  c~<Oi<t 

where Q,(t), P.J(t), i = 1 , . . .  ,p, and Pl(t, s) are piecewise continuous n • n matrix functions. 

P r o o f .  Let R(t, s) be the  resolvent of the Volterra integral equat ion of the second kind with 
kernel G(t, s). Then,  using Lemmas  1 and 2, we find tha t  system (2) is equivalent to the equat ion 

cx<Oi<t O, o~ , t O; 

t t 

+ <~< f R ( t , s ) L d s  + ~I~ + f R(t,s)f(s)ds + f ( t ) .  
c~ i t Oi a<Oi<t a 

(4) 

Let S~j = fo~ R(Oi,s)S~(s)ds, N~j : fo~ ~ R(Oj, s) N~(s)ds, and Ply = fo~ ~ R(Oj,s)ds+ E, where E is 
the n • n identi ty matrix.  Then  it follows from (4) tha t  

(oj) = Z [(s,j + s ,  (oj)) �9 + + (Oj)) x + 
a<Oi <Oj 

03 

+ fR(Oj , s )  f(s)ds + f (Oj). 
c~ 

Y~ p~jL 
c~<O,<:Oj 

(5) 

Using Eqs. (4) and (5), we obtain 

X (Oj-[-) = ( E  - i j  (Oj-[-) ~- N j  ( O j ) )  - 1  { ( E  -~- S j  (Oj-[-) - ~ j  (Oj ) )  x (0~) 

+ ~_, [Si(Oj+)-S~(O~)]x(O,)+ y~ [Ni(Oj+)-N,(Ojllx(O~+) 
oL <:0, <Oj c~<O, <Oj 

+ Ij + f (Oj+) - f (Oj) }. 

(6) 
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1514 AKHMETOV. SEILOVA 

The expressions (5) and (6) recursively define x (0j) and :r (0j+).  Since the lmnhomogeneous part 
of this system is a linear Colnbination of the vectors fo, R( t ,s ) f (s)ds ,  f (0~). and L, i = 1 , . . .  ,p, 
it follows that  z (O j) and .r (O j+) are also linear colnbinations of these vectors with matrix coeffi- 
cients. Substi tuting the expressions (5) and (6) into Eq. (4), we find that  the solution of Eq. (2) 
has the forln (3)�9 The proof of the theorem is complete. 

3. THE BOUNDARY VALUE PROBLEM 

Consi(ter the imlmlsive integro-differential systenl 

t 

j dx/dt = A(t)x + K(t , s )x(s)ds  + f ( t ) ,  t r Oi. 
0r 

o, (r)  

/ k j ' ( O , )  = B i : r ( O i )  --[- Z n i j a ' ( O J )  -'[- / - ~ I i ( s ) x ( s ) d 8  nt- 

i .  

I~, 
c~<O , <_O, a ] 

where z ~ R ' ,  Ax(0, )  = .r(0,+) - : r (0~) ,  t ~ [o,81, A(t), K( t ,s ) .  and ilL(t), i = 1 . . . . .  p, are 
'n x n nmtrix flmctions, the cohmms of A(t) and Mi(t), i = 1 . . . . .  p, are elements of the space 
f~[~,/~]. { f , q  e Ir'[~*.,~l. the O , , ,  i , j  = 1 . . . . .  p. are constant n x n lnatrices, and K(t , s )  is 
a square integratfle nmtrix function on [o./}] x [c~./}]. 

Let us s tudy the existence and uniqueness of the solution of Eq. (7) and derive solvability 
conditions for the boundary value i)rol)leln 

x ( a )  = a. x( .3)  = b, a, b E R",  (8) 

for this system. 

T h e o r e m  2. Let system (7) satisfy the above-me~ltioned conditious. Then for every Xo E R", 
there exists a unique piecewise continuous solution x(t) E PAC[a.,/3], x(o,) = a'0, of this system 
defined on the interval [m ~1]. 

P r o o f .  Differentiating and verifying the julnp conditiolm, we can show that  the integro-sum 
equation 

,/ j 
�9 ( , )  = x0 + / A(s)r(s),~s +,[ IC(~.s)�9 + Z B,.,.(o,)+ s(s)es 

o ct o c~<O,<t ct 

0, 

/ + E Z D,.,,(O,)+ Z ~ , ( s ) . ( s ) , ~ s +  X; I, 
a<O,<t n<O,<O, c~<O,<t a<Oi<t 

(9) 

is equivalent to Eq. (7) provided tha t  �9 = .r0. Using tile Fubini theoreln and Lemma 2, we can 
rewrite the latter equation in the form 

t 

x(t) = / ~ ( t , s ) x ( s ) d s  + ~ Oi.r(Oi) + ~ I, +F( t ) ,  (10) 
ct n<Oi<t c~<O, <t 

where 
t 

qJ(t.s) = A(s) + . / K ( m s ) d a  + ~ Mj(s).  
s s<O.l<t 

t 

•, = Bi + Z D,,, F(t) = Xo + / f(s)ds.  
O, <_O j <t ct 
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Equat ion (10) is an equat ion of the  form (2) and hence, by Theorem 1, has a unique solution. 
The  proof  of the theorem is complete.  

Now let us consider the system of integro-differential equat ions 

t 

Oh(t,s)/Os = -h(t,s)A(s) - / h(t,(r)K(a,s)da - ~ h(t, ej)Mi(s), 
s s<O.j <t 

Ah(t,O~)=-h(t ,O,)B~(E+ B , ) - ' -  ~_, h(t, Oj+)Dj,(E+ B,)-'  
Oi~Oj<t  

s#Oi, 
(11) 

where h E R ~ is a row vector, t E [a,/3], A, K, D i j  , -AIi, and Bi are defined in the  stone way as 

in system (7), and Ah(t, Oi) = h(t, Oi+)- h(t, Oi). Suppose  tha t  det  ( E - D j j  (E + Bj)- ')  # 0 
for all j = 1 . . . .  , p. 

By analogy with Theorem 2, using Theorem 1 and L e m m a  2, we can show tha t  for each ho E R '~ 
system (11) has a unique solution h(t,s) such tha t  h(t,t) = ho. 

Let H(t, s) = col (HI,/-/2, H a , . . . ,  H,~) be the nmtr ix  such tha t  H(t, t) = E and the rows H~, 
i = 1 , . . . ,  n, are solutions of system (11). 

T h e o r e m  a. Let x(t) = x (t, a, Xo) be a solution of the Cauchy problem for Eq. (7). Then 

t 

x(t) = H(t,~)Xo + f H(t,s)f(s)ds + ~ H (t, Oj+) I~. (12) 
a<O,<t  

P r o o f .  Let x(t) = x (t, a, Xo) be a solution of Eq. (7), and let ~(s) = H(t, s)x(s). We have 
[1, p. 201 

t 

f ~o'(s)ds + ~ A~2(O~). (13) ~(t) - p ( a )  = 
ct ct<O,<t 

We take some i. Then  

A~(O,) = H ( t , O , + ) x ( O , + )  - H ( t ,O , )x (O i )  = H (t,O,) Ax(O~) + AH(t,O~)x(O,+). 

Sunmfing both  sides of the  last relation over all i such tha t  a < 0~ < t and using L e m m a  1 and the 
relation 

][ ] 
c~<Oi<t c~ a s<_O,<t 

(which can be proved by analogy with L e m m a  2), we obtain 

( o , )  = 
c~<O, <t  

Oi 

[AH (t,O,)(E + B,) + H (t, 0 , )B,]x(Oi)  + ~ H (t, 0,) f M,(s)x(s)ds 
a<O, <t  c~<O, < t c~ 

+ y~ ~ H(t, Oi+)Di3x(Oj)+ ~ H(t, Oi+)Ii 
~<Oi<t (~<Oj<O, o<Oi<t  

a<O~<t O,<_O~<t 

O, 

+ Z fH(t, OdM,(8)x(8)ds+ Z 
c~<O,<t c~ c~<Oi<t 

(14) 
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Differentiatillg the expression ,~(s)  = H(t. s)x(s), we obtain 

~'(s) = (OH/&@r(s) + H(t,s) A(s)x(s) + ~ ) I((s. v)x(v)dv + f(s)]  . 

This, together with the Fubini theorem, ilnplies that 

j[ ; ] / c2'(s)ds = OH/Os + H(t. s)A(s) + H(t, v)If(v, s)dv x(s)ds 

t 

+ j '  H(t, s)f(s)ds. 
o 

(15) 

Now. since H is a solution of Eq. (11). it follows fl'om Eqs. (13) (15) that 

;[ i ] ;(t) - p(o,) = OH/Os + H(t. s)A(s) + H(t. v)If(v, s)dc x(s)ds + H(t, s)f(s)ds 
f~ r c~ 

+ ~ [AH(t,O~)(E+B~)+H(t.O~)B,+H(t,O~+)Dolx(O~) 
O , < _ O ~ < t  

t 

+ ~ .,<_o,<, ~ H(t.O,)M,(s)x(s)ds+ 

t 

= ~ H(t.O~+)I,. 
ct ~ < O , < t  

The proof of the theorem is complete. 
Now we consider system (7) with the boundary conditions 

H(t, Oi+)L 
c~<O, < t  

:r(o) = o. x(/3) = o. (16)  

The following assertion is an easy consequence of Theorem 3. 

T h e o r e m  4. The boumhtry value pwblcm (7). (16) is solvable 'if and only if 

({Hj(/3, s).//3 (fl, Oy)}, {.f,/j}) = 0 

for all j = 1, . . . .  p. 

T h e o r e m  5. Problem (7), (8) is soh, able i.f and only ~f 

({Hi(/3, s), H 9 (/L O j+)} ,  {f(s) , / j})  = Hj(/3, /3-)b - Hj(/3, ~+ )a, j = l  . . . . .  p. 

Proof .  We claim that there exists a continuous flmction ~(t) such that ~ (Oj) : O, j = 1 , . . .  ,p, 
and the substitution x(t) = g(t) + ~2(t) reduces problem (7), (8) to the system 

t t 

= / [ 1 dy/dt A(t)y + K ( t , s ) g ( s ) d s  + f ( t )  ~'(t) - A(t)~(t)  
f t c~ 

O, 

Ay(0~) = B~y(O,) + ~ Doy(Oj) + f M~(s)x(s)ds + I~ 
a < O ~ < O ,  a 

t # O i ,  

(17) 
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with the boundary  condit ions 
y(a)  = 0, y(/3) = 0. (18) 

Indeed, let pa(t) be the Lagrange polynonfial  such tha t  ~(c~) = a ,  ~ 1 ( / 3 )  = b, and ~ ) l ( 0 j )  = 0. 
j = 1 , . . .  ,p. Subs t i tu t ing  x(t) = z(t) + p~(t) into Eqs. (7) and (8), we obtain 

t _ A ( t ) : l ( t ) -  f_t K(t ,s): ,(s)ds] dz/dt = A(t)z + f ,  K(t,s)z(s)ds + f ( t ) -  :'~(t) .i , t # 0~, 
c~ cx 

O, O~ 

zx~(oi) = B~(O,)+ E V,,z(O,) + f M,(,)4s)e~ + f M~(s)~l(s)ds + 
c~<Oj <0~ c~ c~ 

(19) 
and 

~(~) = 0, 4 /3)  = 0. (20) 

Now we take a Lagrange polynonfial p~ such tha t  ~~  = 0, ~0(/3) = 0, and ~0 (0j) = 0, 
j = 1 , . . .  ,p. Using this polynonfial,  we construct  a f lmction ~o2(t) as follows. Let 

01 Oi 

Ml(s)~~ 
c~ c~ 

Then  we set ~2(t) = -k lpl lp~ for t E [a, 01]. Now let 

02 01 02 

(3~ ~ 01 

= --k2P2 ~P2(t) for t E We set :2 ( t )  - ,  0 (01,02]. 
Proceeding this way, we define ~,2(t) on the entire interval [c~,/3] so tha t  the subs t i tu t ion  z(t) = 

y(t) + :2(t) reduces problem (19), (20) to system (17) with the  bounda ry  condit ions (18). Hence 
: ( t ) = : l ( t ) + : 2 ( t ) .  

By Theorem 4, problem (17), (18) is solvable if and only if 

({Hj(/3, s),Hj(/3,0j+)},{F, Ij}) = 0 ,  j = l ,  . . . .  p, (21) 

where F(t) = -~'~(t) + A(t):(t) + f~ K(t,s):(t)ds.  Integrat ing by par ts  in (21) and using the 
~ lb in i  theorem, we complete  the proof. 

4. C O N T R O L L A B I L I T Y  OF T H E  BOUNDARY VALUE P R O B L E M  

Consider the bounda ry  value problem (8) for the  system 

t 

/ K(t, s)x(s)ds + C(t)u(t) + f ( t ) ,  t # 0i, dx / dt A(t)x + 
c[ 

0, (22) 

+ ~ D~:(Oj) + / Mi(s)x(8)d8 + Q:,~ + I .  Ax (0~) B~x(Oi) 
ot<Oj ~Oi OL 

Here x E R ~, A, K,  M~, and B~, i = 1 . . . .  ,p, are the same matr ices  as in Eq. (7), C(t)  and 
Qi, i = 1,... ,p, are n • m matrices, m is a given positive integer, the columns of C(t) belong 
to L~[c~,/3], the  Q~, i = 1 , . . .  ,p, are constant  matrices,  and the  solutions of sys tem (22) belong 
to PAC[a,/3]. 

If for each element { f , I }  E I I"[m 3] and for all a,b E R ~, there exists a control  {u, v} E Hm[a,/3] 
such tha t  problem (22), (8) is solvable, then  we say tha t  the  control problem ~ is solvable. The  prob- 
lena ~/1 with a = 0 and b = 0 will be referred to as the  control problem "yz. 
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L e m m a  3. The control problem % is soh,able if and only if so is the control problem ~2. 

P r o o f .  Let the probteln "~1 be solvable. Since the probleln %, is a special case of the problem "71, 
we find it is also soh,able. Conversely, supt)ose that  the problem % is solvable. Let p(t)  be the 
same function as in tlie proof of Theorem 5. Replacil~g x(t) by y(t)+ g)(t), we find that  y(t) satisfies 
the systeln 

t 

dy/dt = A(t)y + . / I ( ( t ,  s)y(s)ds + C(t)u(t) + [f(t)  - p '( t)  + A(t)~(t)] , 

O, 

j '  kli + [ i  /ky(Oi) = Biy(Oi)-}- E D,jy(Oj) q- (8)g(s)ds,-.I-Ofvi 
a <O j <_Oi a 

t#Oi, 

and the boundary  conditiolls y(ct) = 0 and y(/3) = 0. This probleln is solvable by assumption. 
The proof is complete. 

T h e o r e m  6. The pTvblem "11 is solvable ff and ordy if the trivial solution of system (11) satisfies 
th.c relation 

({C,,.(),v,}, {hT, h'r}} = 0 V{,t.v} ~ n~'[o, 3]. (23) 

P r o o f .  Suff ic iency .  Let h(t .s ) ,  h( t . t )  = h, h E R", be a solution of system (11); then 
h(t, s) = hH(t, s). Therefore. by the assumptions of the theoreln, the infinite system 

({Cu, 0,,}. {Hr(/3. .~)hT.H * (,3. 0,) h~}) = 0, V{u,,,} e W [ " ,  ~], 

has only the trivial solution h = 0. Let us show that  there exist n elements {u k, v/,'} E I-I~'[a,/3], 

k = l  . . . .  ,n,  such that  N = {{Cut ,Qvk} ,  {Hf ,  H f } ) j / , , j , k  = 1, . . .  ,n,  is a nondegenerate lnatrix. 

Supl)ose the contrary. We take some {u ~'. v ~'} E I I"  [o,, /3], 1,, = 1, . . . ,  n. Without  loss of gen- 
erality, we can assume that  the last x'ow of N can be represented as a linear combination of the 
relnaining rows. By h ~ we denote a nontrivial solution of the systexn 

({Cu/,'.Qv/,'} , {HThT,HThT}} =0 ,  k =  1 , . . . , n . -  1. (24) 

For every {u, v}, there exist nulnbers it/,., k = 1 . . . .  , n -  1. such that  

{ - ; , / c  }) 
n - -  1 

: Z,,k o,,k}, { g .  g } } ,  
k=l 

j = 1 , . . . , n - 1 .  

Therefore, relation (24) implies relation (23), where tt = h ~ 
n Indeed, let h ~ = (h.~ ~ . . . . .  h,~ h ~ E R, i =  1 . . . . .  n. Then wecan  write h~ = E j = I  h~ �9 

H e n c e  

({Cu, Qv}, {HTh~176 = ( n }1 {c,,,Q,,}, F. HJ(t,s)1, .~ F. HT(~,8)h ~ 
j = l  j = l  

k= l  j = l  [ .k=l  

n - 1  

: 
k = l  j = l  

n - 1 

= E l t~"  x O = O .  
k=l 

n - 1 

Z t,k < ( C,, k, Q,,k } 
/,'=1 

, {HTh ~ HTh ~ }) 
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Thus, h~ is a nontrivial solution of Eq. (11) satisfying (23). We see that N is necessarily a 
nondegenerate matrix. Now we consider the boundary value problem (16) for the system 

T 71 

dx/dt = A(t)x + f K(t,s)x(s)ds - C(t) ~ mku k + f(t), 
a j=5 

0i 

Ax(0~)=B~x(0~)+  ~ D~jx(Oj)+ f M,(~)x(~)d~-Q~ 
a<Oj <_0, a 

t r  

n 

j = l  

where the {uk,v k} e Hm[a,/3] have been defined above and mk E R 5, k = 1 , . . . , n .  Since N is 
a nondegenerate matrix, it follows that the system 

7l 

({Cuk, Qvk}, {HT, HT} )mk  = ( { f , I } ,  {HT, H T } ) ,  j =  1 , . . . , n ,  
k=5 

is solvable for the mk; therefore, by Theorem 4, problem (25), (16) is solvable. 

Necessi ty .  Suppose the contrary: the problem "/1 is solvable and system (11) has a nontrivial 
solution h satisfying Eq. (23). We can readily show that there exists an element {f, I} E H ~ [a,/3] 
such that ({f, I}, {h T, hW}) r 0. We take some element with this property. Then, adding the last 
inequality to Eq. (23), we see that the pair {f, I} e If[a, /3]  satisfies ({Cu + f, Qv + I}, {h  T, hT}> 

0 for all {u, v}. Since this contradicts Theorem 4, we arrive at the desired assertion. 
It follows from the last theorem that the problems "/5 and "/2 are solvable if and only if the system 

({Cu, Q't,}, {HT(/3, s)h T, U T (/3,0~)hT}) = 0 has only the trivial solution for h E R ~ for every 
{u, v} G II~' [a,/3]. Moreover, the problems "/5 and "/2 are solvable if and only if det(H(/3, t)C(t)) ~ 0 
and det(U(/3,0~)@) r 0, i = 1 , . . .  ,p, for all t C [a,/3]. 

Now let r be the Gram matrix of the elements {HjC, Hj (/3, Oj+) Qj}, j = 1 , . . . ,  n, i.e., 

p 

r = f H(/3, t)C(t)cT(t)HT(/3, t)dt + ~ H (/3,0~+)Q,QTH T (/3,0~). 
i = 5  c~ 

T h e o r e m  7. The problem "~1 i8 solvable if and only if the Grant matrix F is nondegenerate. 

Proof .  Let the problem "~l be solvable. By Theorem 6, system (23) has only the trivial solution 
h = 0. Setting {u,v} {cW(t)gW(/3, t), T W = Qi H (/3,0i)} in this equation, we find that the system 
hF = 0 has only the trivial solution. Conversely, if the equation hF = 0 has only the trivial 
solution, then system (23) has only the solution h = 0. The proof is complete. Let 

c~ 

S(t) = H(/3, t)C(t), Pi = H (/3, 0~+) Qi. 

From Theorem 6, we obtain tile following assertion. 

T h e o r e m  8. Suppose that the problem "/1 is solvable. Then the control {U, V}, where 

U = sT(t)K,  V~ = piTK, 

is a solution of the pwblem "/1. 
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P r o o f .  By Theorem 5. the l)roblem "/1 is soh,able if and only if 

f H(/3, t)[f(t) + C(t)u(t)]dt + 
I) 

H (3,0,)[I,  + Q,v,] = H(/~,/3-)b- H(/J,c~+)a. (26) 
i = 1  

Substitutillg the exl)ressiollS 

U = cT(t)HT(/3, t)h "r. l'} = Q,H T (/3. Oi) h T (27) 

for {'u, v} into Eq. (26), we obtain a system of linear equations for h.. Using the solution of this 
system in Eq. (27), we obtain the desired expression for {U. V}. The proof of the theorem is 
complete. 

The control {U, V} allows one to describe the set of all controls solving the problem "71. 

T h e o r e m  9. A control {u. v} solves the pwblem % ~f and only if it h, as the form u = U + ~. 
vi = Vi + u,, where {(. u} C II"[m/3] is orthogonal to all columns of the matrix {ST(t) ,Pf}  
in 11 '" 

P r o o f .  Indeed, let {u. v} be a control solving the problenl "/1. Then 

,3 
I) 

f s ( t ) ( , ( t )  - U(t))dt + 
i = 1  N 

= 0 .  

If we assume that  ~ = u - U and ui = v, - I�88 then we obtain the desired assertion. 
Conversely, suppose that u = U + ~ and vi = E + ui. Then condition (26) is satisfied and the 

control {u, v} solves the problem 31. 

We equip IIm[a./31 with the n o r n l  I1{..,'}11,,, = <{,,, ~'}, {u, ,,}>,/2. Following [10. p. 157], we can 
show that  {U, V} has the least norm in of all controls solving the problem "h. 
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